Designing with the L5972D high efficiency DC-DC converter
Introduction
The L5972D is a step-down monolithic power switching regulator capable of delivering up to
2 A at output voltages from 1.235 V to 35 V. The operating input voltage ranges from 4.4 V to
36 V. It has been designed using BCDV technology and the power switching element is
implemented through a P-channel DMOS transistor. It does not require a bootstrap
capacitor, and the duty cycle can range up to 100%. An internal oscillator fixes the switching
frequency at 250 kHz. This minimizes the LC output filter.
Pulse-by-pulse and frequency foldback over-current protection offer effective protection
against short-circuit. Other features are voltage feed-forward, protection against feedback
disconnection, and thermal shutdown. The device is housed in a thermally improved SO-8
package (with 4 pins connected to GND so that the thermal resistance junction-to-ambient
is reduced to approximately one-half compared with a standard SO-8 package.
Ground. Lead connected directly to the frame in order to reduce the junction-to-ambient
thermal resistance.
3GND
Ground. Lead connected directly to the frame in order to reduce the junction-to-ambient
thermal resistance.
4 COMP E/A output to be used for frequency compensation.
Step-down feedback input. Connecting the output voltage directly to this pin results in
5FB
an output voltage of 1.235 V. An external resistor divider is required for higher output
voltages (the typical value for the resistor connected between this pin and ground is
4.7 k).
6GND
7GND
8V
Ground. Lead connected directly to the frame in order to reduce the junction-to-ambient
thermal resistance.
Ground. Lead connected directly to the frame in order to reduce the junction-to-ambient
thermal resistance.
Unregulated DC input voltage.
CC
Figure 4.Block diagram
VOLTAGES
MONITOR
PWM
+
-
THERMAL
SHUTDOWN
SUPPLY
1.235V 3.5V
PEAK TO PEAK
CURRENT LIMIT
DCkQ
GND
COMP
FB
GND
TRIMMING
1.235V
E/A
-
+
OSCILLATOR
DRIVER
FREQUENCY
SHIFTER
VCC
V
REF
BUFFER
LPDMOS
POWER
GND
GNDOUT
AM00028v1
5/29
Functional descriptionAN1517
2 Functional description
The main internal blocks are shown in the device block diagram in Figure 4. They are:
●A voltage regulator that supplies the internal circuitry. From this regulator, a 3.3 V
reference voltage is externally available.
●A voltage monitor circuit which checks the input and internal voltages.
●A fully integrated sawtooth oscillator with a frequency of 250 kHz ±15%, including also
the voltage feed-forward function and an input/output synchronization pin.
●Two embedded current limitation circuits which control the current that flows through
the power switch. The pulse-by-pulse current limit forces the power switch OFF cycle
by cycle if the current reaches an internal threshold, while the frequency shifter reduces
the switching frequency in order to significantly reduce the duty cycle.
●A transconductance error amplifier.
●A pulse width modulation (PWM) comparator and the relative logic circuitry necessary
to drive the internal power.
●A high-side driver for the internal P-MOS switch.
●A circuit to implement the thermal protection function.
2.1 Power supply and voltage reference
The internal regulator circuit (shown in Figure 5) consists of a start-up circuit, an internal
voltage Preregulator, the Bandgap voltage reference and the Bias block that provides
current to all the blocks.
The Starter gives the start-up currents to the entire device when the input voltage goes high
and the device is enabled (inhibit pin connected to ground).
The Preregulator block supplies the Bandgap cell with a preregulated voltage V
a very low supply voltage noise sensitivity.
2.2 Voltages monitor
An internal block continuously senses the VCC, V
their thresholds, the regulator begins operating. There is also a hysteresis on the V
(UVLO).
and VBG. If the voltages go higher than
REF
REG
that has
CC
6/29
AN1517Functional description
Figure 5.Internal regulator circuit
V
CC
2.3 Oscillator
Figure 6 shows the block diagram of the oscillator circuit.
The Clock Generator provides the switching frequency of the device, which is internally fixed
at 250 kHz. The Frequency Shifter block acts to reduce the switching frequency in case of
strong over-current or short-circuit. The clock signal is then used in the internal logic
circuitry and is the input of the Ramp Generator.
The Ramp Generator circuit provides the sawtooth signal, used to for PWM control and the
internal voltage feed-forward.
Figure 6.Oscillator circuit block diagram
STARTER
PREREGULATOR
VREG
BANDGAP
IC BIAS
VREF
AM00006v1
2.4 Current protection
The L5973AD has two types of current limit protection: pulse-by-pulse and frequency
foldback.
The schematic of the current limitation circuitry for the pulse-by-pulse protection is shown in
Figure 7. The output power PDMOS transistor is split into two parallel PDMOS transistors.
The smallest one includes a resistor in series, R
R
switched off until the next falling edge of the internal clock pulse.
and if it reaches the threshold, the mirror becomes unbalanced and the PDMOS is
SENSE
FREQUENCY
Ibias_osc
GENERATOR
FREQUENCY
SHIFTER
SHIFTER
CLOCK
CLOCK
GENERATOR
RAMP
RAMP
GENERATOR
GENERATOR
SYNCHRONIZATOR
SYNCHRONIZER
. The current is sensed through
SENSE
CLOCK
RAMP
SYNC
t
AM00007v1
7/29
Functional descriptionAN1517
Due to this reduction of the ON time, the output voltage decreases.
Since the minimum switch ON time (necessary to avoid a false over-current signal) is too
short to obtain a sufficiently low duty cycle at 250 kHz, the output current, in strong overcurrent or short-circuit conditions, could increase again. For this reason the switching
frequency is also reduced, thus keeping the inductor current under its maximum threshold.
The Frequency Shifter (Figure 6) functions based on the feedback voltage. As the feedback
voltage decreases (due to the reduced duty cycle), the switching frequency decreases also.
Figure 7.Current limitation circuitry
VCC
DRIVER
OUT
A1/A2=95
PWM
RSENSE
A1
A2
I
OFF
II
RTH
I
NOT
AM00008v1
L
2.5 Error amplifier
The voltage error amplifier is the core of the loop regulation. It is a transconductance
operational amplifier whose non inverting input is connected to the internal voltage
reference (1.235 V), while the inverting input (FB) is connected to the external divider or
directly to the output voltage. The output (COMP) is connected to the external compensation
network. The uncompensated error amplifier has the following characteristics:
The error amplifier output is compared with the oscillator sawtooth to perform PWM control.
2.6 PWM comparator and power stage
This block compares the oscillator sawtooth and the error amplifier output signals
generating the PWM signal for the driving stage.
The power stage is a highly critical block, as it functions to guarantee a correct turn ON and
turn OFF of the PDMOS. The turn ON of the power element, or more accurately, the rise
time of the current at turn ON, is a very critical parameter. At a first approach, it appears that
8/29
AN1517Functional description
the faster the rise time, the lower the turn ON losses. However, there is a limit introduced by
the recovery time of the recirculation diode.
In fact, when the current of the power element is equal to the inductor current, the diode
turns OFF and the drain of the power is able to go high. But during its recovery time, the
diode can be considered a high value capacitor and this produces a very high peak current,
responsible for many problems:
●Spikes on the device supply voltage that cause oscillations (and thus noise) due to the
board parasitics
●Turn ON over-current leads to a decrease in the efficiency and system reliability
●Major EMI problems
●Shorter freewheeling diode life
The fall time of the current during the turn OFF is also critical, as it produces voltage spikes
(due to the parasitics elements of the board) that increase the voltage drop across the
PDMOS.
In order to minimize these problems, a new driving circuit topology has been used and the
block diagram is shown in Figure 8. The basic idea is to change the current levels used to
turn the power switch ON and OFF, based on the PDMOS and the gate clamp status.
This circuitry allows the power switch to be turned OFF and ON quickly and addresses the
freewheeling diode recovery time problem. The gate clamp is necessary to avoid that V
the internal switch goes higher than V
max. The ON/OFF Control block protects against
GS
GS
of
any cross conduction between the supply line and ground.
Figure 8.Driving circuitry
Vgs
STOP
DRIVE
DRAIN
2.7 Thermal shutdown
The Thermal Shutdown block generates a signal that turns OFF the power stage if the
temperature of the chip goes higher than a fixed internal threshold (150 °C). The sensing
element of the chip is very close to the PDMOS area, ensuring fast and accurate
temperature detection. A hysteresis of approximately 20 °C avoids that the device turns ON
and OFF continuously.
max
CLAMP
ON/OFF
CONTROL
GATE
OFF
ON
I
OFF
DRAIN
I
ON
VCC
PDMOS
ESR
C
VOUT
AM00009v1
I
LOAD
L
9/29
Loading...
+ 20 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.