ST AN2393 Application note

AN2393

Application note

Reference design: wide range 200W L6599-based HB LLC resonant converter for LCD TV & flat panels

Introduction

This note describes the performances of a 200 W reference board, with wide-range mains operation and power-factor-correction (PFC). Its electrical specification is tailored to a typical high-end application for LCD TV or monitor applications.

The main features of this design are the very low no-load input consumption (<0.5 W) and the very high global efficiency, better than 87% at full load and nominal mains voltage (115 - 230 Vac).

The circuit consists of three main blocks; the first is a front-end PFC pre-regulator based on the L6563 PFC controller. The second stage is a multi-resonant half-bridge converter whose control is implemented through the STMicroelectronics L6599 resonant controller. A further auxiliary flyback converter based on the VIPer12A-E off-line primary switcher completes the architecture. This third block is mainly intended for microprocessor supply and display power management operations.

Figure 1. L6599 and L6563 200W evaluation board (EVAL6599-200W)

October 2007

Rev 5

1/35

www.st.com

Contents

AN2393

 

 

Contents

1

Main characteristics and circuit description . . . . . . . . . . . . . . . . . . . .

. 4

2

Electrical test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

2.1

Efficiency measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

2.2

Resonant stage operating waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

2.3

Stand-by and no load power consumption . . . . . . . . . . . . . . . . . . . . . . . .

14

 

2.4

Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

2.5

Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

3

Thermal tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

4

Conducted emission pre-compliance test . . . . . . . . . . . . . . . . . . . . . .

20

5

Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

6

PFC coil specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

 

6.1

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

 

6.2

Mechanical aspect and pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

7

Resonant power transformer specification . . . . . . . . . . . . . . . . . . . . .

27

 

7.1

Electrical characteristics and mechanical aspect . . . . . . . . . . . . . . . . . . .

28

8

Auxiliary flyback power transformer . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

 

8.1

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

9

Reference design board layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

10

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

2/35

AN2393

List of figures

 

 

List of figures

Figure 1. L6599 and L6563 200W evaluation board (EVAL6599-200W). . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2. PFC pre-regulator electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 3. Resonant converter electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 4. Auxiliary converter electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 5. Overall efficiency versus output power at nominal mains voltages. . . . . . . . . . . . . . . . . . . 10 Figure 6. Overall efficiency versus output power at several input voltage values . . . . . . . . . . . . . . . 11 Figure 7. Resonant circuit primary side waveforms at full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 8. Resonant circuit primary side waveforms at no-load condition. . . . . . . . . . . . . . . . . . . . . . 12 Figure 9. Resonant circuit secondary side waveforms: +24 V output . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 10. Resonant circuit secondary side waveforms: +12 V output . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 11. Low frequency (100 Hz) ripple voltage on the output voltages. . . . . . . . . . . . . . . . . . . . . . 13 Figure 12. Load transition (0 - 100%) on +24 V output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 13. Load transition (0 - 100%) on +12 V output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 14. +24 V output short-circuit waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 15. +12 V output short-circuit waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 16. Thermal map @115 Vac - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 17. Thermal map at 230 Vac - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 18. CE quasi peak measurement at 115 Vac and full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 19. CE quasi peak measurement at 230 Vac and full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 20. PFC coil electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 21. PFC coil pin side view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 22. Mechanical aspect and pin numbering of resonant transformer. . . . . . . . . . . . . . . . . . . . . 28 Figure 23. Resonant transformer electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 24. Resonant transformer winding position on coil former . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 25. Auxiliary transformer electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 26. Auxiliary transformer winding position on coil former . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 27. Copper tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 28. Thru-hole component placing and top silk screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 29. SMT component placing and bottom silk screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3/35

Main characteristics and circuit description

AN2393

 

 

1 Main characteristics and circuit description

The main characteristics of the SMPS are listed below:

Universal input mains range: 90 to 264 Vac and frequencies between 45 and 65 Hz

Output voltages:

24 V@6 A continuous operation

12 V@ 5 A continuous operation

3.3 V@ 0.7 A continuous operation

5 V@ 1 A continuous operation

Mains harmonics: Compliance with EN61000-3-2 specifications

St-by mains consumption: Typical 0.5 W @230 Vac

Overall efficiency: better than 88% at full load

EMI: Compliance with EN55022-class B specifications

Safety: Compliance with EN60950 specifications

PCB single layer: 132x265 mm, mixed PTH/SMT technologies

 

The circuit consists of three stages. A front-end PFC pre-regulator implemented by the

 

controller L6563 (Figure 2), a half-bridge resonant DC/DC converter based on the resonant

 

controller L6599 (Figure 3) and a 7 W flyback converter intended for stand-by management

 

(Figure 4) utilizing the VIPer12A-E off-line primary switcher.

 

The PFC stage delivers a stable 400 VDC supply and provides for the reduction of the mains

 

harmonics, in order to meet the requirements of the European norm EN61000-3-2 and the

 

JEIDA-MITI norm for Japan.

 

The PFC controller is the L6563 (U1), working in FOT (fixed off-time) mode and integrating

 

all functions needed to operate the PFC and interface the downstream resonant converter.

Note:

The FOT control is implemented through components C15, C17, D5, Q3, R14, R17 and R29

 

(see AN1792 for a complete description of a FOT PFC pre-regulator).

 

The power stage of the PFC is a conventional boost converter, connected to the output of

 

the rectifier bridge through a differential mode filtering cell (C5, C6 and L3) for EMI

 

reduction. It includes a coil (L4), diode (D3) and two capacitors (C7 and C8).

 

The boost switch is represented by the Power MOSFET (Q2) which is directly driven by the

 

L6563 output drive thanks to the high current capability of the IC.

 

The divider (R30, R31 and R32) provides the L6563 (MULT Pin 3) with the information of the

 

instantaneous voltage that is used to modulate the boost current and to derive some further

 

information like the average value of the AC line used by the VFF (voltage feed-forward)

 

function. This function is used to keep the output voltage almost independent of the mains

 

one.

 

The first divider (R3, R6, R8, R10 and R11) is dedicated to detecting the output voltage

 

while the second divider (R5, R7, R9, R16 and R25) is used to protect the circuit in case of

 

voltage loop fail.

 

The second stage is an LLC resonant converter, with half bridge topology, working in ZVS

 

(zero voltage switching) mode.

 

The controller is the L6599 integrated circuit that incorporates the necessary functions to

 

drive properly the two half-bridge MOSFETs by a 50 percent fixed duty cycle with dead-time,

4/35

AN2393

Main characteristics and circuit description

 

 

changing the frequency according to the feedback signal in order to regulate the output voltages against load and input voltage variations.

The main features of the L6599 are a non-linear soft-start, a current protection mode used to program the hiccup mode timing, a dedicated pin for sequencing or brown-out (LINE) and a stand-by pin (STBY) for burst mode operation at light loads (not used in this design).

The transformer uses the magnetic integration approach, incorporating the resonant series and shunt inductances. Thus, no additional external coils are needed for the resonance. The transformer configuration chosen for the secondary winding is center-tap, and the output rectifiers are Schottky type diodes, in order to limit the power dissipation. The feedback loop is implemented by means of a classical configuration using a TL431 (U4) to adjust the current in the optocoupler diode (U3). A weighted resistive divider (R53, R57, R58, R60 and R61) is used to detect both output voltages in order to get a better overall voltage regulation. The optocoupler transistor modulates the current from Pin 4, so the frequency will change accordingly, thus achieving the output voltage regulation. Resistors R46 and R54 set the maximum operating frequency.

In case of a short circuit, the current entering the primary winding is detected by the lossless circuit (C34, C39, D11, D12, R43, and R45) and the resulting signal is fed into Pin 6.

In case of overload, the voltage on Pin 6 will overpass an internal threshold that triggers a protection sequence via Pin 2, keeping the current flowing in the circuit at a safe level.

The third stage is a small flyback converter based on the VIPer12A-E, a current mode controller with integrated Power MOSFET, capable of delivering (approximately) 7 W output power on the output voltages (5 V and 3.3 V). The regulated output voltage is the 3.3 V output and, also in this case, the feedback loop bases on the TL431 (U7) and optocoupler (U6) to control the output voltage.

This converter is able to operate in the whole mains voltage range, even when the PFC stage is not working. From the auxiliary winding on the primary side of the flyback transformer (T2), a voltage Vs is available, intended to supply the other controllers (L6563 and L6599) in addition to the VIPer12A-E itself.

The PFC stage and the resonant converter can be switched on and off through the circuit based mainly on components Q7, Q8, D22 and U8, which, depending on the level of the signal ST-BY, supplies or removes the auxiliary voltage (VAUX) necessary to start-up the controllers of the PFC and resonant stages. In this way, when the AC input voltage is applied to the power supply, the small flyback converter switches on first; then, when the ST-BY signal is low, the PFC pre-regulator becomes operative, and last the resonant converter can deliver the output power to the load.

Note that if Pin 9 of Connector J3 is left floating (no signal ST-BY present), the PFC and resonant converter will be not operating, and only +5V and +3.3V supplies are available on the output. In order to enable the +24 V and +12 V outputs, Pin 9 of Connector J3 must be pulled down to ground.

5/35

6/35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Main

 

 

 

 

 

 

 

 

 

 

 

Vrect

 

 

 

 

.2Figure

characteristics

 

 

 

 

 

 

 

 

 

 

 

 

D1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1N5406

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D2

L3

 

L4

 

 

 

 

descriptioncircuitand

 

 

 

 

 

 

 

 

 

D15XB60

 

 

 

 

 

F1

 

 

CM-TF2628V-5mH-3A

 

 

 

 

 

 

1-2

 

D3

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~

+

 

 

 

 

Vdc

J1

 

 

 

L1

 

 

Jumper

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3A/250V

 

 

 

 

 

 

 

 

 

DM-LSR-72uH-3A

PQ35-900uH

 

STTH8R06

NTC 2R5-S237

+400V

1

R1

C2

 

 

 

C3

 

 

C4

C5

C6

5-4

 

 

C7

electricalregulator-prePFC

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C8

 

1M5

100nF-X2

 

 

330nF-X2

 

 

680nF-X2

330nF/630V

680nF/630V

 

 

 

470nF/630V

220uF/450V

 

 

 

 

 

 

 

 

 

 

CON2-IN

 

 

 

 

 

 

Jumper

 

~

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C10

C11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2nF2-Y1

 

 

 

 

 

 

 

 

 

2nF2-Y2

2nF2-Y2

 

 

 

 

 

 

 

 

Vdc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R4

 

 

 

 

 

 

 

 

 

 

 

 

 

R3

 

 

 

 

Vaux

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47

 

 

 

 

 

 

 

 

 

 

 

 

 

680k

 

 

 

 

 

 

 

 

 

 

 

 

 

R5

 

 

 

 

 

R6

C12

C13

 

 

 

 

 

 

 

 

 

2M2

 

 

 

 

 

680k

100nF

10uF/50V

 

 

 

 

 

 

 

 

 

R7

 

 

 

 

 

R8

 

 

 

 

 

 

 

 

 

 

 

2M2

 

 

 

 

 

680k

 

 

 

 

 

 

 

 

diagram

 

 

R9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R10

R11

 

 

 

 

 

 

 

 

 

 

 

2M2

C14

 

 

 

 

 

 

 

C15

 

 

 

 

 

 

 

 

 

 

 

 

100k

15k

 

 

 

 

 

 

 

 

 

 

 

 

100nF

 

 

 

 

 

 

 

100pF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R14

 

 

 

 

 

 

 

 

 

C16

R13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U1

 

 

 

1k5

 

 

 

 

 

 

 

 

 

 

 

 

 

L6563

 

 

 

R17

D5

D6

 

 

 

 

 

 

 

1uF

56k

 

 

 

 

 

 

C17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15k

LL4148

 

 

 

 

 

 

 

 

 

 

 

INV

 

VCC

 

 

220pF

 

LL4148

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R18

Q2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMP

 

GD

 

 

 

 

 

STP12NM50FP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MULT

 

GND

 

 

 

 

6R8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CS

CS

 

ZCD

 

 

 

CS

R19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R16

 

 

 

VFF

 

RUN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5k1

 

 

 

TBO

PWM-STOP

 

 

 

 

1k

 

 

 

 

 

 

 

 

 

 

R20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LINE

 

 

 

 

PFC-OK

PWM-LATCH

 

 

PWM-Latch

 

C18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R21

R22

R23

R24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1k0

 

 

 

330pF

 

 

 

 

 

 

 

C19

 

 

 

 

 

 

 

 

 

2R2

0R68

0R68

0R68

 

 

 

R25

 

 

 

R26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C20

 

 

R28

C21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R29

 

 

 

 

 

 

 

 

 

 

 

 

470nF

 

 

240k

2nF2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1k5

 

 

 

 

 

 

 

 

R30

R31

 

 

 

 

 

 

 

Q3

 

 

 

 

 

 

 

 

Vrect

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BC857C

 

 

 

 

 

 

 

 

620k

620k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R32

C22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10k

10nF

 

 

 

 

 

 

 

 

 

 

 

 

AN2393

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AN2393

 

 

 

 

 

 

 

 

 

Vdc

 

 

 

 

 

 

 

.3 Figure

 

 

 

C23

 

 

 

 

D7

 

R33

 

 

 

 

 

 

 

 

Resonant

 

 

 

 

 

 

 

 

 

 

Q5

 

 

 

 

 

 

 

+24V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D8A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2uF2

 

 

 

 

LL4148

R35

0R

 

 

 

STPS20H100CF

 

 

 

 

 

 

R34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2k7

 

 

 

 

 

47

STP14NK50Z

 

T1

 

 

 

L5

 

J2

 

 

 

 

R36

 

 

 

 

 

 

 

T-RES-ER49

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C24

0R

 

 

 

 

 

 

 

2

16

 

 

 

 

2

 

 

 

 

 

 

D9

 

R39

 

 

 

2uH2

C25

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

Q6

 

 

 

 

D8B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

470nF

 

U2

 

 

 

 

 

 

4

15

STPS20H100CF

 

470uF/35V

 

 

 

 

 

 

 

 

 

 

 

6

converter

 

 

R37

 

 

L6599

 

 

LL4148

R40

0R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

C28

14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

C27

100nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1M0

 

 

CSS

VBOOT

 

 

47

STP14NK50Z

 

22nF/630V

 

 

 

 

 

CON8

 

 

 

C26

 

 

 

 

 

 

 

13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DELAY

HVG

 

 

 

 

 

 

 

 

 

C29

C30

 

 

 

 

270pF

 

CF

OUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R41

 

 

 

 

 

 

 

 

 

 

 

2200uF/35V

2200uF/35V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RFMIN

NC

 

 

 

 

 

 

 

 

D10A

 

 

 

 

 

 

 

 

R38

 

 

 

 

 

 

STPS20L40CF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16k

 

CC by rework

STBY

VCC

 

 

Vaux

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISEN

LVG

47

 

 

 

 

 

 

 

 

L6

 

 

electrical

 

LINE

R42

 

 

 

 

 

 

 

 

 

 

 

 

 

+12V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LINE

GND

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

C33

 

DIS

PFC-STOP

 

 

 

 

 

 

 

 

 

2uH2

C35

 

 

 

 

 

 

 

 

 

 

 

C34

 

 

D10B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4nF7

 

 

 

C31

C32

 

 

 

 

11

STPS20L40CF

 

470uF/25V

 

 

 

 

 

 

 

 

 

 

 

 

 

220pF/630V

 

 

 

 

 

 

 

 

 

 

 

 

 

10uF/50V

100nF

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150

 

 

 

 

 

 

characteristics Main

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

diagram

 

 

 

 

 

 

 

 

 

 

 

D12

 

 

 

C37

C38

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2200uF/25V

2200uF/25V

 

 

 

 

 

 

 

 

 

 

 

 

LL4148

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C39

R45

D11

 

 

 

 

 

 

PWM-Latch

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

220nF

75R

LL4148

 

 

 

 

 

 

 

 

R46

R47

C40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5k6

10k

10nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R51

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2k2

 

 

 

 

 

 

 

 

 

 

 

 

 

R52

 

D13

C41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R53

 

 

 

 

 

 

 

 

 

 

 

 

5k6

 

C-12V

10uF/50V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33k

 

 

 

R54

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U3B

 

 

 

 

 

 

U3A

 

 

R56

 

R57

R58

 

 

 

5k6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SFH617A-2

 

 

1k0

 

15k

0R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

SFH617A-2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R60

R61

 

circuit

 

 

 

 

 

 

 

 

 

 

 

 

C44

 

R59

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3k9

3k9

 

 

 

 

 

 

 

 

 

 

 

 

 

47nF

27k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U4

 

 

 

 

 

 

 

description

 

 

 

 

 

 

 

 

 

 

 

TL431

 

 

 

 

 

 

 

7/35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8/35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Main

 

 

 

 

 

 

 

 

 

 

 

 

 

+5Vst-by

 

.4 Figure

characteristics

 

 

 

 

 

 

 

 

T2

 

 

L7

 

 

J3

 

 

 

 

 

Vdc

 

T-FLY-AUX-E20

D15

 

 

 

+5Vst-by

1

 

description circuit and

 

 

U5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

VIPER-12A

+400V

 

5

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

converter Auxiliary

 

 

 

 

 

 

 

 

 

1N5822

C45

33uH

C46

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

D

 

D14

 

7

 

1000uF/10V

 

100uF/10V

 

5

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

+3V3

 

 

S

 

D

 

 

 

 

 

 

 

 

7

 

 

 

 

PKC-136

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

L8

 

St-By

 

 

FB

 

D

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

D16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

Vdd

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

CON10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vs

 

 

1N5821

C47

33uH

C49

 

 

 

C48

LL4148 U6B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 - 10

 

1000uF/10V

 

100uF/10V

 

 

 

10uF/50V

D17

SFH617A-2

 

D20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

BAV103

 

 

 

 

 

 

 

 

 

D18

 

D19

 

C50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

B-10V

 

C-30V

 

10uF/50V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R62

R64

C51

electrical

 

 

 

 

 

 

 

 

 

 

 

 

 

47

1k6

100nF

 

 

 

C52

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R83

Vdc

 

 

 

 

 

 

U6A

 

 

 

diagram

 

Q11

 

 

 

 

 

 

 

 

 

SFH617A-2

 

R67

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BC557C

 

 

 

+400V

 

 

 

 

 

 

 

 

 

 

 

 

C58

 

1M0

 

 

 

 

 

 

 

 

 

1k0

 

 

 

 

R84

 

 

 

R66

 

 

 

 

 

 

 

 

 

 

10nF

 

 

 

 

 

 

 

 

+5Vst-by

 

 

 

 

 

 

 

150k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U8A

1k0

 

 

 

 

 

 

 

 

 

 

 

 

 

SFH617A-2

 

 

 

 

 

 

 

C53

 

 

 

 

 

 

 

 

 

 

 

 

R68

 

 

 

 

 

 

 

Vaux

 

Vs

 

 

 

R69

 

 

22k

 

 

 

2nF2

 

 

 

 

 

 

 

 

 

 

 

R71

 

 

 

R73

C54

 

 

 

 

Q7

 

 

 

 

0R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R70

BC547C

 

 

 

 

Q8

 

 

 

St-By

 

 

 

 

 

 

 

 

 

 

 

 

BC847C

 

 

 

 

8k2

100nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10k

 

 

U7

 

 

 

 

 

22R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C55

 

 

 

R72

 

 

 

 

 

 

TL431

 

 

 

 

 

10uF/50V

 

 

 

10k

 

 

 

 

 

 

 

 

R77

 

 

 

 

R74

 

 

 

 

D21

R75

 

R76

 

 

 

 

 

 

 

 

 

 

 

 

Q9

 

 

 

 

+24V

 

 

4k7

 

 

 

 

 

 

 

 

BC857C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10k

 

 

 

 

B-27V

0R

 

1k5

 

 

 

 

 

 

 

 

 

 

 

 

 

D23

 

 

R82

 

 

 

 

 

 

 

 

 

 

 

Q10

 

 

 

 

 

+12V

 

 

 

 

 

 

 

 

 

 

BC847C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C56

B-15V

 

 

1k5

 

 

 

 

 

 

 

C57

D22

 

 

 

 

R79

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U8B

100nF

 

 

 

 

 

 

 

 

 

 

 

1nF0

C-15V

 

 

SFH617A-2

 

1k0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AN2393

AN2393

Electrical test results

 

 

2 Electrical test results

2.1Efficiency measurements

Table 1 and Table 2 show the output voltage measurements at the nominal mains voltages of 115 Vac and 230 Vac, with different load conditions. For all measurements, both at full load and at light load operation, the input power is measured using a Yokogawa WT-210 digital power meter.

Particular attention has to be paid when measuring input power at full load in order to avoid measurement errors due to the voltage drop on cables and connections. Therefore please connect the WT210 voltmeter termination to the board input connector. For the same reason please measure the output voltage at the output connector or use the remote sense option of your active load for a correct output voltage measurement.

Table 1.

Efficiency measurements @VIN = 115 Vac

 

 

 

+24 V(V) @load(A)

+12 V(V) @load(A)

+5 V(V) @load(A)

+3.3 V(V) @load(A)

POUT (W)

PIN (W)

Efficiency

 

 

 

 

 

 

 

23.81 - 6.00

11.86 - 4.94

4.93 - 0.98

3.35 - 0.71

208.66

235.00

88.79%

 

 

 

 

 

 

 

24.04 - 3.04

11.80 - 4.91

4.93 - 0.98

3.35 - 0.71

138.23

155.50

88.89%

 

 

 

 

 

 

 

23.84 - 3.02

11.91 - 1.98

4.93 - 0.98

3.35 - 0.71

102.79

115.47

89.02%

 

 

 

 

 

 

 

23.79 - 2.01

11.96 - 0.49

4.96 - 0.31

3.35 - 0.31

56.25

63.55

88.52%

 

 

 

 

 

 

 

23.94 - 0.53

11.92 - 0.49

4.97 - 0.31

3.35 - 0.31

21.11

25.56

82.58%

 

 

 

 

 

 

 

 

Table 2.

Efficiency measurements @VIN = 230 Vac

 

 

 

+24 V(V) @load(A)

+12 V(V) @load(A)

+5 V(V) @load(A)

+3.3 V(V) @load(A)

POUT (W)

PIN (W)

Efficiency

 

 

 

 

 

 

 

23.82 - 6.00

11.86 - 4.94

4.94 - 0.98

3.35 - 0.71

208.73

229.96

90.77%

 

 

 

 

 

 

 

24.05 - 3.04

11.80 - 4.91

4.94 - 0.98

3.35 - 0.71

138.27

152.85

90.46%

 

 

 

 

 

 

 

23.85 - 3.02

11.91 - 1.98

4.94 - 0.98

3.35 - 0.71

102.83

114.05

90.16%

 

 

 

 

 

 

 

23.80 - 2.01

11.96 - 0.49

4.96 - 0.31

3.35 - 0.31

56.27

63.47

88.66%

 

 

 

 

 

 

 

23.94 - 0.53

11.92 - 0.49

4.96 - 0.31

3.35 - 0.31

21.11

26.47

79.73%

 

 

 

 

 

 

 

 

In Table 1, Table 2 and Figure 5 the overall circuit efficiency is measured at each load condition, at both nominal input mains voltages of 115 Vac and 230 Vac. The values were measured after 30 minutes of warm-up at maximum load. The high efficiency of the PFC pre-regulator working in FOT mode and the very high efficiency of the resonant stage working in ZVS (i.e. with negligible switching losses), provides for an overall efficiency better than 88%. This is a significant high value for a two-stage converter with two output voltages delivering an output current in excess of 5 amps, especially at low input mains voltage where the PFC conduction losses increase. Even at lower loads, the efficiency still remains high.

The global efficiency at full load has been measured even at the limits of the input voltage range, with good results:

At VIN = 90 Vac - full load, the efficiency is 86.88% (POUT = 208.8 W and PIN = 240.3 W)

At VIN = 264 Vac - full load, the efficiency is 90.90% (POUT = 208.7 W and PIN = 229.6 W)

9/35

Electrical test results

AN2393

 

 

Also at light load, at an output power of about 10% of the maximum level, the overall efficiency is very good, reaching a value better than 79% over the entire input mains voltage range.

Figure 6 shows the efficiency measured at various input voltages versus output power.

Figure 5. Overall efficiency versus output power at nominal mains voltages

 

95.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

94.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

93.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

92.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

91.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

89.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(%

87.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

86.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

efficiency

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eff% @ 115 Vac

85.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eff% @ 230 Vac

84.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

83.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

82.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

81.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

79.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

78.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

77.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

75.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

 

 

 

 

 

 

 

 

 

 

Output power (W)

 

 

 

 

 

 

 

 

 

10/35

ST AN2393 Application note

AN2393

Electrical test results

 

 

Figure 6. Overall efficiency versus output power at several input voltage values

 

95.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

94.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

93.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

92.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

91.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

89.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(%

87.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

86.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

efficiency

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

84.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

83.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

82.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

81.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

79.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

78.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

77.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

75.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

Output power (W)

 

95.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

94.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

93.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

92.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

91.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

89.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(%

87.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

86.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

efficiency

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

84.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

83.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

82.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

81.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

79.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

78.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

77.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

75.00%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

Output power (W)

eff% @ 90 Vac eff% @ 100 Vac eff% @ 115 Vac eff% @ 135 Vac

eff% @ 170 Vac eff% @ 200 Vac eff% @ 230 Vac eff% @ 264 Vac

2.2Resonant stage operating waveforms

Figure 7 shows some waveforms during steady state operation of the resonant circuit at full load. The Ch3 waveform is the half-bridge square voltage on Pin 14 of L6599, driving the resonant circuit. In the picture it is not evident, but the switching frequency is normally slightly modulated following the PFC pre-regulator 100-Hz ripple that is rejected by the resonant control circuitry. The switching frequency has been selected approximately at 95-kHz in order to have a good trade off between transformer losses and dimensions.

The Ch4 waveform represents the transformer primary current flowing into the resonant tank. As shown, it is almost sinusoidal because the operating frequency is close to the resonance of the leakage inductance of the transformer and the resonant capacitor (C28). In this condition, the circuit has a good margin for ZVS operation, providing good efficiency,

11/35

Loading...
+ 24 hidden pages