The L4978 is a 2A monolithic dc-dc converter, step- down , operating at fix frequency continuous mode.
It is realised in BCD60 II technology, and it’s available in two plastic packages, MINIDIP and
SO16L.
One direct fixed output voltage at 3.3V ±1% is available, adjustable for higher output voltage
values, till 40V, by an external voltage divider.
The operating input supply voltage ranges from 8V to 55V, while the absolute value, with no
load, is 60V.
New internal design solutions and superior technology performance allow to generate a device
with improved efficiency in all the operating conditions and with reduced EMI due to an innovative internal driving circuit, and reduced external component counts.
While internal limiting current and thermal shutdown are today considered standard protection
functions, mandatory for a safe load supply, oscillator with voltage feedforward improves line
regulation and overall control loop.
Soft-start avoids output overvoltages at turn-on, while, shorting this pin to ground, the device
is completely disabled, going into zero consumption state.
Figure 1.
AN1061/0505
Rev. 9
1/21
AN1061 APPLICATION NOTE
2DEVICE DESCRIPTION
For a better understanding of the device and its working principles, a short description of the
main building blocks is given here below, with packaging options and complete block diagram.
Figure 1 shows the two packaging options, with the pin function assignments.
Figure 2. Pins Connection.
GND
SS_INH
OSC
OUT
1
2
3
4VCC
D97IN595
Figure 3. Block Diagram
THERMAL
SHUTDOWN
FB
2
INHIBITSOFTSTART
7
8
3.3V
E/A
OSCILLATOR
SS_INH
COMP
7
6
5
VOLTAGES
MONITOR
PWM
FB8
COMP
BOOT
3.3V
INTERNAL
REFERENCE
R
Q
S
N.C.
SUPPLY
2
3
4
5
6
7
8
D97IN596
5.1V
DRIVE
GND
SS_INH
OSC
OUT
OUT
N.C.
N.C.N.C.
INTERNAL
16
15
14
13
12
11
10
9
VCC
5
CBOOT
CHARGE
CBOOT
CHARGE
AT LIGHT
LOADS
N.C.1
N.C.
FB
COMP
BOOT
VCC
N.C.
6
BOOT
3
OSCGNDOUT
1
4
D97IN594
3POWER SUPPLY & VOLTAGE REFERENCE
The device is provided with an internal stabilised power supply (of about 12V typ. ) that powers
the analog and digital control blocks and the bootstrap section.
From this preregulator, a 3.3V reference voltage ±2%, is internally available.
Oscillator and voltage feedforward.
Just one pin is necessary to implement the oscillator function, with inherent voltage feedfor-
ward.
2/21
Figure 4. Oscillator Internal Circuit.
V
CC
AN1061 APPLICATION NOTE
R
OSC
C
OSC
TO PWM
COMPARATOR
Osc
Q
1
5R
-
+
Q
R
2
1V
CLOCK
D97IN655A
A resistor Rosc and a capacitor Cosc connected as shown in Figure 4, allow the setting of the
desired switching frequency in agreement with the below formula:
The oscillator capacitor, Cosc, is discharged by an internal mos transistor with 100W of Rdson
(Q1) and during this period the internal threshold is set at 1V by a second mos, Q2 . When the
oscillator voltage capacitor reaches the 1V threshold, the output comparator turns off the mos
Q1 and turns on the mos Q2, restarting the Cosc charge.
The oscillator block, shown in figure 5, generates a sawtooth wave signal that sets the switching frequency of the system.
Figure 5. Switching frequency vs. Rosc and Cosc.
fsw
(KHz)
500
200
100
50
20
10
5
020406080R2(KΩ)
0.82nF
1.2nF
2.2nF
3.3nF
5.6nF
D97IN630
Tamb=25˚C
4.7nF
This signal, compared with the output of the error amplifier, generates the PWM signal that will
modulate the conduction time of the power output stage.
The way the oscillator has been integrated,does not require additional external components to
benefit of the voltage feedforward function.
3/21
AN1061 APPLICATION NOTE
The oscillator peak-to-valley voltage is proportional to the supply voltage, and the voltage
feedforward is operative from 8V to 55V of input supply.
osc
VCC1–
--------------------=
6
∆V
Also the ∆V/∆t of the sawtooth is directly proportional to the supply voltage. As Vcc increases,
the Ton time of the power transistor decreases in such a way to provide to the chocke, and
finally also the load, the product Voltxsec constant.
Figure 6 shows how the duty cycle varies as a result of the change on the ∆V/∆t of the sawtooth
with the Vcc.
Figure 6. Voltage Feedforward Function
V1
V2-3
D97IN684
Vi=30V
Vi=15V
Vc
t
Vi=30V
Vi=15V
t
The output of the error amplifier doesn’t change in order to maintain the output voltage constant and in regulation.
With this function on board, the output response time is greatly reduced in presence of an
abrupt change on the supply voltage, and the output ripple voltage at the mains frequency is
greatly reduced too.
In fact, the slope of the ramp is modulated by the input ripple voltage, generally present in the
order of some tens of Volt, for both off-line and dc-dc converters using mains transformers.
The charge and discharge time are approximable to:
6
In
-- -
5
T
ch
⋅⋅=
R
oscCosc
T
100 C
dis
⋅=
osc
The maximum duty cycle is a function of Tch, Tdis and an internal delay and is expressed by
the equation:
Figure 7. Maximum Duty Cycle vs Rosc and Cosc as Parameter
D
max
0.90
0.80
0.70
0.60
5.3nF
4.7nF
2.2nF
1.2nF
0.8nF
0 4 8 121620242832R
D97IN685
OSC
(KΩ)
3.1 Current Protection
The L4978 has two current limit levels, pulse by pulse and hiccup modes.
Increasing the output current till the pulse by pulse limiting current threshold (Ith1 typ. value of
3A) the controller reduces the on-time till the value of TB = 300ns that is a blanking time in
which the current limit protection does not trigger. This minimun time is necessary to avoid undesirable intervention of the protection due to the spike current generated during the recovery
time of the freewheeling diode.
In this condition, because of this fixed balnking time, the output current is given by:
Where Ro is the load resistance, Vf is the diode forward voltage. RD and RL are the series
resistance of,
respectively, the freewheeling diode and the choke.
Typical output characteristics are represented in figure 8 and 9.
In fig 8, the pulse by pulse protection is sufficient to limit the current.
In fig 9 the pulse by pulse protection is no more effective to limit the current due to the minimun
Ton fixed by the blanking time TB, and the hiccup protection intervenes because the output
peak current reachs the relative threshold.
At the pulse by pulse intervention (point A) the output voltage drops because of the Ton reduction, and the current is almost constant. Going versus the short circuit condition, the current is
only limited by the series resistances RD and RL (see relation above) and could reach the hiccup threshold (point B), set 20% higher than the pulse by pulse. Once the hiccup limiting current is operating, in output short circuit
condition, the delivered average output current
decreases dramatically at very low values (point C).
Figure 10. Current Limit internal schematic circuit.
Q
S
OSC
R
V
Th1
+
-
V
Th2
+
-
V
CC
12V
OUT
C
SS
OSC
VFB
PWM
+-
VREF
+-
HICCUP
THERMAL
UNDERVOLTAGE
D97IN658
SOFT START
LATCH
Q
S
R
+
-
0.4
Figure 10 shows the internal current limiting circuitry. Vth1 is the pulse by pulse while Vth2 is
the hiccup threshold.
The sense resistor is in series with a small mos realised as a partition of the main DMOS.
The Vth2 comparator (20% higher than Vth1) sets the soft start latch, initialising the discharge
of the soft start capacitor with a constant current (about 22µA). Reaching about 0.4V, the valley
comparator resets the soft start latch, restarting a new recharge cycle.
Figure 11 Shows the typical waveforms of the current in the output inductor and the soft start
voltage (pin 2).
Figure 11. Output current and soft-start voltage
6/21
AN1061 APPLICATION NOTE
Figure 12. Maximum Soft Start
Capacitance with f
L
(µH)
fsw=100KHz
400
300
200
100
0
15 20 25 30 35 40 45 50 V
680nF
SW
= 100kHz
D97IN745
470nF
330nF
220nF
100nF
(V)
CCmax
Figure 13. Maximum Soft Start
Capacitance with fSW = 200kHz
L
(µH)
300
200
100
0
15 20 25 30 35 40 45 50 VCCmax(V)
fsw=200KHz
D97IN746
56nF
47nF
33nF
22nF
During the recharging of the soft start capacitor, the Ton increases gradually and, if the short
circuit is still present, when Ton>T
and the output peak current reachs the threshold, the hic-
B
cup protection intervenes again. So, the value of the soft start capacitor must not be too high
(in this case the Ton increases slowly thus taking much time to reach the T
value) to avoid
B
that during the soft start slope the current exceeds the limit before the protection activation.
The folllowing diagrams of Figure 12 and Figure 13 show the maximum allowed soft-start ca-
pacitor as a function of the input voltage, inductor value and switching frequency. A minimun
value of the soft start capacitance is necessary to guarantee, in short circuit condition, the
functionality of the limiting current circuitry. Infact, with a capacitor too small, the frequency of
the current peaks (see figure 11) is high and the mean current value in short circuit increases.
3.2 Soft Start and Inhibit functions.
The soft start and the inhibit functions are realised using one pin only, pin2. Soft-start is requested to inizialise all internal functions with a correct start-up of the system without overstressing the power stage, avoiding the intervention of the current protection, and having an
output voltage rising smoothly without output overshoots.
At Vcc Turn-on or having had an intervention of inhibit function, an initial 5µA internal current
generator starts to charge the soft-start capacitor, from 0V to about 1.8V. From this hysteretic
threshold, a 40µA current generator is activated, putting in off state the previous generator.
At this point, the output PWM starts, initiating the rising phase of the output voltage.
The soft-start capacitor is quickly discharged in case of:
■ Thermal protection intervention
■ Hiccup limiting current condition
■ Supply voltage lower than UVLO off threshold.
The soft-start and inhibit schematic diagram is shown in figure 14.
7/21
Loading...
+ 14 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.