ST ACST6 User Manual

ACST6
Overvoltage protected AC switch
Features
Triac with overvoltage protection
Low I
TO-220FPAB insulated package: 1500 V rms
(< 10 mA)
Benefits
Enables equipment to meet IEC 61000-4-5
High off-state reliability with planar technology
Needs no external overvoltage protection
Reduces the power passive component count
High immunity against fast transients
described in IEC 61000-4-4 standards
Applications
AC mains static switching in appliance and
industrial control systems
Drive of medium power AC loads such as:
– Universal motor of washing machine drum – Compressor for fridge or air conditioner
OUT
G
OUT
COM
TO-220AB
ACST610-8T
OUT
G
COM
TO-220FPAB
ACST610-8FP
OUT
D²PAK
ACST610-8G
ACST610-8R

Figure 1. Functional diagram

OUT
G
OUT
COM
G
OUT
COM
I²PAK
Description
The ACST6 series belongs to the ACS™/ACST power switch family built with A.S.D. specific discrete) technology. This high performance device is suited to home appliances or industrial systems, and drives loads up to 6 A.
This ACST6 switch embeds a Triac structure and a high voltage clamping device able to absorb the inductive turn-off energy and withstand line transients such as those described in the IEC 61000-4-5 standards. The ACST610 needs only low gate current to be activated (I
< 10 mA) and still shows a high noise
GT
immunity complying with IEC standards such as IEC 61000-4-4 (fast transient burst test).
July 2010 Doc ID 7297 Rev 10 1/15
®
(application
G
COM

Table 1. Device summary

Symbol Value Unit
I
T(RMS)
V
DRM/VRRM
I
GT
6A
800 V
10 mA
TM: ACS is a trademark of STMicroelectronics. ®: A.S.D. is a registered trademark of STMicroelectronics
www.st.com
15
Characteristics ACST6

1 Characteristics

Table 2. Absolute ratings (limiting values)

Symbol Parameter Value Unit
TO-220FPAB T
TO-220AB/
2
I
T(RMS)
I
TSM
I
dI/dt
V
P
G(AV)
P
I
GM
T
V
INS(RMS)
On-state rms current (full sine wave)
Non repetitive surge peak on-state current Tj initial = 25 °C, ( full cycle sine wave)
2
tI2t for fuse selection tp = 10 ms 13 A2s
Critical rate of rise on-state current
= 2 x I
I
G
Non repetitive line peak pulse voltage
PP
GT, (tr
100 ns)
(1)
Average gate power dissipation Tj = 125 °C 0.1 W
Peak gate power dissipation (tp = 20 µs) Tj = 125 °C 10 W
GM
Peak gate current (tp = 20 µs) Tj = 125 °C 1.6 A
Storage temperature range -40 to +150 °C
stg
T
Operating junction temperature range -40 to +125 °C
j
Maximum lead solder temperature during 10 ms (at 3 mm from plastic case) 260 °C
T
l
Insulation rms voltage
1. According to test described in IEC 61000-4-5 standard and Figure 19.

Table 3. Electrical characteristics

D
PA K / I2PA K
D2PA K w i t h
2
copper
1cm
F = 60 Hz t
F = 50 Hz t
F = 120 Hz T
TO-220FPAB
= 92 °C
c
6
= 106 °C
T
c
= 62 °C 1.5
T
amb
= 16.7 ms 47 A
p
= 20 ms 45 A
p
= 125 °C 100 A/µs
j
Tj = 25 °C 2 kV
1500 V
A
Symbol Test conditions Quadrant T
(1)
I
GT
V
V
I
H
dV/dt
(dI/dt)
V
1. Minimum IGT is guaranteed at 5% of IGT max
V
= 12 V, RL = 33 Ω I - II - III 25 °C MAX. 10 mA
OUT
V
= 12 V, RL = 33 Ω I - II - III 25 °C MAX. 1.0 V
GT
GD
I
I
CL
(2)
L
L
OUT
V
= V
OUT
I
= 500 mA 25 °C MAX. 25 mA
OUT
I
= 1.2 x I
G
I
= 1.2 x I
G
(2)
V
OUT
(2)
(dV/dt)c = 15 V/µs 125 °C MIN. 3.5 A/ms
c
I
= 0.1 mA, t
CL
, RL = 3.3 kΩ I - II - III 125 °C MIN. 0.2 V
DRM
GT
GT
= 67 % V
, gate open 125 °C MIN. 500 V/µs
DRM
= 1 ms 25 °C MIN. 850 V
p
2. For both polarities of OUT pin referenced to COM pin
2/15 Doc ID 7297 Rev 10
j
Val ue Unit
I - III 25 °C MAX. 30 mA
II 25 °C MAX. 40 mA
ACST6 Characteristics

Table 4. Static characteristics

Symbol Test conditions Value Unit
I
= 2.1 A, t
OUT
(1)
V
V
R
I I
TM
T0
(1)
d
DRM
RRM
(1)
= 8.5 A, t
I
OUT
Threshold voltage Tj = 125 °C MAX. 0.9 V
Dynamic resistance Tj = 125 °C MAX. 80 mΩ
V
= V
OUT
1. For both polarities of OUT pin referenced to COM pin

Table 5. Thermal resistances

Symbol Parameter Value Unit
= 500 µs
p
= 500 µs 1.7
p
Tj = 25 °C MAX.
Tj = 25 °C MAX. 20 µA
/ V
DRM
RRM
= 125 °C MAX. 500 µA
T
j
1.4 V
Rt
h(j-a)
2
copper pad) D2PA K 4 5
R
Junction to ambient (soldered on 1 cm
Junction to case for full cycle sine wave conduction
th(j-c)
Figure 2. Maximum power dissipation versus
rms on-state current
P(W)
Junction to ambient
8
α = 180°
7
6
5
4
3
2
1
0
0123456
180°
I
(A)
T(RMS)
TO-220AB TO-220FPAB
2
PAK 65
I
60
°C/W
TO-220FPAB 4.25
TO-220AB
2
D
PA K , I2PA K
2.5
°C/W
Figure 3. On-state rms current versus case
temperature (full cycle)
I
(A)
T(RMS)
7
6
5
4
3
2
1
0
0 25 50 75 100 125
TO-220FPAB
TC(°C)
TO-220AB
D²PAK
I²PAK
α
= 180°
Doc ID 7297 Rev 10 3/15
Characteristics ACST6
Figure 4. On-state rms current versus
ambient temperature
Figure 5. Relative variation of thermal
impedance versus pulse duration
(free air convection, full cycle)
I
(A)
T(RMS)
2.5
2.0
1.5
TO-220FPAB
TO220AB
1.0
0.5
0.0
0 25 50 75 100 125
I2PAK
D2PAK with
copper
surface = 1
2
cm
Ta(°C)
α=180°
Figure 6. Relative variation of gate trigger
current (I
) and voltage (VGT)
versus junction temperature
Figure 7. Relative variation of holding
K = [Zth/ Rth]
1.0E+00
Z
th(j-c)
Z
TO-220AB
D²PAK
1.0E-01
I²PAK
TO-220FPAB
1.0E-02
1.0E-03 1.0E-01 1.0E+01 1.0E+03
current (IH) and latching current (IL) versus junction temperature
th(j-a)
tp(s)
IGT,VGT[Tj] / IGT,VGT[Tj= 25 °C]
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-50 -25 0 25 50 75 100 125
IGTQ3
V Q1-Q2-Q3
GT
IGTQ1-Q2
Figure 8. Surge peak on-state current
versus number of cycles
I
(A)
TSM
50
40
30
20
Repetitive TC=106 °C
10
0
1 10 100 1000
Non repetitive
Tjinitial = 25 °C
(typical values)
t = 20 ms
One cycle
Number of cycles
Number of cycles
Tj(°C)
IH,IL[Tj] / IH,IL[Tj= 25 °C]
2.5
2.0
1.5
1.0
0.5
0.0
-50 -25 0 25 50 75 100 125
Tj(°C)
(typical values)
I
L
I
H
Figure 9. Non repetitive surge peak on-state
current and corresponding value of
2
I
t versus sinusoidal pulse width
I
(A), I²t (A²s)
TSM
1000
100
10
1
0.01 0.10 1.00 10.00
dl /dt limitation: 100 A / µs
Tjinitial = 25 °C
I
TSM
I²t
tp(ms)
4/15 Doc ID 7297 Rev 10
ACST6 Characteristics
Figure 10. On-state characteristics
(maximum values)
ITM(A)
100
10
Tj= 125 °C
1
012345
Tj= 25 °C
Tjmax: Vto= 0.90 V Rd= 80 m
VTM(V)
Ω
Figure 12. Relative variation of static dV/dt
immunity versus junction temperature (gate open)
dV/dt [Tj] / dV/dt [Tj= 125 °C]
6
5
4
VD=VR= 536 V
Figure 11. Relative variation of critical rate of
decrease of main current (dI/dt)
c
versus junction temperature
(dl/dt)c[Tj] / (dl/dt)c[Tj= 125 °C]
8
7
6
5
4
3
2
1
0
25 50 75 100 125
Tj(°C)
Figure 13. Relative variation of leakage
current versus junction temperature
I
DRM/IRRM[Tj;VDRM/VRRM
1.0E+00
Different blocking voltages
1.0E-01
V
DRM=VRRM
] / I
DRM/IRRM[Tj
V
DRM=VRRM
= 600 V
= 125 °C; 800 V]
= 800V
3
2
1
0
25 50 75 100 125
Figure 14. Relative variation of clamping
voltage (V
) versus junction
CL
temperature (minimum values)
V[Tj] / V [Tj= 25 °C]
CL CL
1.15
1.10
1.05
1.00
0.95
0.90
0.85
-50 -25 0 25 50 75 100 125
Tj(°C)
Tj(°C)
1.0E-02
1.0E-03
25 50 75 100 125
V
DRM=VRRM
= 200 V
Tj(°C)
Figure 15. Thermal resistance junction to
ambient versus copper surface under tab
Rth(j-a)(°C/W)
80
70
60
50
40
30
20
10
0
0 5 10 15 20 25 30 35 40
Printed circuit board FR4, copper thickness = 35 µm
SCU(cm²)
D²PAK
Doc ID 7297 Rev 10 5/15
Loading...
+ 10 hidden pages