ST AN1714 APPLICATION NOTE

AN1714

Application note

ST7538Q FSK powerline transceiver demonstration kit description

Introduction

The advantages in the implementation of a communication network using the same electrical network that supplies all the elements of the network are evident. In the presence of new wideband LANs using an RF system, for example Bluetooth, a narrowband communication system using the mains has considerable advantages also.

It is widely accepted that in residential or industrial areas, in parallel to a wideband network for audio/video streaming and Internet, having a narrowband LAN is useful to carry simple information such as measurements, commands to actuators, system controls and so on.

Many applications can be covered by a narrowband communication system in a residential structure, outside the house or in industrial applications (see Figure 1 below).

Figure 1. Typical powerline modem applications scenario

For example in houses or commercial buildings possible applications are power management, lighting control, heating or cooling system management, remote control of appliances (by internet or telephone), and control of alarm systems.

Considering external applications, the main areas concern communication with meters, in particular automatic measuring and remote control, prepaid supply systems, meter or inhome remote displays. Another relevant industrial segment could be street lighting management.

February 2008

Rev 4

1/46

www.st.com

Contents

AN1714

 

 

Contents

1

Powerline communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

 

1.1 The electrical network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

1.1.1 Impedance of powerlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.2 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.3 Typical connection losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.4 Standing waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 ST7538Q FSK powerline transceiver description . . . . . . . . . . . . . . . . . . . . 9

2

Demonstration board for ST7538Q . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

2.1

Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

2.2

Signal coupling interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

2.2.1 Transmitting section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Receiving section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 Voltage regulation-current protection loops . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Board power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 L6590 regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.2 ST7538Q power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

 

2.4

Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

2.5

Burst and surge protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

 

2.6

ST7 microcontroller and RS232 interface . . . . . . . . . . . . . . . . . . . . . . . .

30

 

 

2.6.1

Modem / microcontroller interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

 

2.7

Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

3

Demonstration board characterization . . . . . . . . . . . . . . . . . . . . . . . . .

37

3.1 Conducted disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Narrowband conducted interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 Output impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4

Design ideas for auxiliary blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

 

4.1

Zero-crossing detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

Appendix A

Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44

 

4.2

ST7538Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44

2/46

AN1714

 

 

Contents

 

 

 

 

 

4.3

L6590 integrated power supply . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 44

 

4.4

ST7 microprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 44

 

4.5

Surge and burst protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 44

5

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 45

6

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 45

3/46

List of figures

AN1714

 

 

List of figures

Figure 1. Typical powerline modem applications scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2. Mains signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 3. Aggregate European powerline impedance (by Malack and Engstrom). . . . . . . . . . . . . . . . 7 Figure 4. Voltage spectra of a 100 W light dimmer, a notebook PC, a desktop PC, a CFL lamp,

a TLE lamp, all working with a 50 Hz/~220 V supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 5. FSK modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 6. ST7538Q transceiver block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 7. ST7538Q demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 8. Demonstration board layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 9. Demonstration board schematic: microcontroller and PC interface . . . . . . . . . . . . . . . . . . 12 Figure 10. Demonstration board schematic: line coupling interface and power supply . . . . . . . . . . . . 13 Figure 11. Demonstration board ST7538Q powerline interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 12. Demonstration board ST7538Q transmission coupling circuit . . . . . . . . . . . . . . . . . . . . . . 15 Figure 13. Simplified schematic of the transmission filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 14. Simulated characteristics of the transmission coupling filter. . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 15. Coupling circuit with a 2nd order band pass butterworth. . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 16. Demonstration board ST7538Q receiving circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 17. Measured filtering characteristic of the demonstration board at the RAI pin in receive

mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 18. Powerline output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 19. Voltage regulation and current protection components . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 20. Voltage regulation/current protection loop logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 21. Current protection loop characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 22. Voltage regulation and current protection feedback signals . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 23. Power supply EMC disturbances filter circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 24. Noise generation in resistive supply or ground path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 25. A recommended oscillator section layout for noise shielding . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 26. Common mode and differential mode spikes example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 27. Microcontroller/RS232 interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 28. ST7538Q / microcontroller interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 29. Conducted disturbance setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 30. Output signal spectrum, channel 132.5 kHz, mains 220 V~, fixed tone . . . . . . . . . . . . . . . 38 Figure 31. Output signal spectrum, channel 132.5 kHz, mains 220 V~, random sequence . . . . . . . . 38 Figure 32. Output signal spectrum, channel 132.5 kHz, mains 110 V~, random sequence . . . . . . . . 39 Figure 33. Output signal spectrum, channel 110 kHz, mains 220 V~, random sequence . . . . . . . . . . 39 Figure 34. Narrowband conducted interferences setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 35. Signal/noise ratio for the 132.5 kHz channel, signal level 85 dBuV . . . . . . . . . . . . . . . . . . 40 Figure 36. Signal/noise ratio for the 132.5 kHz channel, signal level 85 dBuV, mains 110 V~ . . . . . . 41 Figure 37. Signal/noise ratio for the 110 kHz channel, signal level 91 dBuV. . . . . . . . . . . . . . . . . . . . 41 Figure 38. Output board impedance measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 39. Output demonstration board impedances (CN1) in receiving condition . . . . . . . . . . . . . . . 42 Figure 40. Output demonstration board impedances (CN1) in transmitting condition . . . . . . . . . . . . . 42 Figure 41. Zero-crossing coupling circuit, nonisolated solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 42. Zero-crossing coupling circuit, isolated solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4/46

AN1714

Powerline communication

 

 

1 Powerline communication

Although the concepts of power line communication and home automation, as well as the development of different devices dedicated for power line communication, have been present for several years, the market segment for this kind of application has only recently been growing.

The three main factors that have contributed up to now to the field of the powerline communication are:

a)The slow development of international norms and standards

b)Some technical constraints related to the electrical network

c)General consideration of costs

The first point concerns standards and norms. A general consideration in an open communication system is to have mandatory rules and guidelines to guarantee that every node, whatever the manufacturer, does not compromise the characteristics of the entire network and the performance of the communication system.

For residential products this aspect is quite relevant considering the presence of many different appliances and manufacturers, and also the concern for a common language (the protocol) which is mandatory.

In 2002 the CENELEC (European Committee for Electrotechnical Standardizations) published or updated a series of regulations about communication on low-voltage electrical installations. We refer in particular to the EN50065-1, concerning general requirements, frequency bands and electromagnetic disturbances; the EN50065-4-2 about the low-voltage decoupling filter and safety requirements; and the EN50065-7 about the impedance of the devices.

A preliminary version (1999) of the EN50065-2-1 about immunity requirements is also available.

There has been a certain alignment among the appliance manufacturers on the EHS (European Home System) protocols, even if a lot of customized protocols are present, mainly in proprietary mains. More information on EHS protocol is available in the EHS booklet.

The second critical consideration concerns the technical problems regarding the specific topology of the electrical network.

Figure 2 shows what happens to a signal transmitted on an electrical network. For several reasons that are listed in the next paragraph (low impedance, different kind of disturbances, etc.) the received FSK signal has a very low level and it is mixed with a great level of noise.

5/46

Powerline communication

AN1714

 

 

Figure 2. Mains signals

 

 

 

MAINS

 

Rx

 

Tx

 

 

 

 

 

 

 

ST 7538

 

 

ST 7538

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Received Signal

 

 

Transmitted Signal

f

f

f

fc

 

fc

The aspects of noise and low impedance are more critical in a residential house where many different appliances are present.

Every entity of the network has to be able to manage reliable communication also under these critical conditions. To achieve this goal all aspects of the application design have to be to carefully considered, from the coupling interface to the power management, from the type of microprocessor to the powerline transceiver, as well as considering their mutual influences.

Last but not least, we must consider the economic point of view. It isn’t a simple calculation of the node cost with respect to an equivalent wireline or wireless solution, but a consideration of other aspects such as the installation and configuration cost of the entire network.

Another economic issue that has to be considered is the power consumption of a single communication node. The power consumption of each communication unit has to be lower as possible because every unit must always stay on ready to receive commands from a remote transmitter. This constraint is even more relevant in applications with a huge number of nodes. Consider for example the control of a street lighting system with thousands of lamps or a metering system with several thousands of electricity meters.

The ST7538Q has been designed considering all issues previously listed. With this device it is possible to obtain highly efficient and reliable applications for powerline communication, characterized by low power consumption, low cost, and compliance with the main norms and protocol currently in place.

1.1The electrical network

The communication medium consists of everything connected to power outlets. This includes house wiring in the walls of the building, appliance wiring, and the appliances themselves, the service panel, the triplex wire connecting the service panel to the distribution transformer and the distribution transformer itself. Since distribution transformers usually serve more than one residence, the loads and wiring of all residences connected to the same transformer must be included.

6/46

AN1714

Powerline communication

 

 

1.1.1Impedance of powerlines

A powerline has very variable impedance depending on several factors such as its configuration (star connection, ring connection) or the number of entities linked.

Extensive data on this subject has been published by Malack and Engstrom of IBM (Electromagnetic Compatibility Laboratory), who measured the RF impedance of 86 commercial AC power distribution systems in six European countries (see Figure 3).

These measurements show that the impedance of the residential power circuits increases with frequency and is in the range from about 1.5 to 8 Ω at 100 kHz. It appears that this impedance is determined by two parameters - the loads connected to the network and the impedance of the distribution transformer. Recently a third element influences the impedance of the powerline, in particular in residential networks. It is represented by the EMI filters mounted in the last generation of home appliances (refrigerators, washing machines, television sets, stereos). Wiring seems to have a relatively small effect. The impedance is usually inductive.

For typical resistive loads, signal attenuation is expected to be from 2 to 50 dB at 150 kHz depending on the distribution transformer used and the size of the loads. Moreover, it may be possible for capacitive loads to resonate with the inductance of the distribution transformer and cause the signal attenuation to vary wildly with frequency.

For the compliance tests the normative EN50065 use two artificial mains networks conforming to sub clause 11.2 of CISPR 16-1:1993. Measurements on real networks have shown that this artificial network does not truly represent practical network impedance. To better evaluate the performance of a real signaling system, an adaptive network must be used in conjunction with the CISPR 16-1 artificial network. The design of the adaptive circuit is included in the informative annex F of EN50065-1 (revision 2001).

Figure 3. Aggregate European powerline impedance (by Malack and Engstrom)

IMPEDANCE MAGNITUDE (OHM)

1000.0

 

 

 

 

 

 

 

 

100.0

 

 

 

 

 

 

 

 

10.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAXIMUM

 

1.0

 

 

 

 

 

MEAN

 

 

 

 

 

 

 

MINIMUM

 

0.1

 

 

 

 

 

 

 

 

0.04

0.08

0.10

0.30

0.75

2.10

5.00

15.00

30.00

FREQUENCY (MHz)

1.1.2Noise

Appliances connected to the same transformer secondary to which the powerline carrier system is connected cause the principal source of noise. The primary sources of noise are Triacs used in light dimmers, universal motors, switching power supplies used in small and portable appliances and fluorescent lamps.

7/46

Powerline communication

AN1714

 

 

Triacs generate noise synchronous with the 50 Hz power signal and this noise appears as harmonics of 50 Hz. Universal motors found in mixers or drills also create noise, but it is not as strong as light dimmer noise, and not generally synchronous with 50 Hz.

Furthermore, light dimmers are often left on for long periods of time whereas universal motors are used intermittently.

In the last years two other sources of strong noise have been introduced in the electrical network. They are Compact Fluorescent Lamps (CFL) and the switching power supplies of rechargeable battery (for example notebook PCs) or small appliances.

In many cases they have a working frequency or some harmonics in the range of the powerline communication band (from 10 kHz to 150 kHz). Of course the presence of continuous tones exactly at communication channel frequency can affect the reliability of communication.

The Figure 4 shows some of the noise sources we refer to. The measurement setup consists of an insulation transformer with a VARIAC, a spectrum analyzer HP4395A coupled by a high voltage capacitor (1µF) and a 2 mH transformer (1:1).

Figure 4. Voltage spectra of a 100 W light dimmer, a notebook PC, a desktop PC, a CFL lamp, a TLE lamp, all working with a 50 Hz/~220 V supply

dBuV

 

 

 

 

 

110.0

 

 

 

 

 

90.0

 

 

 

 

 

70.0

 

 

 

 

 

50.0

Background

 

 

 

 

 

 

 

 

 

 

CFL 11W

 

 

 

 

30.0

Desktop PC

 

 

 

 

Dimmer 100W

 

 

 

 

 

 

 

 

TLE 22W

 

 

 

 

10.0

Notebook PC

 

 

 

 

 

 

 

 

 

1.00E+03

1.00E+04

Hz

1.00E+05

1.00E+06

1.1.3Typical connection losses

The transmitting range of a home automation system depends on the physical topology of the electric power distribution network inside the building where the system is installed.

Different connection losses can be measured. For communication nodes connected to the same branch circuit from transmitter to receiver a typical connection loss is about 10-15 dB. If transmitter and receiver are in different branches of the circuit, separated for example by a service panel, there is an additional attenuation of 10-20 dB.

In some worst-case conditions (socket with very low impedance) the attenuation of the transmitted signal can reach a value of 50-60 db.

1.1.4Standing waves

Standing wave effects begin to occur when the physical dimensions of the communication medium are similar to about one-eighth of a wavelength, which are about 375 and 250

8/46

AN1714

Powerline communication

 

 

meters at 100 and 150 kHz respectively. Primarily the length of the triplex wire connecting the residences to the distribution transformer determines the length of the communication path on the secondary side of the power distribution system. Usually, several residences use the same distribution transformer. It would be rare that a linear run of this wiring would exceed 250 meters in length although the total length of branches might occasionally exceed 250 meters. Thus standing wave effects would be rare at frequencies below 150 kHz for residential wiring.

1.2ST7538Q FSK powerline transceiver description

The ST7538Q transceiver performs a half-duplex communication over the powerline network using Frequency Shift Keying (FSK) modulation. The FSK modulation technique translates a digital signal into a sinusoidal signal that can have two different frequency values, one for the high logic level of the digital signal (fH), the second one for the low level (fL), as depicted in Figure 5.

Figure 5. FSK modulation

The average value of the two tones is the carrier frequency (fC). The difference or distance between the two frequencies is a function of the baud-rate (BAUD) of the digital signal (the number of symbols transmitted in one second) and of the deviation (dev). The relationship is:

Equation 1

fH fL = BAUD dev

The ST7538Q can be programmed to communicate using eight different frequency channels (60, 66, 72, 76, 82.05, 86, 110 and 132.5 kHz), four baud rates (600, 1200, 2400 and 4800 symbols per second) and two frequency deviations (1 and 0.5).

The device operates from a 7.5 to 12.5 V single supply voltage (PAVcc) and integrates a differential-output PowerLine Interface (PLI) stage and two linear regulators providing 5 V (VDC) and 3.3 V (DVdd).

Many auxiliary functions are integrated. The transmission section includes automatic control on PLI output voltage and current, programmable timeout function and thermal shutdown. The reception section includes automatic input level control, carrier/preamble detection and band-in-use signaling.

Additional features are included, such as a watchdog timer, zero-crossing detector, internal oscillator and a general purpose op-amp.

The serial interface (configurable as UART or SPI) allows interfacing to a host microcontroller, intended to manage the communication protocol. A reset output (RSTO) and a programmable 4-8-16 MHz clock (MCLK) can be provided to the microcontroller to simplify the application.

9/46

Powerline communication

AN1714

 

 

Communication on the powerline can be either synchronous or asynchronous with the data clock (CLR/T) provided by the transceiver at the programmed baud rate.

When in Transmission mode (i.e. RxTx line at low level), the ST7538Q transceiver samples the data on the TxD line, generating an FSK modulated signal on the ATO pin. The same signal is fed into the differential power amplifier to get four times the voltage swing and a current capability up to 370 mA rms.

When in Reception mode (i.e. RxTx line at high level), an incoming signal at the RAI line is demodulated and converted in a digital bit stream on the RxD pin.

The internal Control Register, which contains the operating parameters of the ST7538Q transceiver, can be programmed only using the SPI interface. The Control Register settings include the Header Recognition and Frame Length Count functions, which can be used to apply byte and frame synchronization to the received messages.

Figure 6. ST7538Q transceiver block diagram

For a more detailed and complete description of the ST7538Q device please refer to the product datasheet.

10/46

ST AN1714 APPLICATION NOTE

AN1714

Demonstration board for ST7538Q

 

 

2 Demonstration board for ST7538Q

2.1Main features

The ST7538Q demonstration board implements in a two layer PCB a complete powerline communication node, including the powerline coupling circuits, a power supply section, a microcontroller and a RS232 serial interface to connect the board to a personal computer (Figure 8). This board with the related firmware load in the ST microprocessor and the PC software is a complete reference for the mains aspects of powerline communications.

Figure 7. ST7538Q demonstration board

Figure 8. Demonstration board layout

LV HV

LV

Power Supply

PC Interface

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ST7538P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ST7

 

 

 

 

 

 

 

 

 

Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal

Coupling

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interface

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LV

 

HV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The aim of this board is to give a useful tool to develop and to evaluate a powerline application with the device ST7538Q. So even if aspects of the board concerning size and cost aren't optimized, its schematic gives a good design reference and a valid starting point

11/46

Demonstration board for ST7538Q

AN1714

 

 

to develop powerline modem applications. Moreover the board structure (a lot of jumpers, test points, few SMD components) allows easily connecting test probes to take measures and signal verifications, as well as customizing the application according to specific requirements.

Figure 9. Demonstration board schematic: microcontroller and PC interface

TXD

 

 

 

 

 

 

5V_ P

 

 

 

 

CN7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

 

ISPDATA

 

 

 

 

 

 

 

 

 

 

 

 

3

4

 

ISPCLOCK

 

 

R16

C27

 

C28

C29

C30

C31

 

 

5

6

 

RESET

D13

 

4.7K

 

 

 

 

 

 

 

 

 

JP1

 

100nF

100nF

100nF

10 F

100nF

 

5V

7

8

 

ISPSEL

1N4148

 

 

 

 

 

 

 

 

 

 

 

9

10

 

R17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISP INTERFACE

 

10K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MICRO_TXD

U3

 

 

 

CN5

 

 

 

 

 

 

 

 

 

 

 

 

R2IN

 

FEMALE

RN1

 

 

 

 

 

 

 

R2OUT

 

 

8

 

 

COMMON

 

 

 

 

 

9

 

T2OUT

 

 

5

1

 

5V_led

 

 

 

T2IN

 

7

T2OUT_A

 

R4

 

 

 

H_S

 

10

 

 

 

9

5

 

 

 

 

 

 

T1IN

 

5

 

 

 

R3

 

 

 

 

 

RS232_OUT

 

11 ST232

C2-

 

 

4

4

 

 

 

 

 

R1OUT

 

C26

 

R2

 

 

 

 

 

RS232_IN

 

R1IN

12

 

4

C2+

100nF

 

8

3

R1

 

 

 

 

 

R1IN_A

 

13

 

 

 

 

R1IN_A

2

 

 

 

 

 

T1OUT

 

3

 

 

 

3

 

 

 

 

 

 

T1OUT_A

14

 

C1-

 

 

7

 

 

D11

D10

 

D12

D9

 

 

 

 

C25

 

 

 

 

5V_232

 

VCC

16

 

 

C1+

 

T1OUT_A

 

 

RED

YELLOW

GREEN

RED

 

GND

 

1

100nF

 

2

TOUT

CD/PD

 

RX

TX

 

 

15

 

V-

 

 

6

 

 

 

 

2

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T2OUT_A

 

PA4

PA5

 

PA6

PA7

 

 

 

V+

 

 

 

C32

 

1

 

 

 

 

 

 

 

 

PC INTERFACE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100nF

 

 

 

 

 

J10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C24 100nF

C23 100nF

 

 

 

 

 

 

 

 

 

 

 

5V_232

 

 

 

 

 

 

 

 

 

5V

 

J9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5V_led

 

 

 

 

 

 

 

 

U4

 

 

 

 

 

 

J8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5V_ P

 

 

OSCOUT

41

 

 

 

 

32

VDD_1

 

 

5V_ P

 

 

 

 

 

VDD_2

 

 

 

 

PA3

 

 

 

 

 

5V_ P

 

43

 

 

 

 

31

 

 

CD/PD

 

 

 

 

RESET

 

 

 

 

PC7/SS

 

 

 

 

 

RESET

 

39

 

 

 

 

30

 

 

SS

 

 

 

 

 

PE0/TD0

 

 

 

 

 

 

 

 

 

 

 

RS232_OUT

 

44

 

 

 

 

 

 

 

 

ISPCLOCK

 

 

 

 

OSCIN

 

 

 

 

 

PC6/SCK/ISPCLK

 

 

 

 

 

MCLK

 

42

 

 

 

 

29

 

 

CLRT

 

 

 

 

ISPSEL

 

 

 

 

 

 

J11

 

 

 

ISPSEL

 

38

 

 

 

 

 

PC5/MOSI

 

 

 

 

 

 

 

(HS)PA7

 

 

 

 

28

 

 

RXD

 

 

 

PA7

 

37

 

 

 

 

PC3/ICAP1_B(HS)

 

 

 

 

 

 

(HS)PA6

 

 

 

 

26

 

 

ISPDATA

 

 

 

PA6

 

36

 

 

 

 

PC4/MSO/ISPDATA

 

 

 

 

 

 

(HS)PA5

 

 

 

 

27

 

 

MICRO_TXD

 

CN6

 

PA5

 

35

 

 

 

 

 

 

 

 

 

 

(HS)PA4

 

 

 

 

 

PC2/ICAP2_B(HS)

 

 

 

 

 

12

 

PA4

 

34

 

 

 

 

25

 

 

 

 

 

 

 

PE1/RDI

 

 

 

 

PC1/OCMP1/B

 

 

 

 

 

11

 

RS232_IN

 

1

 

 

 

 

24

 

 

 

 

 

 

 

PB0

 

 

 

 

PC0/OCMP2/B

 

 

 

 

 

10

 

SS

 

2

 

 

ST2334N2

23

 

 

 

 

 

 

 

PB1

 

 

EXTCLK_A(HS)

 

 

 

 

 

7

 

CLRT

 

3

 

 

 

 

20

 

 

 

 

 

 

 

PB2

 

 

 

 

ICAP1_A/PF6(HS)

 

 

 

 

 

6

 

TOUT

 

4

 

 

 

 

19

 

 

 

 

 

 

 

PB3

 

 

 

 

OCMP1_A/PF4

 

 

 

 

 

4

 

REG_OK

 

5

 

 

 

 

18

 

 

 

 

 

 

 

ANI0/PD0

 

 

 

 

PF1/BEEP

 

 

BU

 

 

8

 

H_S

 

7

 

 

 

 

16

 

 

 

 

 

 

ANI3/PD3

 

 

 

 

AN2/PD2

 

 

 

 

 

3

 

WD

 

10

 

 

 

 

9

 

 

 

 

 

 

 

ANI4/PD4

 

 

 

 

AN1/PD1

 

 

 

 

 

5

 

REG/DATA

 

11

 

 

 

 

8

 

 

 

 

 

 

 

ANI5/PD5

 

 

 

 

PB4

 

 

 

 

 

9

 

RXTX

 

12

 

 

 

 

6

 

 

 

 

 

 

 

VDDA

 

 

 

 

VDD_0

 

 

 

 

 

2

 

5V_ P

 

13

 

 

 

 

21

 

 

 

 

 

 

 

PF2

 

 

 

 

5V_ P

 

 

 

 

 

1

 

ZCOUT

 

17

 

 

 

 

22

VSS_0

 

 

 

5V_ P

 

 

 

MCO/PF0

 

 

 

 

VSS_1

 

 

 

 

 

 

PG

 

15

 

 

 

 

33

 

 

 

 

 

 

 

 

VSSA

 

 

 

 

VSS_2

 

 

 

 

 

 

 

 

 

14

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D03IN1450

 

 

 

12/46

 

.surgesorburstsforandnoiseforHz),V~/60 110 or Hz V~/50 (220 voltage mains the for

systemfilteringreliableaandsignalsFSKtransmitted and received the for circuit coupling

efficienthighlyaobtainingmains,thetoboard application the links interface signal line The

2.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

powerandinterfacecouplinglineschematic: board Demonstration .10 Figure

AN1714

13/46

interface coupling Signal

L5 1mH

 

R1 16.2 2W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

supply

ST7538QforboardDemonstration

 

 

 

 

F1 TR5-F 0.5A

 

 

 

 

 

D1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CN1

 

 

 

 

 

 

 

1.5A W04

 

 

 

 

 

TR1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

C1

 

 

 

 

 

L2 220 H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

RADIOHM 69E16H1B

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

47nF

 

 

 

 

 

 

 

 

 

D3

4

D2

 

 

P10V

 

 

 

 

 

 

 

 

 

 

2

 

 

400V

L1 42V15

 

 

 

C2

C3

 

BZW06-

STPS160ASMA

 

 

 

 

 

 

 

 

 

 

 

 

 

ACLINE

 

 

 

 

2 x 10mA

 

 

 

4.7 F

4.7 F

 

 

171

 

 

L3 10 H

 

 

 

CN4

 

 

 

 

 

 

 

85VAC to 256VAC

 

 

 

 

0.3A RADIOHM

 

 

 

400V

400V

 

 

 

7

 

 

 

 

 

ZCIN

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D4

 

 

 

 

J1

CN2

ZCOUT

2

 

 

 

 

 

 

 

 

 

 

 

 

DRAIN

 

 

 

 

 

 

 

STTA106 2

 

C4

C5

 

1

3

 

 

 

 

 

 

 

 

 

L6590

1

VCC

 

 

 

 

 

 

 

 

 

 

C34

470 F

470 F

R2

 

ATOP1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100nF

2.2K

 

4

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

16V

16V

 

2

ATOP2

 

 

 

 

 

 

 

 

 

GND

6

 

 

 

 

C6

 

 

R3 10

D6 1N4148

 

1

 

 

 

D5

 

RXFO

5

 

 

 

 

 

 

 

 

GND

 

 

 

 

 

22 F

 

 

 

 

 

 

 

8

 

 

 

GREEN

 

 

6

 

 

 

 

 

 

 

 

GND

7

U1

 

VFB

 

50V

 

R5 3.3K

RL6 10 D7 1N4148

 

 

 

 

 

 

 

ATO

7

 

 

 

 

 

 

 

 

 

8

 

5

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

R7

 

C10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCOMP

C8

 

 

 

910

 

1 F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5V

 

 

 

 

 

 

 

 

 

 

LC12 10 H

 

 

L4 22 H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L8

 

 

 

 

 

 

 

 

 

T2

 

 

 

 

 

 

 

 

C7

 

 

 

 

 

 

 

10 H

 

C14

 

C15

 

 

 

 

 

D15

 

C11 33nF

CN3

 

 

 

 

 

 

 

2.2nF/Y1

 

 

 

 

 

 

 

C16

 

10 F

 

100nF

 

 

 

 

C_R9

P6KE6V8A

 

220V X2

1

 

 

 

 

 

 

 

 

 

 

 

JP35

 

 

 

100nF

 

 

 

 

 

 

 

JP36

 

 

D17

1T

1T

4.7M

 

 

 

 

 

 

 

 

 

 

 

TEST1

N.C.

 

AVDD

 

VDC

 

 

ATOP2

 

 

 

R10

SM6T6V8A

 

2

 

 

 

 

 

 

 

 

 

CMINUS

 

35

17

28

 

33

 

 

 

21

 

 

 

 

5.1Ω

D16

 

 

 

 

 

 

 

 

 

 

 

 

37

 

 

 

 

ATOP1

 

 

 

 

P6KE6V8A

 

 

 

 

 

 

 

 

 

J2

CD/PD

 

 

CD/PD

1

 

 

 

 

 

 

 

 

19

 

 

 

 

 

 

VAC T60403-

J4

 

 

 

 

 

 

 

 

 

 

RXD

 

 

 

 

 

 

 

 

 

 

 

 

R12

 

C13 220nF

 

4096-X046

P

 

 

 

 

 

 

 

RXD

 

 

 

3

 

 

 

 

 

 

 

 

31

RXFO

 

50K

 

 

 

 

 

J5

 

 

 

 

 

 

 

 

 

 

CPLUS

 

 

 

 

 

 

 

 

 

 

VSENSE

TRIM

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

38

 

 

 

 

 

 

 

 

29

 

 

 

 

 

R11

 

 

 

 

 

 

 

 

 

J3

 

 

 

C_OUT

 

 

 

 

 

 

 

 

 

 

TEST2

JPTIN

C17

R14

 

750

 

 

 

 

 

 

 

 

 

 

C_OUT

 

 

RxTx

40

 

 

 

 

 

 

 

 

30

GND

 

5.6nF/63V

1K

 

 

 

 

 

 

 

 

 

 

 

 

Rx/Tx

 

 

4

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TXD

 

 

 

 

 

 

 

 

 

 

 

 

 

L7

C36

 

 

 

 

 

 

 

 

5V

 

 

5

 

 

 

 

 

 

 

 

 

AVSS

 

 

 

 

 

 

 

 

 

 

 

 

 

TXD

 

REG_OK

 

 

 

 

 

 

 

 

25

 

 

 

 

330 H

4.7nF

 

J6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REG_OK

 

36

 

 

 

 

 

 

 

 

 

 

 

 

C38

 

 

 

 

 

 

 

 

 

 

 

 

PG

 

 

 

 

 

 

 

 

 

 

C21

 

 

 

 

VSENSE

 

 

 

 

 

 

 

 

 

 

 

42

 

 

 

ST7538QP

 

 

 

 

 

 

10 F

 

 

 

 

 

 

 

 

 

 

PG

 

REG_DATA

 

 

 

 

 

22

PAVCC

100nF

 

P10V

 

 

CL

 

 

 

 

 

 

 

 

REG/DATA

 

43

 

 

 

U2

 

 

 

PAVSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R15 4.7K RSTO

 

 

 

 

 

 

 

 

 

 

 

C18 47pF

 

 

 

 

 

 

 

 

 

 

 

 

RESET

12

 

 

 

 

 

 

 

 

 

XIN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C22

 

 

 

GND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SW1

 

 

41

 

 

 

 

 

 

 

 

 

 

1x

SOLD CRYSTAL CASE

J7

 

 

 

 

 

 

 

 

 

22nF

 

 

 

 

 

 

 

 

 

 

 

 

 

XOUT

16MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TO GND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DVDD

 

 

 

 

 

 

 

 

 

26

 

 

C33

 

 

 

 

 

 

 

 

 

5V

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DVSS

 

 

 

 

 

 

 

 

 

RAI

 

C19 18pF

 

10nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C20

 

 

 

18

 

 

 

 

 

 

 

 

32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DVSS

 

 

 

 

 

 

 

 

ZCOUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

300nF

 

 

 

2

 

 

 

 

 

 

 

 

15

ZCOUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIMEOUT

 

 

 

 

 

 

 

 

WD

 

 

 

 

 

 

 

 

 

 

 

 

 

TIMEOUT

 

7

 

 

 

 

 

 

 

 

14

WD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLRT

 

 

 

 

 

 

 

 

CL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLRT

 

 

8

 

 

 

 

 

 

 

 

23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BU

 

 

 

 

 

 

 

 

ATO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BU

 

 

9 11

39

34

44

13

 

16

24

ATO

 

 

C37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R13

 

 

 

 

 

 

 

 

 

 

 

 

MCLK

 

 

 

 

MCLK

N.C.

N.C.

N.C.

TEST3

 

ZCIN

 

 

 

100pF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JP13

 

JP16

 

 

TRIM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5V

 

 

 

 

 

 

 

 

D03IN1451

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Demonstration board for ST7538Q

AN1714

 

 

It is possible to implement different topologies of coupling circuits. A first classification is between an isolated solution with a line transformer or a double capacitor and a nonisolated solution with a single high-voltage decoupling capacitor. The last one is simpler and cheaper, while the first one achieves better performances using efficiently the differential power output of the devices.

The differential solution has been also preferred for the advantage in reducing the even harmonics of the transmitted signals.

Figure 11. Demonstration board ST7538Q powerline interface

Q

 

Rx Band Pass Filter

 

 

ST7538

 

 

 

 

C33

R11

 

 

 

RAI

32

 

 

 

 

 

 

 

 

 

 

L7

 

 

 

 

C36

 

 

 

 

 

 

 

Tx Band Pass Filter

 

 

 

 

L4

C11

ATOP1

19

 

 

1:1

 

 

C13

R10

D16

MAINS

 

D17

 

 

 

 

 

 

 

 

 

 

R8

 

 

CR9

D15

 

 

 

21

 

 

 

ATOP2

LC12

 

T1

 

 

 

Protections

 

 

Tx Band Pass Filter

 

 

 

 

 

In the design of the coupling interface many technical and standard constraints have to be considered that are different in a receiving condition with respect to a transmitting status.

Following is a list of design specifications for signal coupling for the European market:

High selectivity in receiving mode (EN50065-2-1)

Output impedances as great as possible (EN50065-7)

Low noise in receiving mode

Wide voltage and current signal compatibility in every condition (EN50065-1)

Very low distortion in transmission mode (EN50065-1)

High coupling efficiency in transmission mode (also with high loads)

High reliability to burst and surge spikes (EN50065-2-1)

A series of constraints listed in EN50065-4-2, "Low voltage decoupling filters - Safety requirements", have to be guaranteed by the decoupling elements (transformer or capacitors) in order to be compliant with a 4 kV or 6 kV class.

The solution implemented in the demonstration board is an isolated circuit with a 1:1 transformer and a X2 class capacitor. In the chosen topology the transmission sections components do not have any relevant influences on the receiving circuits, so the two structures can be analyzed separately. The component values that consitute the passive filters have been dimensioned for the 132.5 kHz channel, but also with the 110 kHz communication frequency, the performances of the board meet the requirement for reliable communication.

14/46

Loading...
+ 32 hidden pages