ST AN1948 Application note

 

 

AN1948

®

 

- APPLICATION NOTE

 

 

 

 

DVD Combo Power Supply with VIPer53

 

 

A. Bailly - S. Luciano

Despite the strong growth of the DVD readers, the VCR ones are still present on the market. A lot of equipment now includes both types of media in the same case. This paper proposes a typical solution to efficiently supply such applications and other equipment where logic, DC motor drive and LCD display are to be implemented together in the 35W power range and suite any input voltage standard (85Vac to 265Vac).

Key features for this application are high efficiency, low standby consumption and cost effective solutions to fit the high volume consumer market needs.

 

The specification can be summarized as shown in the following table:

 

 

 

 

 

 

 

 

 

 

 

 

 

Voltage

Maximum Current

Output Power

 

Product(s)

 

 

MaximumPower

Board Size

 

 

+/-5%

 

 

 

 

 

 

L x W x H

 

Output 1

3.3V

1.5A

 

 

4.95W

Normal Operation:

170x 70 x 40

 

Output 2

5V Stand-by

100mA

 

 

500mW

35W max utput

(mm)

 

Output 3

5V Power

1.5A

 

 

7.5W

 

power

 

 

 

 

 

 

Output 4

 

 

 

Obsolete

 

 

 

12V Power

1.5A

 

 

18W

S and-by Operation:

 

 

Output 5

12V Audio

200mA

 

 

2.4W

750mW max input

 

 

Output 6

-12V Power

15mA

 

 

180mW

 

power

 

 

Output 7

-25V

25mA

 

 

625mW

With 40mA on the

 

 

Output 8

4.2V Display

50mA

-

210mW

5VStandby output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Product(s)

 

 

 

 

 

 

Obsolete

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

April 2004

1/17

AN1948 - APPLICATION NOTE

1. VIPer53 DESCRIPTION

VIPer53, the first multichip device of the VIPer family has been chosen to fulfill the requirements. It features very low Rdson of 1Ω allowing to deliver up to 35W in wide range in a standard DIP-8 package without a heatsink, answering the need for higher efficiency and reduced space thanks to a lower power dissipation.

1.1 General features

The block diagram is given in figure 1. An adjustable oscillator drives a current controlled PWM at a fixed switching frequency. The peak drain current is set for each cycle by the voltage present on the COMP pin. The useful range of the COMP pin extends from 0.5V to 4.5V, with a corresponding drain current range from 0A to 2A.

This COMP pin can be either used as an input when working in secondary feedback configuration, or as an output when the internal error amplifier connected on the VDD pin operates in primary feedback to regulate the VDD voltage to 15V.

The VDD undervoltage comparator drives a high voltage startup current source, which is switched off during the normal operation of the device. This feature together with the burst mode capability allows to

 

 

 

 

 

 

 

Product(s)

reach very low level of input power in standby mode, when the converter is lightly loaded.

 

Figure 1: VIPer53 block diagram

 

Obsolete

 

 

 

 

 

 

 

 

DRAIN

 

 

 

 

 

OSC

 

 

 

 

 

 

ON/OFF

 

 

 

 

 

 

 

 

 

 

OSCILLATOR

 

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

PWM

 

 

 

 

 

 

 

Product(s)

 

 

 

 

 

 

 

 

OVERTEMP.

LATCH

 

 

 

 

 

 

 

 

DETECTOR

R1

FF

 

SELECTION

1V

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

R3

R4

R5

 

 

 

 

 

UVLO

 

 

 

 

 

0.5V

HCOMP

 

COMPARATOR

 

 

 

 

 

 

 

VDD

 

 

 

 

 

150/400ns

 

 

 

 

 

 

 

 

BLANKING

 

 

CURRENT

8.4/

 

 

 

 

 

 

 

 

 

 

 

 

 

PWM

 

AMPLIFIER

11.5V

 

 

STANDBY

 

 

 

COMPARATOR

 

 

 

 

 

COMPARATOR

 

 

 

 

 

 

 

 

 

0.5V

 

 

4V

8V

 

 

Obsolete

 

 

 

 

 

 

 

 

 

 

 

125k

 

 

15V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ERROR

 

 

 

 

 

 

 

 

AMPLIFIER

4.35V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OVERLOAD

 

 

 

 

 

 

 

 

 

COMPARATOR

 

 

 

 

 

 

 

OVERVOLTAGE

 

 

 

 

 

 

 

 

COMPARATOR

 

 

 

 

 

 

 

18V

 

 

 

 

 

4.5V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TOVL

COMP

SOURCE

2/17

AN1948 - APPLICATION NOTE

1.2 Overload protection

A threshold of 4.35V typical has been implemented on the COMP pin. This overload threshold is 150mV below the clamping voltage of 4.5V which corresponds to the current limitation of the device. In case of a COMP voltage exceeding the overload threshold, the pull up resistor on the TOVL pin is released and the external capacitor connected on this pin begins to charge. When a value of 4V typical is reached, the device stops switching and remains in this state until the VDD voltage reaches VDDoff, or resumes normal operation if the COMP voltage returns to a value below the overload threshold. The drain current that the device is able to deliver without triggering the overload threshold is called "current capability", specified as IDmax in the datasheet. This value must be used to correctly size the converter versus its maximum output power.

When an overload occurs on secondary side of the converter, the output power is first limited by the current limitation of the device. If this overload lasts for more than a time constant defined by a capacitor connected on the TOVL pin, the device is reset, and a new restarting sequence is initiated by turning on the startup current source. The capacitors on the VDD pin and on the TOVL pin will be defined together in order to insure a correct startup and a low restart duty cycle in overload or short circuit operation. Here are the typical corresponding formulas:

COVL > 12.5 × 106 × tss

 

COVL × IDDch2

Product(s)

C

 

4

×

æ

1

ö

 

> 8 × 10

 

----------------

1

× -------------------------------------------

 

VDD

 

 

èDRST

ø

VDDhyst

CVDD

IDD1 × tss

 

 

 

> ---------------------------

 

 

 

 

 

VDDhyst

 

 

 

Where tss and DRST are respectively the time needed for the output voltages to pass from 0V to their

value.

 

 

 

 

 

 

Obsolete

nominal values at startup, and the restart duty cycle in overload or short circuit condition. A typical value of 10% is generally set for this last parameter, as it insures that the output diodes and the transformer don’t overheat. The other parameters can be found in the datasheet of the device.

As the VDD capacitor has to respect two conditions, the maximum value will be retained to define its

- 1.3 Stand-by operationProduct(s)

On the opposite load configuration, the converter is lightly loaded and the COMP voltage decreases until it reaches the shutdown threshold typically at 0.5V. At this point, the switching is disabled and no more energy is passed on secondary side. So, the output voltage decreases and the regulation loop rises again above the shutdown threshold, thus resuming the normal switching operation. A burst mode with pulse skipping takes place, as long as the output power is below the one corresponding to the minimum

turn on of the device. As the COMP voltage works around 0.5V, the peak drain current is very low (it is Obsoleteactually defined by the minimum turn on time of the device, and by the primary inductance of the

transformer) and no audible noise is generated.

In addition, the minimum turn on time depends on the COMP voltage. Below 1V (VCOMPbl), the blanking time increases to 400ns, whereas it is 150ns for higher voltages. The minimum turn on times resulting from these values are respectively 600ns and 350ns, when taking into account the internal propagation time. This feature brings the following benefits:

-this brutal change induces an hysteresis between normal operation and burst mode which is reached sooner when the output power is decreased.

-a short value in normal operation insures a good drain current control in case of short circuit on secondary side.

-long value in standby operation reinforces the burst mode by skipping more switching cycles, thus decreasing switching losses.

More details regarding the standby operation can be found in the datasheet.

3/17

ST AN1948 Application note

 

 

 

 

Obsolete

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J2-1

schematicsFigure2:

.2 figure in presented is schematics overall The .modeconsumptionstandby in

power low a providing voltages, output the of most dropout to allows whichtransformerdesign

specific a on based feature, management standby smart a by achieved is This .outputprovides5Va

only one standby the and voltages output different 8 delivers one normal The .modesoperatingofferstwo

board The .70kHz of frequency switching fixed a at working flyback line off an is topologypowerThe

Schematics21.

SUPPLY POWERCOMBODVD02.

NOTE APPLICATIONAN1948-

 

 

 

 

 

 

D4

 

 

 

 

 

 

 

R7

 

C13

 

 

 

-4.2V / 50mA

 

 

 

 

 

 

BAT43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C9

 

 

 

 

 

 

 

DZ2

 

150

100nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BZX79C5.1

 

 

 

 

 

 

 

 

 

J1-1

 

 

 

2.2nF

T1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1kV

25707870P1

 

 

 

C12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

180µF

 

 

 

 

 

R8

 

 

 

 

 

 

 

 

 

 

 

OREGA

 

100nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10V

 

 

 

 

R9

 

 

33k

 

 

 

 

 

 

 

 

 

 

 

DB1

 

 

 

 

 

 

 

 

 

 

 

 

C14

 

 

 

 

 

C1

 

 

 

 

 

 

 

 

 

 

 

 

 

150

 

 

 

 

 

 

 

 

 

 

 

DF08M

 

 

 

 

 

 

 

 

 

 

 

100nF

 

 

 

 

 

100nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

400V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J2-2

 

 

 

18mH

 

 

 

 

 

D5

 

 

 

 

 

 

 

 

 

 

 

 

 

+4.2V / 50mA

 

 

 

0.5A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BAV21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L2

 

 

 

 

 

 

 

 

 

 

J2-3

AC

 

 

 

 

C2

C8

R2

DZ3

 

 

 

 

 

 

 

 

 

 

 

 

 

-25V / 25mA

 

 

 

 

68µF

Not

Not

BZT03C

 

 

 

 

100µH

 

 

 

 

 

 

 

 

 

IN

<0 T

VR1

 

 

 

 

 

 

 

 

R10

 

 

R11

 

 

 

 

 

 

450V

fitted

fitted

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

33

 

 

 

 

 

 

 

 

 

 

 

 

910

 

 

910

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C15

 

 

C16

 

 

 

 

 

 

 

 

J2-4

 

 

 

 

 

 

 

 

 

 

 

 

39µF

 

 

39µF

 

 

 

 

 

 

 

-12V / 15mA

 

 

 

 

 

 

 

 

 

 

 

 

35V

 

 

35V

 

 

 

 

 

 

 

 

 

F1

 

 

 

 

D1

 

 

 

 

 

 

 

R12

 

 

C17

 

 

 

 

 

 

 

 

1A

 

 

 

 

 

 

 

 

 

 

 

1k

 

 

39µF

 

 

 

 

 

 

 

 

 

 

 

 

1N4947GP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

250V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J1-2

 

 

 

 

 

 

 

 

STPS8H100D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L3

 

 

 

 

 

J2-9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+12V audio / 0.2A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47µH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L4

 

 

 

 

 

J2-8

 

 

 

 

 

 

 

 

 

D8

 

 

 

 

 

 

 

 

 

 

 

 

+12V power / 1.5A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10µH

 

 

 

 

 

 

 

 

 

 

 

 

 

STPS5L60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Product(s)

 

 

 

 

 

 

 

L6

 

 

 

 

 

J2-7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D2

 

-

 

 

 

 

 

10µH

 

 

 

 

 

+5V / 1.5A

 

 

 

 

 

 

 

 

1N4148

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JP1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STPS5L40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L5

 

 

 

 

 

J2-5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10µH

 

 

 

 

+3.3V / 1.5A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R3

 

 

 

 

 

 

C21

C23

C18

 

 

 

 

C22

C25

C19

 

C20

 

 

 

 

 

 

47

 

 

 

 

 

 

1200µF

1200µF

820µF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

180µF

180µF

120µF

 

120µF

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3V

6.3V

25V

 

 

 

 

 

 

 

 

 

 

 

 

 

R4

D3

 

 

 

 

 

 

 

10V

10V

25V

 

25V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

BYT01-400

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IC1

 

 

2N5551

 

 

 

 

 

 

 

 

 

 

D10

 

 

 

 

 

 

 

 

 

 

VIPer53

 

 

 

 

 

 

 

 

R13

Q3

 

1N5818

 

 

 

 

 

 

 

R1

 

VDD

 

DRAIN

R5

 

 

 

 

 

5.6k

PN2222A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10k

 

 

 

 

18k

 

 

 

 

 

 

 

 

 

 

 

 

L7

 

 

 

 

J2-10

 

 

 

 

 

 

0.66W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+5V standby / 100mA

 

 

 

OSC

 

 

 

 

 

D9

 

 

 

 

 

 

 

 

 

10µH

 

 

 

 

 

 

 

 

 

 

 

 

BAV21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15V

 

 

 

 

 

 

 

 

C24

 

D11

Q2

R14

R18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39µF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1N4148

MPS2907A

1K

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35V

 

 

 

 

 

 

 

 

 

 

TOVL

COMP

SOURCE

 

 

 

 

 

Obsolete

 

 

 

 

C30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.8nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R21

180µF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.99k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R15

 

 

 

 

 

 

 

D12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R19

R20

C29

1%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C26

 

 

 

 

 

1N4148

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1k

 

 

 

1k

4.7k

10nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100nF

 

 

 

 

 

 

 

 

 

 

 

 

 

R6

 

 

 

 

 

 

 

 

 

IC2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2k

 

 

 

 

 

 

 

 

 

 

PC817

 

 

 

 

R23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C3

 

C4

C5

C6

DZ1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.7k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47µF

 

BZX79C

 

C10

 

 

 

 

 

 

 

 

 

 

 

C27

 

 

 

 

 

 

2.2nF

100nF

10nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16V

 

10

4.7µF

 

 

 

 

 

 

 

 

 

 

 

100nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4/17

 

 

 

 

C7

 

250V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1µF

 

 

 

 

 

 

 

 

 

 

IC3

 

 

 

 

 

 

 

 

 

 

 

 

63V

 

 

 

 

 

 

 

 

Q4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R16

 

R17

 

TL431LP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PN2222A

 

 

 

 

R22

 

 

J2-6

 

 

 

 

 

 

 

 

 

18k

 

 

18k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.7k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Product(s)

 

J2-11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R24

Standby

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18k

J2-12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

would be difficult to
The regulation sets
2.1.3 Regulation

AN1948 - APPLICATION NOTE

2.1.1 Normal operation mode

In this mode, the Standby input is driven low, Q4 and Q2 are blocked and Q3 conductis. All the output voltages are delivered to the loads and both 5V and 5VStandby outputs are provided.

The transformer turn ratio leads to a voltage of about 30V across C24. This voltage is blocked by Q2, and the 5VStandby output is derived from the main 5V output through Q3. In the case where no load is connected on the 5VStandby output, R14 allows to absorb the Q3 base current delivered by R13.

The same applies at primary side for the auxiliary supply of IC1. In normal operation, the VDD pin energy is delivered by the standard auxiliary winding though D2. The corresponding voltage is higher than the one developed by the zener diode DZ1 on the base of Q1, and this transistor is blocked. In the mean time, the second auxiliary winding delivers five times more voltage than the one needed in standby mode (see section 2.1.2), and values as high as 130V can be observed across C10. As a consequence, C10, D3 and Q1 are high voltage type, and R5 may dissipate up to 1W.

2.1.2 Stand-by mode

All the output voltages are dropped down, except the 5VStandby one which is typically used to supply an infrared receiver and its decoding circuit, and also to maintain the Standby input in the high state, which

makes Q4 and Q2 conducting, and disables Q3 thanks to D11. Product(s)

As Q2 is conducting, the 5VStandby output is supplied through D9 and the corresponding winding of the main transformer. This winding therefore reduces its voltage by a ratio of about 5, because the regulation loop still maintains the value of 5V on this output. Since all the outputs are coupled together on the same transformer core, they are all divided by a ratio of about 5. This is sufficient to insure a reduced consumption mode, as the loads are now supplied with a much lower voltage.

D11 is needed in this mode to efficiently turn off Q3. Otherwise, its base remains high as it is supplied by R13 connected to a voltage of about 5V, and some reverse current flows from the 5VStandby output to the main 5V one.

On primary side, the standard auxiliary winding doesn’t provide a sufficient voltage, and Q1 acts as a

serial regulator with the voltage delivered by the second auxiliary winding, maintaining the VDD pin of

IC1 at higher level than the disabling threshold VDDoff. R14 on the 5VStandby output provides a

Obsolete

minimum consumption in this mode to insure -a suitable voltage for Q1.

The transition betweenProduct(s)the normal mode and the standby mode has been slowed down by C26. This is

mandatory to avoid any underor overvoltage on the outputs during this event. See also the following section.

the DC operating point from the 5VStandby output through R21 and R22. Note that it implement a split regulation, as the other outputs operate with a different value when

Obsoletein standby mode.

Some AC signals are also introduced into the regulation loop to insure stability. The conventional path is done through R18 connected to the 5VStandby output, but another AC component has been added thanks to C30 and R23 connected on the 12V power output. This is needed to prevent any instability in situations where the 5VStandby output is lightly loaded versus the 12V one. In order to transmit this signal, a resistance R20 has also been added in series with the conventional capacitive feedback C27 at the level of IC3.

The bandwidth of this regulation loop has been set at a few kHz in order to insure a good dynamic response when submitted to load variations, or during the transitions between the normal mode and the standby mode.

C29 on secondary side and C6 on primary side cancel any switching noise which may produce subharmonic operation.

5/17

AN1948 - APPLICATION NOTE

2.1.4 Drain voltage clamping

The board comes with a zener (DZ3) clamp type on the drain of the VIPer53 device. Provision is made to also use an R-C type clamping network to replace this zener. The corresponding components R2 and C8 are to be populated according to the bill of material. See par. 2.3.1.

2.1.5 Short circuit protection

This paragraph only deals with the main outputs (i.e. all the 5V, 12V and 3.3V outputs). The following section deals with the plasma ones.

When in normal mode, all these outputs are protected against a permanent short circuit. When the short circuit is applied on the 5VStandby, the short circuit current flows into D10 which bypasses Q3, thus avoiding its destruction. The protection is done through the overload feature of the VIPer53 device, which leads to hiccup mode when the COMP voltage remains high for a too long time. This time is adjusted by the capacitor on the TOVL pin, and is needed at startup for authorizing a temporary overload during the charge of the output capacitors.

In standby mode, only the 5VStandby output is protected thanks to D12 which forces the standby signal

in the low state, and the converter returns to the normal mode where Q2 is off. This is mandatory to avoid

the destruction of Q2 and D9 in this condition. The other outputs are not protected against a permanent

short circuit, because the converter can still regulate correctly the 5VStandby output even if one of the

others is short circuited. This is due to the high turn ratio existing between the 5VStandby winding and

the other ones, and to the low consumption on this output. Nevertheless, the user will adopt one of the

following options:

 

 

 

 

- these outputs can withstand a short circuit for a few seconds. If this time is too long, the corresponding

rectifying diode may blow up, and the converter will enter into hiccup mode because of the short circuit

 

 

 

 

Product(s)

presented by the blown diode on secondary side of the transformer.

- additional diodes similar to D12 can be implemented on the other outputs to force the converter to the

normal mode, where it can withstand permanent short circuit on the main outputs.

2.1.6 Plasma display outputs

 

 

 

A whole set of outputs are dedicated to the driving of a plasma display in front of the equipment: Negative

 

 

Obsolete

25V and 12V outputs, together with a symmetrical-

+/-4.2V

centered 5V higher than the -25V output

voltage.

 

 

 

 

Please note that these outputs are not protected against short circuits or overloads. For instance, the

short circuit of the 4.2V outputs to ground leads to the destruction of R7 or R9. Also, the rectifying diodes

chosen for these outputs don’t withstand a permanent short circuit.

Figure 3: startup in normal mode

 

Figure 4: startup in standby mode

 

Product(s)

 

 

 

 

Ch1 : 12V out

 

 

 

Ch2 : 5Vstby out

 

 

 

Ch2 : 5Vstby out

Obsolete

 

 

 

Ch3 : 5V out

 

 

 

Ch4 : 3.3V out

 

 

Ch1 : 12V out

 

 

 

 

 

 

 

Ch3 : 5V out

 

 

 

 

Ch4 : 3.3V out

1

 

 

1

 

2

 

 

2

 

3

 

 

3

 

4

 

 

4

 

6/17

Loading...
+ 11 hidden pages