ST AN1882 Application note

AN1882

Application note

Designing with the L6926, high efficiency monolithic synchronous step-down regulator

Introduction

This application note details the main features and application advantages of this new synchronous step-down regulator. After describing how the device works and the main features, a step-by-step design section is provided in order to aid in the selection of the external components and in the evaluation of the losses. The device performances are shown in terms of efficiency and thermal results. At the end, some application ideas are proposed. This new product, designed using BCDV technology, is a high efficiency monolithic synchronous step-down regulator capable of delivering up to 800 mA of continuous output current and to regulate the output voltage from 0.6 V up to VIN thanks to the 100% duty cycle operation capability. The input voltage ranges from 2 V to 5.5 V. The control loop architecture is based on a constant frequency peak current mode, while high efficiency at light loads is achieved by a low consumption functionality. The very low quiescent current (25 µA) and shutdown current (0.2 µA) make the device very suitable to supply battery-powered equipment like PDAs and hand-held terminals, DSCs (digital still cameras) and cellular phones. The switching frequency is internally set at 600 kHz, but the device can be externally synchronized up to 1.4 MHz. An internal reference voltage of 0.6 V (typ) allows the device to regulate a minimum output voltage of the same low value. The low MOSFETs RDS(on) ensures high efficiency at high output current. Additional beneficial features are: hysteretic UVLO, OVP, constant current short-circuit protection, Power Good and thermal shutdown. The MSOP8 package allows significant space savings on the board.

Figure 1. Application test circuit

April 2012

Doc ID 10209 Rev 4

1/30

www.st.com

Contents

AN1882

 

 

Contents

1

Pins function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

2

Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

3

Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

 

3.1

Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

3.1.1 Low consumption mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.2 Low noise mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

 

3.2

System stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 7

 

 

3.2.1

Current loop compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 8

 

 

3.2.2

Voltage loop compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 9

4

Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

4.1 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 DROPOUT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3 PGOOD (Power Good output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.4 Adjustable output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.5 OVP (over-voltage protection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.6 Hysteretic thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5

Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

5.1

External components selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

5.1.1 Input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1.2 Output capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1.3 Inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1.4 Compensation network (R1C3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Losses and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2.1 Conduction losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.2.2 Switching losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.2.3 Gate charge losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6

Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

7

Application board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

2/30

Doc ID 10209 Rev 4

AN1882 Contents

8

Efficiency results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

9

Application ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

9.1

Buck boost topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

9.2

White LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

 

9.2.1

Driving white LEDs: buck topology . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

 

 

9.2.2

Driving white LEDs: boost topology . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

 

 

9.2.3

Driving white LEDs: buck/boost topology . . . . . . . . . . . . . . . . . . . . . . . .

26

10

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

Doc ID 10209 Rev 4

3/30

List of figures

AN1882

 

 

List of figures

Figure 1. Application test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2. Pins connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 3. MSOP8 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 4. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 5. Low consumption mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 6. Low noise mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 7. Slope compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 8. Equivalent circuit for the voltage loop analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 9. Equivalent circuits during the ON time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 10. Equivalent circuit during the OFF time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 11. Valley current limit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 12. Thermal performance results: VIN = 3.7 V VOUT = 1.8 V IOUT = 800 mA . . . . . . . . . . . . . . 20 Figure 13. RDS(on) vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 14. Application board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 15. Component placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 16. Top side view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 17. Bottom side view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 18. Schematic demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 19. Low noises vs. low consumption efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 20. Efficiency vs. output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 21. Efficiency vs. output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 22. Efficiency vs. output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 23. Positive buck boost application. 1 Li-Ion cell to 3.3 V@0.25 A. . . . . . . . . . . . . . . . . . . . . . 25 Figure 24. Buck topology schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 25. Boost topology schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 26. Buck boost topology schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 27. PWM brightness control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 28. Analog brightness control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4/30

Doc ID 10209 Rev 4

AN1882

Pins function

 

 

1 Pins function

Table 1.

Pin description

N.

Name

 

Description

 

 

 

 

 

 

 

Shutdown input. When connected to a lower voltage than 0.5 V (down to GND) the device stops

1

RUN

 

working. When connected to a higher voltage than 1.3 V (up to VCC) the device is enabled. The pin

 

 

 

must not be left floating

 

 

 

 

2

COMP

 

Error amplifier output. A compensation network has to be connected from this pin to GND. Usually a

 

 

 

220 pF capacitor is enough to guarantee the loop stability (see related section)

 

 

 

 

3

VFB

 

Error amplifier inverting input, used to adjust the output voltage (from 0.6 V to VIN) by an external

 

divider.

 

 

 

 

 

 

 

4

GND

 

Ground

 

 

 

 

5

LX

 

Switch output node. Common point between high side and low side MOSFETs

 

 

 

 

6

VCC

 

Input voltage. The operating input voltage range is from 2 V to 5.5 V. An internal UVLO circuit

 

realizes a 200 mV (typ) hysteresis

 

 

 

 

 

 

 

7

SYNC

 

Operating mode selector input. Low consumption mode, when connected to a higher voltage than

 

 

 

1.3 V (up to VCC). Low noise mode when connected to a lower than 0.5 V (down to GND).

 

 

 

Synchronization mode when connected to an external appropriate clock generator. This pin must

 

 

 

not be left floating

 

 

 

8

PGOOD

Power Good comparator output. It is an open drain output. A pull-up resistor should be connected

 

 

 

between Power Good and VO. The pin is forced low when the output voltage is lower than 90% of

 

 

 

the regulated output voltage and goes high when the output voltage is greater than 90% of the

 

 

 

regulated output voltage. If not used, the pin can be left floating.

 

 

 

 

Figure 2. Pins connection

Figure 3. MSOP8 package

Doc ID 10209 Rev 4

5/30

Block diagram

AN1882

 

 

2 Block diagram

Figure 4. Block diagram

6/30

Doc ID 10209 Rev 4

AN1882

Functional description

 

 

3 Functional description

The main loop uses constant frequency peak current mode architecture. Each cycle, the high side MOSFET is turned on, triggered by the oscillator, so that the current flowing through it increases with a slope fixed by the operating conditions. When the sensed current (a part of the high side current) reaches the output value of the error amplifier E/A, COMP pin, the internal logic turns off the high side MOSFET and turns on the low side one until the next clock cycle begins or the current flowing through it goes down to zero (ZERO CROSSING comparator). During the load transients, the voltage control loop keeps the output voltage in regulation changing the COMP pin value, fixing a new turn off threshold. Moreover, during these dynamic conditions the choke must not saturate and the inductor peak current must never exceed the maximum value. This value is function of the internal slope compensation (see related section).

3.1Modes of operation

3.1.1Low consumption mode

At light load, the device operates in burst mode in order to keep the efficiency very high also in these conditions.

While the device is not switching the load discharges the output capacitor and the output voltage goes down. The COMP pin, due to the feedback loop, increases and when a fixed internal threshold is reached, the device starts to switch again. In this condition the peak current limit is set approximately in the range of 200 mA-400 mA, depending on the slope compensation (see related section). Once the device starts to switch the output capacitor is recharged. The repetition time of the bursts depend on parameters like input and output voltages, load, inductor and output capacitors.

Between two bursts, most of the internal circuitries are off, so reducing the device consumption down to a typical value of 25 µA. During the burst, the frequency of the pulses is equal to the internal frequency.

3.1.2Low noise mode

In case the very low frequencies generated by the low consumption mode are undesirable, the low noise mode can be selected. The efficiency is a little bit lower compared with the low consumption mode conditions when working close to zero loads, while the trend is to reach the efficiency of low consumption mode for intermediate light loads.

The device could skip some cycles in order to keep the output voltage in regulation. In the Figure 5 and 6 the LCM and LNM typical waveforms are shown.

Doc ID 10209 Rev 4

7/30

ST AN1882 Application note

Functional description

AN1882

 

 

 

 

Figure 5.

Low consumption mode

 

 

 

 

 

 

Figure 6. Low noise mode

Measurement conditions: VIN = 4.2 V; VOUT = 1.5 V; IOUT = 30 mA; L = 6.8 µH; CIN = 10 µF; COUT = 22 µF; RC = 40 kΩ; CC = 330 pF

In Figure 19 is shown a comparison between the efficiency in low noise mode and the efficiency in low consumption mode.

3.2System stability

Since the device operates with constant frequency peak current mode architecture, the voltage loop stability is usually not a big issue. For most of the applications a 220 pF connected between the COMP pin and ground is enough to guarantee the stability. In case very low ESR capacitors are used for the output filter, such as multilayer ceramic capacitors, the zero introduced by the capacitor itself can be shifted at a frequency well above the resonance frequency of the L-C filter and the loop stability could be affected.

Adding a series resistor to the 220 pF capacitor can solve this problem. The right value for the resistor can be determined by checking the load transient response voltage waveforms.

8/30

Doc ID 10209 Rev 4

AN1882

Functional description

 

 

The current mode stability can be studied in two consecutive steps; first the inner loop is closed (current loop) and then the second loop stability is considered (voltage loop).

3.2.1Current loop compensation

The selected control architecture brings many advantages: easy compensation with ceramic capacitors, fast transient response and intrinsic peak current measurement that simplify the current limit protection. A known drawback, however, is that the current loop becomes unstable, when the duty cycle exceeds 50%.

This phenomenon is known as "sub-harmonic oscillation" and can be avoided by adding a slope compensation signal. Due to this fact, the current limit of the device decreases when the slope compensation signal is applied. The slope compensation is internally implemented from a duty around 30% and Figure 7 shows how the slope compensation affects the device current limit.

Figure 7. Slope compensation

The amount of slope compensation depends on the inductor current slope during the OFF time. This slope, for a given duty cycle, is inversely proportional to the inductor value. Since the device can be synchronized at higher frequency, it is reasonable to calculate the inductor value in terms of it. Finally, the input voltage affects the OFF time slope as well. This is obvious because, for a given duty cycle, the output voltage (and so the OFF time inductor current slope) is directly proportional to the input one. In order to better manage these issues, the amount of slope compensation does not depend only on the duty cycle but also on the switching frequency and the input voltage.

Table 2.

Suggested inductor values for different switching frequencies, at

 

VIN = 3.6 V and VOUT =1.8 V

 

 

FSW [kHz]

Minimum inductor value [µH]

 

 

 

 

600

6.8

 

 

 

 

1000

3.6

 

 

 

 

1400

2.7

 

 

 

Doc ID 10209 Rev 4

9/30

Loading...
+ 21 hidden pages