ST AN1517 APPLICATION NOTE

ST AN1517 APPLICATION NOTE

AN1517

Application note

Designing with the L5972D high efficiency DC-DC converter

Introduction

The L5972D is a step-down monolithic power switching regulator capable of delivering up to 2 A at output voltages from 1.235 V to 35 V. The operating input voltage ranges from 4.4 V to 36 V. It has been designed using BCDV technology and the power switching element is implemented through a P-channel DMOS transistor. It does not require a bootstrap capacitor, and the duty cycle can range up to 100%. An internal oscillator fixes the switching frequency at 250 kHz. This minimizes the LC output filter.

Pulse-by-pulse and frequency foldback over-current protection offer effective protection against short-circuit. Other features are voltage feed-forward, protection against feedback disconnection, and thermal shutdown. The device is housed in a thermally improved SO-8 package (with 4 pins connected to GND so that the thermal resistance junction-to-ambient is reduced to approximately one-half compared with a standard SO-8 package.

Figure 1. Demonstration board

L5972D (SO-8) Board dimensions: 23 x 20 mm

Figure 2. Package

Figure 3. Pin connection

 

 

OUT

1

8

VCC

 

SYNC

2

7

GND

 

INH

3

6

VREF

 

COMP

4

5

FB

 

SO-8

 

AM00004v1

 

 

 

 

 

May 2008

Rev 2

 

 

1/29

www.st.com

Contents

AN1517

 

 

Contents

1

Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 5

 

1.1

Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

2

Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

 

2.1

Power supply and voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

 

2.2

Voltages monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

 

2.3

Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

2.4

Current protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

2.5

Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

 

2.6

PWM comparator and power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

 

2.7

Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

3

Additional features and protection . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

3.1 Feedback disconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Output over-voltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Zero load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4

Closing the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

4.1

Error amplifier and compensation network . . . . . . . . . . . . . . . . . . . . . . . .

11

 

4.2

LC filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

4.3

PWM comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

5

Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

5.1

Component selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

 

5.1.1

Input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

 

5.1.2

Output capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

 

5.1.3

Inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

5.2 Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.3 Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.4 Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.5 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6

Application ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

2/29

AN1517

 

 

Contents

 

 

 

 

 

6.1

Positive buck-boost regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 24

7

Buck-boost regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 24

 

7.1

Dual output voltage with auxiliary winding . . . . . . . . . . . . . . . . . . . .

. . . . 25

8

Compensation network with MLCC (multiple layer ceramic capacitor) at

 

the output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 26

 

8.1

External soft-start network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 26

9

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 28

3/29

List of figures

AN1517

 

 

List of figures

Figure 1. Demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2. Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 3. Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 4. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 5. Internal regulator circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 6. Oscillator circuit block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 7. Current limitation circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 8. Driving circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 9. Block diagram of the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 10. Error amplifier equivalent circuit and compensation network . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 11. Module plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 12. Phase plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 13. Layout example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 14. Short-circuit current VIN = 25 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 15. Short-circuit current VIN = 30 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 16. Demonstration board application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 17. PCB layout (component side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 18. PCB layout (bottom side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 19. PCB layout (front side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 20. Junction temperature vs. output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 21. Junction temperature vs. output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 22. Junction temperature vs. output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 23. Efficiency vs. output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 24. Positive buck-boost regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 25. Buck-boost regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 26. Dual output voltage with auxiliary winding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 27. MLCC compensation network example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 28. Soft-start network example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4/29

AN1517

Pin functions

 

 

1 Pin functions

1.1Pin description

Table 1.

Pin description

N.

Name

Description

 

 

 

1

OUT

Regulator output.

 

 

 

2

GND

Ground. Lead connected directly to the frame in order to reduce the junction-to-ambient

thermal resistance.

 

 

 

 

 

3

GND

Ground. Lead connected directly to the frame in order to reduce the junction-to-ambient

thermal resistance.

 

 

 

 

 

4

COMP

E/A output to be used for frequency compensation.

 

 

 

 

 

Step-down feedback input. Connecting the output voltage directly to this pin results in

5

FB

an output voltage of 1.235 V. An external resistor divider is required for higher output

voltages (the typical value for the resistor connected between this pin and ground is

 

 

 

 

4.7 k).

 

 

 

6

GND

Ground. Lead connected directly to the frame in order to reduce the junction-to-ambient

thermal resistance.

 

 

 

 

 

7

GND

Ground. Lead connected directly to the frame in order to reduce the junction-to-ambient

thermal resistance.

 

 

 

 

 

8

VCC

Unregulated DC input voltage.

Figure 4. Block diagram

 

 

 

 

 

VCC

 

 

TRIMMING

VOLTAGES

 

 

 

 

MONITOR

 

 

VREF

 

 

 

 

 

 

GND

 

 

 

 

SUPPLY

 

 

 

 

 

 

 

BUFFER

 

 

 

 

THERMAL

 

 

 

 

 

 

 

SHUTDOWN

1.235V 3.5V

 

 

 

GND

 

 

 

 

 

 

 

 

 

 

 

PEAK TO PEAK

 

 

 

COMP

 

 

 

CURRENT LIMIT

 

 

 

FB

-

E/A

PWM

 

 

 

 

 

D Q

 

 

 

 

+

 

+

 

 

 

 

 

-

Ck

DRIVER

 

 

1.235V

 

 

 

 

 

 

 

 

 

LPDMOS

 

 

 

 

 

 

POWER

 

GND

 

OSCILLATOR

FREQUENCY

 

 

 

SHIFTER

 

 

 

 

 

 

 

 

 

 

 

 

GND

OUT

AM00028v1

 

5/29

Functional description

AN1517

 

 

2 Functional description

The main internal blocks are shown in the device block diagram in Figure 4. They are:

A voltage regulator that supplies the internal circuitry. From this regulator, a 3.3 V reference voltage is externally available.

A voltage monitor circuit which checks the input and internal voltages.

A fully integrated sawtooth oscillator with a frequency of 250 kHz ±15%, including also the voltage feed-forward function and an input/output synchronization pin.

Two embedded current limitation circuits which control the current that flows through the power switch. The pulse-by-pulse current limit forces the power switch OFF cycle by cycle if the current reaches an internal threshold, while the frequency shifter reduces the switching frequency in order to significantly reduce the duty cycle.

A transconductance error amplifier.

A pulse width modulation (PWM) comparator and the relative logic circuitry necessary to drive the internal power.

A high-side driver for the internal P-MOS switch.

A circuit to implement the thermal protection function.

2.1Power supply and voltage reference

The internal regulator circuit (shown in Figure 5) consists of a start-up circuit, an internal voltage Preregulator, the Bandgap voltage reference and the Bias block that provides current to all the blocks.

The Starter gives the start-up currents to the entire device when the input voltage goes high and the device is enabled (inhibit pin connected to ground).

The Preregulator block supplies the Bandgap cell with a preregulated voltage VREG that has a very low supply voltage noise sensitivity.

2.2Voltages monitor

An internal block continuously senses the VCC, VREF and VBG. If the voltages go higher than their thresholds, the regulator begins operating. There is also a hysteresis on the VCC (UVLO).

6/29

AN1517

Functional description

Figure 5. Internal regulator circuit

 

VCC

 

STARTER

PREREGULATOR

 

VREG

 

BANDGAP

IC BIAS

VREF

AM00006v1

2.3Oscillator

Figure 6 shows the block diagram of the oscillator circuit.

The Clock Generator provides the switching frequency of the device, which is internally fixed at 250 kHz. The Frequency Shifter block acts to reduce the switching frequency in case of strong over-current or short-circuit. The clock signal is then used in the internal logic circuitry and is the input of the Ramp Generator.

The Ramp Generator circuit provides the sawtooth signal, used to for PWM control and the internal voltage feed-forward.

Figure 6. Oscillator circuit block diagram

FREQUENCY

 

 

FREQUENCY

 

 

SHIFTER

 

 

SHIFTER

 

CLOCK

 

 

t

Ibias_osc

 

 

CLOCK

RAMPP

 

CLOCK

 

GENERATOR

GENERATOR

 

GENERATOR

GENERATOR

RAMP

 

 

 

SYNCHRONIZATORSYNCHRONIZER

SYNC

 

 

AM00007v1

2.4Current protection

The L5973AD has two types of current limit protection: pulse-by-pulse and frequency foldback.

The schematic of the current limitation circuitry for the pulse-by-pulse protection is shown in Figure 7. The output power PDMOS transistor is split into two parallel PDMOS transistors. The smallest one includes a resistor in series, RSENSE. The current is sensed through

RSENSE and if it reaches the threshold, the mirror becomes unbalanced and the PDMOS is switched off until the next falling edge of the internal clock pulse.

7/29

Functional description

AN1517

 

 

Due to this reduction of the ON time, the output voltage decreases.

Since the minimum switch ON time (necessary to avoid a false over-current signal) is too short to obtain a sufficiently low duty cycle at 250 kHz, the output current, in strong overcurrent or short-circuit conditions, could increase again. For this reason the switching frequency is also reduced, thus keeping the inductor current under its maximum threshold. The Frequency Shifter (Figure 6) functions based on the feedback voltage. As the feedback voltage decreases (due to the reduced duty cycle), the switching frequency decreases also.

Figure 7. Current limitation circuitry

VCC

 

 

 

RSENSE

 

 

RTH

IOFF

 

 

 

DRIVER

 

 

 

A1

A2

 

IL

OUT

 

 

 

A1/A2=95

 

 

NOT

 

I

I

 

 

PWM

AM00008v1

2.5Error amplifier

The voltage error amplifier is the core of the loop regulation. It is a transconductance operational amplifier whose non inverting input is connected to the internal voltage reference (1.235 V), while the inverting input (FB) is connected to the external divider or directly to the output voltage. The output (COMP) is connected to the external compensation network. The uncompensated error amplifier has the following characteristics:

Table 2.

Uncompensated error amplifier characteristics

 

Description

Values

 

 

 

 

Transconductance

2300 µS

 

 

 

Low frequency gain

 

65 dB

 

 

 

Minimum sink/source voltage

1500

µA/300 µA

 

 

 

Output voltage swing

0.4

V/3.65 V

 

 

 

 

Input bias current

2.5 µA

 

 

 

 

The error amplifier output is compared with the oscillator sawtooth to perform PWM control.

2.6PWM comparator and power stage

This block compares the oscillator sawtooth and the error amplifier output signals generating the PWM signal for the driving stage.

The power stage is a highly critical block, as it functions to guarantee a correct turn ON and turn OFF of the PDMOS. The turn ON of the power element, or more accurately, the rise time of the current at turn ON, is a very critical parameter. At a first approach, it appears that

8/29

AN1517

Functional description

 

 

the faster the rise time, the lower the turn ON losses. However, there is a limit introduced by the recovery time of the recirculation diode.

In fact, when the current of the power element is equal to the inductor current, the diode turns OFF and the drain of the power is able to go high. But during its recovery time, the diode can be considered a high value capacitor and this produces a very high peak current, responsible for many problems:

Spikes on the device supply voltage that cause oscillations (and thus noise) due to the board parasitics

Turn ON over-current leads to a decrease in the efficiency and system reliability

Major EMI problems

Shorter freewheeling diode life

The fall time of the current during the turn OFF is also critical, as it produces voltage spikes (due to the parasitics elements of the board) that increase the voltage drop across the PDMOS.

In order to minimize these problems, a new driving circuit topology has been used and the block diagram is shown in Figure 8. The basic idea is to change the current levels used to turn the power switch ON and OFF, based on the PDMOS and the gate clamp status.

This circuitry allows the power switch to be turned OFF and ON quickly and addresses the freewheeling diode recovery time problem. The gate clamp is necessary to avoid that VGS of the internal switch goes higher than VGSmax. The ON/OFF Control block protects against any cross conduction between the supply line and ground.

Figure 8. Driving circuitry

 

VCC

 

Vgsmax

 

 

 

IOFF

 

CLAMP

GATE

 

 

PDMOS

 

 

DRAIN

VOUT

 

 

STOP

L

 

OFF

 

ON/OFF

ILOAD

 

DRIVE CONTROL

ESR

 

DRAIN

ON

 

C

 

 

 

 

ION

 

 

 

AM00009v1

2.7Thermal shutdown

The Thermal Shutdown block generates a signal that turns OFF the power stage if the temperature of the chip goes higher than a fixed internal threshold (150 °C). The sensing element of the chip is very close to the PDMOS area, ensuring fast and accurate temperature detection. A hysteresis of approximately 20 °C avoids that the device turns ON and OFF continuously.

9/29

Loading...
+ 20 hidden pages