ST AN1893 Application note

AN1893

Application note

Designing with L6925D, high-efficiency monolithic synchronous step-down regulator

Introduction

This application note details the main features and application advantages of STMicroelectronics’ new synchronous step-down regulator. After describing how the device works and the main features, a step-by-step design section is provided in order to help with the selection of the external components and the evaluation of the losses. The device performances are shown in terms of efficiency and thermal results. In conclusion, some application ideas are proposed.

This new product, realized in BCDV technology, is a high-efficiency monolithic synchronous step-down regulator capable of delivering up to 800 mA of continuous output current and regulating the output voltage from 0.6 V up to VIN thanks to the 100% duty cycle operation capability. The input voltage ranges from 2.7 V to 5.5 V. The control loop architecture is based on a constant frequency peak current mode, while high efficiency at light loads is achieved by a low consumption functionality. The very low quiescent current (25 µA) and shutdown current (0.2 µA) make the device very suitable to supply battery-powered equipment (particularly suitable for 1 Li-ion cell) like PDAs and hand-held terminals, DSCs (digital still cameras) and cellular phones. The switching frequency is internally set at 600 kHz but the device can be externally synchronized up to 1.4 MHz. An internal reference voltage of 0.6 V (typ), allows the device to regulate minimum output voltage of the same low

value. The low MOSFETs RDS(on) ensures high efficiency at high output current. Additional interesting features are: hysteretic UVLO, OVP, constant current short-circuit protection,

PGOOD and thermal shutdown. The MSOP8 package allows saving significant board space.

Figure 1. Application test circuit

February 2009

Rev 3

1/29

www.st.com

Contents

AN1893

 

 

Contents

1

Pin functions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 5

2

Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

3

Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

3.1

LBI (low battery input)/LBO (low battery output) . . . . . . . . . . . . . . . . . . . .

7

 

3.2

UVLO (undervoltage lockout) operation . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

3.3

Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

 

3.3.1

Low consumption mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

 

3.3.2

Low noise mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

 

3.4

System stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

 

3.4.1

Current loop compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

 

3.4.2

Voltage loop compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

4

Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

4.1 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 DROPOUT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.3 Adjustable output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.4 OVP (overvoltage protection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.5 Hysteretic thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5

Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

5.1

External component selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

5.1.1 Input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1.2 Output capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1.3 Inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1.4 Compensation network (R1C3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Losses and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2.1 Conduction losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.2.2 Switching losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.2.3 Gate charge losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6

Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

2/29

AN1893 Contents

7

Application board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

8

Efficiency results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

9

Application ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

9.1

Buck boost topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

9.2

White LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

 

9.2.1

Driving white LEDs: buck topology . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

 

 

9.2.2

Driving white LEDs: boost topology . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

 

 

9.2.3

Driving white LEDs: buck-boost topology . . . . . . . . . . . . . . . . . . . . . . .

26

10

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

3/29

List of figures

AN1893

 

 

List of figures

Figure 1. Application test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2. Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 3. MSOP8 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 4. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 5. Low consumption mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 6. Low noise mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 7. Slope compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 8. Equivalent circuit for the voltage loop analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 9. Equivalent circuits during the ON time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 10. Equivalent circuit during the OFF time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 11. Valley current limit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 12. Thermal performance results: VIN = 3.7 V VOUT = 1.8 V IOUT = 800 mA . . . . . . . . . . . . . . 19 Figure 13. RDS(on) vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 14. Application board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 15. Component placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 16. Top side view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 17. Bottom side view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 18. Schematic demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 19. Low noises vs. low consumption efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 20. Efficiency vs. output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 21. Efficiency vs. output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 22. Efficiency vs. output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 23. Positive buck boost application. 1 Li-Ion cell to 3.3 V at 0.25 A . . . . . . . . . . . . . . . . . . . . . 24 Figure 24. Buck topology schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 25. Boost topology schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 26. Buck-boost topology schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 27. PWM brightness control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 28. Analog brightness control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4/29

AN1893

Pin functions

 

 

1 Pin functions

Table 1.

Pin description

N.

Name

Description

 

 

 

 

 

 

 

 

 

Battery low voltage detector input. The internal threshold is set at 0.6 V. The

1

 

LBI

external threshold can be adjusted by using an external resistor divider (see

 

 

 

 

Section 3.1). If not used, the pin can be left floating.

 

 

 

 

 

 

 

 

 

Error amplifier output. A compensation network has to be connected to this pin.

2

COMP

Usually a 220 pF capacitor is enough to guarantee the loop stability (see

 

 

 

 

Section 3.3.1).

 

 

 

 

3

 

VFB

Error amplifier inverting external divider.

 

 

 

 

4

 

GND

Ground.

 

 

 

 

5

 

LX

Switches output node. Common point between high side and low side MOSFETs

 

 

 

 

 

 

 

 

 

Input voltage. The startup input voltage is 2.8 V (typ) while the operating input

6

 

VCC

voltage range is from 2.7 V to 5.5 V. An internal UVLO circuit realizes a 200 mV

 

 

 

 

(typ) hysteresis.

 

 

 

 

 

 

 

 

 

Operating mode selector input. Low consumption mode when connected to a

7

SYNC

higher voltage than 1.3 V (up to VCC). Low noise mode when connected to a lower

than 0.5 V (down to GND). Synchronization mode when connected to an external

 

 

 

 

 

 

 

 

appropriate clock generator. This pin must not be left floating.

 

 

 

 

 

 

 

 

 

Battery low voltage detector output. If the voltage at the LBI pin drops below the

 

 

 

 

internal threshold, the LBO pin goes low. The LBO pin is an open drain output. A

8

 

LBO

 

pull-up resistor should be connected between the pin and the output voltage. If not

 

 

 

 

 

 

 

 

used, the pin can be left floating.

 

 

 

 

 

Figure 2. Pin connections

Figure 3. MSOP8 package

5/29

Block diagram

AN1893

 

 

2 Block diagram

Figure 4. Block diagram

6/29

AN1893

Functional description

 

 

3 Functional description

The main loop uses constant frequency peak current mode architecture. Each cycle, the high side MOSFET is turned on, triggered by the oscillator, so that the current flowing through it increases with a slope fixed by the operating conditions. When the sensed current (a part of the high side current) reaches the output value of the error amplifier E/A, COMP pin, the internal logic turns off the high side MOSFET and turns on the low side one until the next clock cycle begins or the current flowing through it goes down to zero (ZERO- CROSSING comparator). During the load transients, the voltage control loop keeps the output voltage in regulation changing the COMP pin value, fixing a new turnoff threshold. Moreover, during these dynamic conditions the choke must not saturate and the inductor peak current must never exceed the maximum value. This value is in function of the internal slope compensation (see Section 3.4.1).

3.1LBI (low battery input)/LBO (low battery output)

A low battery input pin is available. The pin is internally connected to a comparator with a threshold of 0.6 V. By using an external resistor divider connected between the battery voltage and the ground it is possible to fix a threshold for the battery voltage. When the voltage at the LBI pin goes lower than 0.6 V, the LBO pin is forced low. This feature can be useful for example to have a warning signal when the battery is quite discharged.

3.2UVLO (undervoltage lockout) operation

The device is particularly designed for equipment powered by a Li-ion battery. These types of batteries are almost fully discharged when their voltage goes lower than approximately 3 V. For this reason, a UVLO is internally set at 2.8 V, with a hysteresis of 200 mV. Thanks to this feature, when the battery is fully discharged, the device automatically turns off.

3.3Modes of operation

3.3.1Low consumption mode

At light load, the device operates in burst mode in order to keep the efficiency very high also in these conditions.

While the device is not switching the load discharges the output capacitor and the output voltage goes down. The COMP pin, due to the feedback loop, increases and when a fixed internal threshold is reached, the device starts to switch again. In this condition the peak current limit is set approximately in the range of 200 mA-400 mA, depending on the slope compensation (see Section 3.4.1). Once the device starts to switch the output capacitor is recharged. The repetition time of the bursts depend on parameters like input and output voltages, load, inductor and output capacitors.

Between two bursts, most of the internal circuitries are off, thus reducing the device consumption down to a typical value of 25 µA. During the burst, the frequency of the pulses is equal to the internal frequency.

7/29

ST AN1893 Application note

Functional description

AN1893

 

 

3.3.2Low noise mode

In case the very low frequencies generated by the low consumption mode are undesirable, the low noise mode can be selected. The efficiency is a little bit lower compared with the low consumption mode conditions when working close to zero loads, while the trend is to reach the efficiency of low consumption mode for intermediate light loads.

The device could skip some cycles in order to keep the output voltage in regulation. In Figure 5 and 6 the LCM and LNM typical waveforms are shown.

Figure 5. Low consumption mode
Figure 6. Low noise mode

Measurement conditions: VIN = 4.2 V; VOUT = 1.5 V; IOUT = 30 mA; L = 6.8 µH; CIN = 10 µF; COUT = 22 µF; RC = 40 kΩ; CC = 330 pF

Figure 19 shows a comparison between the efficiency in low noise mode and the efficiency in low consumption mode.

8/29

AN1893

Functional description

 

 

3.4System stability

Since the device operates with constant frequency peak current mode architecture, the voltage loop stability is usually not a big issue. For most of the applications a 220 pF connected between the COMP pin and ground is enough to guarantee the stability. In case very low ESR capacitors are used for the output filter, such as multilayer ceramic capacitors, the zero introduced by the capacitor itself can be shifted at a frequency well above the resonance frequency of the L-C filter and the loop stability could be affected.

Adding a series resistor to the 220 pF capacitor can solve this problem. The right value for the resistor can be determined by checking the load transient response voltage waveforms.

The current mode stability can be studied in two consecutive steps; first the inner loop is closed (current loop) and then the second loop stability is considered (voltage loop).

3.4.1Current loop compensation

The selected control architecture brings many advantages: easy compensation with ceramic capacitors, fast transient response and intrinsic peak current measurement that simplify the current limit protection. A known drawback, however, is that the current loop becomes unstable when the duty cycle exceeds 50%.

This phenomenon is known as "sub-harmonic oscillation" and can be avoided by adding a slope compensation signal. Due to this fact, the current limit of the device decreases when the slope compensation signal is applied. The slope compensation is internally implemented from a duty around 30% and Figure 7 shows how the slope compensation affects the device current limit.

Figure 7. Slope compensation

The amount of slope compensation depends on the inductor current slope during the OFF time. This slope, for a given duty cycle, is inversely proportional to the inductor value. Since the device can be synchronized at a higher frequency, it is reasonable to calculate the inductor value in terms of it. Finally, the input voltage affects the OFF time slope as well. This is obvious because, for a given duty cycle, the output voltage (and so the OFF time inductor current slope) is directly proportional to the input one. In order to better manage these issues, the amount of slope compensation depends not only on the duty cycle but also on the switching frequency and the input voltage.

9/29

Loading...
+ 20 hidden pages