ST AN2021 APPLICATION NOTE

AN2021

Application note

Porting an application from the ST10F269 to the ST10F272B/E

Introduction

The ST10F272B and ST10F272E are members of the STMicroelectronics ST10 family of 16-bit single-chip CMOS microcontrollers. They are functionally upward compatible with the ST10F269.

The ST10F272B and the ST10F272E devices differ only in terms of XRAM memory size and XPeripherals. In this application note, the ST10F272B and ST10F272E will be referred to as ST10F272 for all aspects that are applicable to both products. For points specific to each product, the full name with the B or E extension will be used.

The goal of this document is to highlight the differences between ST10F269 and ST10F272 devices. It is intended for hardware or software designers who are adapting an existing application based on the ST10F269 to the ST10F272.

This document presents the ST10F272’s modified functionalities and the new ones, and goes on to describe the modified and the new registers. For each part, the differences with the ST10F269 that may have an impact when replacing the ST10F269 by the ST10F272 are stressed and some advice is given on the way they can be handled.

January 2007

Rev 2

1/39

www.st.com

Contents

AN2021

 

 

Contents

1

Modified features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

1.1

Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

1.1.1 Pinout modification summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.2 Pin 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.3 Pin 56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.4 Pin 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.5 Pins 143 and 144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 XRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 ST10F272B’s XRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 ST10F272E’s XRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Flash EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Hardware impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.2 Software impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 A/D converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Hardware / Software impact: conversion timing control . . . . . . . . . . . . . 12 1.4.2 Hardware impact: electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 13 1.4.3 Software impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Real time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.1 Hardware impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.2 Software impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 CAN modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6.1 Hardware impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.6.2 Software impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7 Port input control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7.1 Hardware impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.7.2 Software impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.8 Ports output control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.8.1 Hardware impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.8.2 Software impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.9 PLL and main on-chip oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.9.1 Hardware impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.9.2 Software impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2/39

ST AN2021 APPLICATION NOTE

AN2021 Contents

2

New features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

 

2.1

Additional XPeripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

2.1.1 Hardware impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.2 Software impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Programmable divider on CLKOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Hardware impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.2 Software impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 New multiplexer for X-Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Hardware impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.2 Software impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Additional ports input control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Hardware impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.2 Software impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3

Modified registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

 

3.1 XPERCON register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

3.1.1 Hardware impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.2 Software impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4

New registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

4.1 XADRS3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

4.1.1 Hardware impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.1.2 Software impact for the ST10F272B . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.3 Software impact for the ST10F272E . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 XPEREMU register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Hardware impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.2 Software impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Emulation-dedicated registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1 Hardware impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3.2 Software impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 XMISC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.1 Hardware impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4.2 Software impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

 

5.1

DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

3/39

Contents

AN2021

 

 

5.1.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.1.2 Overview of the DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 AC characteristics at 40 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

 

5.2.1

External memory bus timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

 

5.2.2

Hi-speed synchronous serial interface (SSC) . . . . . . . . . . . . . . . . . . . .

36

6

Referenced documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

7

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38

4/39

AN2021

List of tables

 

 

List of tables

Table 1. Pinout modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 2. Flash memory key characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 3. Flash memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 4. ST10F272 conversion timing table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 5. ST10F272 vs ST10F269 sample time comparison table . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 6. ADC differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 7. ADCON register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 8. XMISC register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 9. RTCCON register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 10. PICON register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 11. ST10F269 vs ST10F272 PLL ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 12. XCLKOUTDIV register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 13. X-Interrupt detailed mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 14. XPICON register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 15. XPERCON register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 16. XADRS3 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 17. Definition of address area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 18. XMISC register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 19. DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 20. Multiplexed bus timings (ns) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 21. Demultiplexed bus timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 22. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5/39

List of figures

AN2021

 

 

List of figures

Figure 1. ST10F272 clock generation diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 2. X-Interrupt basic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6/39

AN2021

Modified features

 

 

1 Modified features

1.1Pinout

1.1.1Pinout modification summary

Table 1 summarizes the modifications made to the pinout.

Table 1.

Pinout modifications

 

 

 

Pin

 

ST10F269

 

 

 

ST10F272

 

 

 

 

 

 

number

Name

Function

 

Name

Function

 

 

 

 

 

 

 

 

 

 

 

Internal voltage regulator decoupling.

 

 

 

 

17

DC2

Connect to nearest VSS via a 330nF

 

VDD

5V power supply pin

 

 

capacitor.

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal voltage regulator decoupling.

 

 

 

Internal voltage regulator decoupling.

56

DC1

Connect to nearest VSS via a 330nF

 

 

V18

Connect to nearest VSS via a

 

 

capacitor.

 

 

 

10 - 100nF capacitor.

 

 

 

 

 

 

 

 

 

Selects code execution out of internal

 

 

 

Selects code execution out of internal

 

 

 

 

 

Flash memory or external memory

 

 

 

 

 

 

99

EA

Flash memory or external memory

 

EA-VSTBY

 

according to level during reset. Power

 

 

according to level during reset.

 

 

 

supply input for the standby mode.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input to the 32 kHz oscillator amplifier

 

 

 

 

 

 

circuit. When not used, must be tied to

143

VSS

Ground pin

 

XTAL3

ground to avoid consumption.

 

 

 

 

 

 

Additionally, bit OFF32 in RTCCON

 

 

 

 

 

 

register must be set.

 

 

 

 

 

 

 

 

 

 

 

 

 

Output of the 32 kHz oscillator

144

VDD

5V power supply pin

 

XTAL4

amplifier circuit. When not used, must

 

be left open to avoid spurious

 

 

 

 

 

 

consumption.

 

 

 

 

 

 

 

1.1.2Pin 17

On the ST10F269, a decoupling capacitor of 330nF minimum has to be connected between the pin 17 (named DC2) and the nearest VSS pin.

This is no longer the case for the ST10F272 device where pin 17 is a VDD pin.

Hardware impact

PCB must be adapted.

Software impact

None.

7/39

Modified features

AN2021

 

 

1.1.3Pin 56

On the ST10F269, a decoupling capacitor of 330nF minimum has to be connected between the pin 56 (named DC1) and the nearest VSS pin.

On the ST10F272, pin 56 is named V18 and a capacitor of value between 10nF minimum and 100nF maximum must be connected between it and the nearest VSS pin.

Hardware impact

Change on the capacitor value. As the value is much lower, the footprint of the capacitor might be smaller and then a modification of the PCB is needed.

Software impact

None.

1.1.4Pin 99

On the ST10F269, pin 99 is EA and used upon reset to select the start from the internal Flash memory or the external memory.

On the ST10F272, pin 99 has the additional function of providing the 5V power supply to the device in standby mode (new power-saving mode), it is called EA-VSTBY.

Hardware impact

The modification depends on the previous use of the ST10F269 and on whether the Standby mode is used or not.

For an application where the Standby mode is not used, no change to the PCB is required. If

the new application uses the Standby mode, the EA-VSTBY pin must be separated from the common 5V and have a specific supply path.

Software impact

None.

1.1.5Pins 143 and 144

These pins are VSS and VDD, respectively, in the ST10F269. On the ST10F272 they are used as XTAL3 and XTAL4 for connection to an optional 32 kHz crystal to clock the Real Time Clock during power-down.

Hardware impact

PCB must be redesigned.

If the optional 32 kHz is not used:

Pin 143 (XTAL3) must be linked to ground like on the ST10F269

Pin 144 (XTAL4) must be left open. It can also be connected to ground via a capacitor to reduce the potential RF noise that might be propagated inside the device if the pin is left floating.

8/39

AN2021

Modified features

 

 

Software impact

In case the optional 32 kHz is not used, the OFF32 bit of the RTCCON register must be set. Prior to setting the OFF32 bit in the RTCCON register, the RTC must be enabled by setting RTCEN, bit 4 of XPERCON, and XPEN, bit 2 of SYSCON.

1.2XRAM

The ST10F272B and ST10F272E devices do not have the same size of XRAM. Each configuration is detailed hereafter.

1.2.1ST10F272B’s XRAM

The ST10F269 and the ST10F272B have the same size of extension XRAM: 10 Kbytes.

The XRAM of the ST10F269 is divided into two ranges being XRAM1 of 2 Kbytes and XRAM2 of 8 Kbytes:

The XRAM1 address range is 00’E000h - 00’E7FFh if enabled (XPEN and XRAM1EN, bit 2 of SYSCON register and of XPERCON register, respectively, must both be set).

The XRAM2 address range is 00’C000h - 00’DFFFh if enabled (XPEN and XRAM2EN, bit 2 of SYSCON register and bit 3 of XPERCON register, respectively, must both be set).

The XRAM of the ST10F272 is divided into two ranges, XRAM1 of 2 Kbytes (compatible with the ST10F269) and XRAM2 of 8 Kbytes with a user re-programmable address range and the StandBy mode.

The XRAM1 address range is 00’E000h - 00’E7FFh if enabled (XPEN and XRAM1EN, bit 2 of SYSCON register and bit 2 of XPERCON register must both be set).

The XRAM2 address range is 09’0000h - 09’1FFFh, by default (mirrored every

16 Kbytes in the range 09’0000h -0F’FFFFh), if enabled (XPEN and XRAM2EN, bit 2 of SYSCON register and bit 3 of XPERCON register, must both be set).

Hardware impact

None.

Software impact

There is no change in the enabling of the XRAM blocks: XPERCON register bits, XRAM1EN and XRAM2EN, and SYSCON register bit, XPEN, are used to enable them.

The memory mapping of the application is impacted by the difference in XRAM2 location. A new register has been created in order to allow the user to remap XRAM2 (please refer to

Section 4.1: XADRS3 register on page 28 for details).

9/39

Modified features

AN2021

 

 

1.2.2ST10F272E’s XRAM

The ST10F269 has 10 Kbytes of extension RAM whereas the ST10F272E has 18 Kbytes.

The XRAM of the ST10F269 is divided into two ranges being XRAM1 of 2 Kbytes and XRAM2 of 8 Kbytes:

The XRAM1 address range is 00’E000h - 00’E7FFh if enabled.

The XRAM2 address range is 00’C000h - 00’DFFFh if enabled.

The XRAM of the ST10F272E is divided into two ranges being XRAM1 of 2 Kbytes (compatible with the ST10F269) and XRAM2 of 16 Kbytes with a user reprogrammable address range:

The XRAM1 address range is 00’E000h - 00’E7FFh if enabled (XPEN and XRAM1EN, bit 2 of SYSCON register and bit 2 of XPERCON register, respectively, must be set).

The XRAM2 address range is 09’0000h - 09’3FFFh, by default (mirrored every

16 Kbytes in the range 09’0000h -0F’FFFFh), if enabled (XPEN and XRAM2EN, bit 2 of SYSCON register and bit 3 of XPERCON register, respectively, must be set).

Hardware impact

None.

Software impact

There is no change in the enabling of the XRAM blocks: XPERCON register bits, XRAM1EN and XRAM2EN, and SYSCON register bit, XPEN, are used to enable them.

The memory mapping of the application is impacted by the difference in XRAM size and by the location of XRAM2. A new register has been created in order to allow the user to remap the XRAM2 (please refer to Section 4.1: XADRS3 register on page 28 for details).

1.3Flash EEPROM

Table 2.

Flash memory key characteristics

 

 

Characteristic

ST10F269

ST10F272

 

 

 

Flash size

256 Kbytes

256 Kbytes

 

 

 

Flash organization

7 blocks

8 blocks

 

 

 

Programming voltage

5 volts

5 volts

 

 

 

Programming method

Write/Erase Controller

Write/Erase Controller

 

 

 

Program / Erase cycles

100000 cycles

100000 cycles

 

 

 

 

10/39

AN2021

 

 

 

Modified features

 

 

 

 

 

 

 

Table 3.

Flash memory mapping

 

 

 

 

 

 

 

 

 

Segment

ST10F269 Flash mapping

ST10F272 Flash mapping

 

 

 

 

 

 

 

8

08’0000-08’FFFF

External memory

08’0000-08’FFFF

Flash registers

 

 

 

 

 

 

 

7..5

05’0000-07’FFFF

External memory

05’0000-07’FFFF

Reserved

 

 

 

 

 

 

 

4

04’0000-04’FFFF

Block6: 64 Kbytes

04’0000-04’FFFF

Block7: 64 Kbytes

 

 

 

 

 

 

 

3

03’0000-03’FFFF

Block5: 64 Kbytes

03’0000-03’FFFF

Block6: 64 Kbytes

 

 

 

 

 

 

 

2

02’0000-02’FFFF

Block4: 64 Kbytes

02’0000-02’FFFF

Block5: 64 Kbytes

 

 

 

 

 

 

 

 

01’8000-01’FFFF

Block3: 32 Kbytes

01’8000-01’FFFF

Block4: 32 Kbytes

 

1

 

 

 

 

 

01’0000-01’7FFF

External memory or

01’0000-01’7FFF

External memory or

 

 

 

 

 

remap of Blocks 0-2

 

remap of Blocks 0-3

 

 

 

External memory

 

External memory

 

 

00’8000 - 00’FFFF

Internal RAM

00’8000 - 00’FFFF

Internal RAM

 

 

 

and Registers

 

and Registers

 

 

 

 

 

 

 

0

00’6000 - 00’7FFF

Block 2: 8 Kbytes

00’6000 - 00’7FFF

Block3: 8 Kbytes

 

 

 

 

 

 

 

00’4000 - 00’5FFF

Block 1: 8 Kbytes

00’4000 - 00’5FFF

Block2: 8 Kbytes

 

 

 

 

 

 

 

 

00’0000 - 00’3FFF

Block 0: 16 Kbytes

00’2000 - 00’3FFF

Block1: 8 Kbytes

 

 

 

 

 

 

00’0000 - 00’1FFF

Block0: 8 Kbytes

 

 

 

 

 

 

 

 

 

 

1.3.1Hardware impact

None.

1.3.2Software impact

As the first 32 Kbytes of Flash memory are now divided into four sectors of 8 Kbytes each in the ST10F272 whereas the ST10F269 had only three sectors, the mapping of the application is impacted.

Moreover, the Flash memory Write/Erase controller is different and therefore the programming routines must be updated.

When the bit ROMEN of the SYSCON register is set, that is, when the internal Flash memory is enabled, accesses to the address range 05’0000h - 07’FFFFh are not redirected to external memory. The linker-locator configuration of the toolchain should be checked in order to prevent any use of this memory range.

11/39

Modified features

AN2021

 

 

1.4A/D converter

In the ST10F272, the analog/digital converter has been redesigned (compared to the A/D converter in the ST10F269). The ST10F272 still provides an analog/digital converter with 10-bit resolution and an on-chip sample and hold circuit.

1.4.1Hardware / Software impact: conversion timing control

The A/D converter in the ST10F272 is not fully compatible with that of the ST10F269 (timing and programming model).

In the ST10F269, the sample time (to charge the capacitors) and the conversion time are programmable and can be adjusted to the external circuitry. The total conversion time is compatible with the formula used for ST10F269, whereas the meanings of the ADCTC and ADSTC bit fields are no longer compatible.

Table 4.

ST10F272 conversion timing table

 

 

ADCTC

ADSTC

Sample

Comparison

Extra

Total conversion

 

 

 

 

 

 

00

00

TCL * 120

TCL * 240

TCL * 28

TCL * 388

 

 

 

 

 

 

00

01

TCL * 140

TCL * 280

TCL * 16

TCL * 436

 

 

 

 

 

 

00

10

TCL * 200

TCL * 280

TCL * 52

TCL * 532

 

 

 

 

 

 

00

11

TCL * 400

TCL * 280

TCL * 44

TCL * 724

 

 

 

 

 

 

11

00

TCL * 240

TCL * 120

TCL * 52

TCL * 772

 

 

 

 

 

 

11

01

TCL * 280

TCL * 560

TCL * 28

TCL * 868

 

 

 

 

 

 

11

10

TCL * 400

TCL * 560

TCL * 100

TCL * 1060

 

 

 

 

 

 

11

11

TCL * 800

TCL * 560

TCL * 52

TCL * 1444

 

 

 

 

 

 

10

00

TCL * 480

TCL * 960

TCL * 100

TCL * 1540

 

 

 

 

 

 

10

01

TCL * 560

TCL * 1120

TCL * 52

TCL * 1732

 

 

 

 

 

 

10

10

TCL * 800

TCL * 1120

TCL * 196

TCL * 2116

 

 

 

 

 

 

10

11

TCL * 1600

TCL * 1120

TCL * 164

TCL * 2884

 

 

 

 

 

 

The user should take care of the Sample time parameter: This is the time during which the capacitances of the converter are charged via the respective analog input pins. Table 5 shows the differences in sample time.

12/39

Loading...
+ 27 hidden pages