connection of several alternating current
switches (ACS) on the same cooling pad
■ Integrated structure based on A.S.D.
technology
■ Overvoltage protection by crowbar technology
■ High noise immunity - static dV/dt > 500 V/µs
®
ACS108-6S
Datasheet − production data
COM
OUT
G
SMBflat-3L
ACS108-6SUF
Applications
■ Alternating current on/off static switching in
appliances and industrial control systems
■ Drive of low power high inductive or resistive
loads like:
– relay, valve, solenoid,
– dispenser, door lock
– pump, fan, low power motor
Description
The ACS108-6S belongs to the AC line switch
family. This high performance switch can control a
load of up to 0.8 A.
The ACS108-6S switch includes an overvoltage
crowbar structure to absorb the overvoltage
energy, and a gate level shifter driver to separate
the digital controller from the main switch. It is
triggered with a negative gate current flowing out
of the gate pin.
Figure 1.Functional diagram
OUT
G
COMCommon drive reference to connect
OUTOutput to connect to the load.
GGate input to connect to the controller
Table 1.Device summary
to the mains
through gate resistor
SymbolValueUnit
I
T(RMS)
V
DRM/VRRM
I
GT
COM
0.8A
600V
10mA
®: A.S.D. is a registered trademark of STMicroelectonics
TM: ACS is a trademark of STMicroelectronics
June 2012Doc ID 11962 Rev 41/12
This is information on a product in full production.
www.st.com
12
CharacteristicsACS108-6S
1 Characteristics
Table 2.Absolute maximum ratings (T
SymbolParameterValueUnit
I
T(RMS)
I
dI/dt
V
V
P
T
1. according to test described by IEC 61000-4-5 standard and Figure 19
Table 3.Electrical characteristics (Tj = 25 °C, unless otherwise specified)
On-state rms current (full sine wave)
Non repetitive surge peak on-state
current
TSM
(full cycle sine wave, T
2
tI²t Value for fusingtp = 10 ms0.38A2s
I
initial = 25 °C)
j
Critical rate of rise of on-state current
= 2xIGT, tr ≤ 100 ns
I
G
Non repetitive line peak mains voltage
PP
I
Peak gate currenttp = 20 µsTj = 125 °C1A
GM
Peak positive gate voltageTj = 125 °C10V
GM
Average gate power dissipationTj = 125 °C0.1W
G(AV)
Storage junction temperature range
stg
T
Operating junction temperature range
j
= 25 °C, unless otherwise specified)
amb
T
= 62 °C0.45A
amb
T
= 113 °C0.8A
tab
F = 60 Hzt = 16.7 ms7.6
F = 50 Hzt = 20 ms7.3
F = 120 HzT
(1)
= 125 °C100A/µs
j
Tj = 25 °C2kV
-40 to +150
-30 to +125
A
°C
SymbolTest conditionsQuadrantValueUnit
(1)
I
GT
V
V
IH
I
dV/dt
(dI/dt)c
V
1. Minimum IGT is guaranteed at 10% of IGT max
2. For both polarities of OUT referenced to COM
V
= 12 V, RL = 33 Ω
GT
GD
(2)
L
)
CLICL
OUT
V
(2)
(2)
(2
= V
OUT
I
= 100 mAMax.25
OUT
IG = 1.2 x I
V
= 67% V
OUT
, RL =3.3 kΩ, Tj = 125 °CII - IIIMin.0.15
DRM
GT
gate open, Tj = 125 °CMin.500
DRM,
Without snubber (15 V/µs), turn-off time ≤ 20 ms, Tj = 125 °CMin.0.3
= 0.1 mA, tp = 1 ms, Tj = 125 °CMin.650
II - IIIMax.10
II - IIIMax.1
Max.30
mA
V
V
mA
mA
V/µs
A/ms
V
2/12Doc ID 11962 Rev 4
ACS108-6SCharacteristics
Table 4.Static electrical characteristics
SymbolTest conditionsValueUnit
(1)
V
I
TM
(1)
V
TO
(1)
R
D
I
DRM
I
RRM
1. For both polarities of OUT referenced to COM
Table 5.Thermal resistance
SymbolParameterValueUnit
= 1.1 A, tp = 500 µsTj = 25 °CMax.1.3V
TM
Threshold voltageTj = 125 °CMax.0.90V
Tj = 125 °CMax.300mΩ
V
OUT
= 600 V
Tj = 25 °C
Max.
= 125 °C0.2mA
T
j
2µA
R
R
th (j-t)
th (j-a)
Junction to tab (AC)Max.14 °C/W
Junction to ambientS = 5 cm²Max.75
Doc ID 11962 Rev 43/12
CharacteristicsACS108-6S
Figure 2.Maximum power dissipation
versus on-state rms current
Figure 3.On-state rms current versus tab
temperature (full cycle)
(full cycle)
P(W)
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.00.10.20.30.40.50.60.70.8
180°
I(A)
T(RMS)
Figure 4.On-state rms current versus
ambient temperature
(free air convection)
I(A)
T(RMS)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0255075100125
T (°C)
a
I(A)
T(RMS)
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00
0255075100125
T (°C)
C
Figure 5.Relative variation of thermal
impedance junction to ambient
versus pulse duration
K = [Z/R]
1.E+00
1.E-01
1.E-02
th(j-a) th(j-a)
1.E-031.E-021.E-011.E+001.E+011.E+021.E+03
t (s)
p
Figure 6.Relative variation of, holding and
Figure 7.Releative variation of IGT and VGT
latching current versus junction
temperature