ST A5970D User Manual

A5970D

Up to 1 A step down switching regulator for automotive applications

Features

Qualified following the AEC-Q100 requirements (see PPAP for more details)

1 A DC output current

Operating input voltage from 4 V to 36 V

3.3 V / (±2%) reference voltage

Output voltage adjustable from 1.235 V to VIN

Low dropout operation: 100% duty cycle

250 kHz Internally fixed frequency

Voltage feedforward

Zero load current operation

Internal current limiting

Inhibit for zero current consumption

Synchronization

Protection against feedback disconnection

Thermal shutdown

Application

Dedicated to automotive applications

Figure 1. Application schematic

SO8

Description

The A5970D is a step down monolithic power switching regulator with a minimum switch current limit of 1.35 A so it is able to deliver up to 1 A DC current to the load depending on the application conditions. The output voltage can be set from 1.235 V to VIN.

The device uses an internal p-channel DMOS

transistor (with a typical RDS(on) of 250 mΩ) as switching element to minimize the size of the

external components.

An internal oscillator fixes the switching frequency at 250 kHz. Having a minimum input voltage of

4 V only it fits the automotive applications requiring the device operation even in cold crank conditions. Pulse by pulse current limit with the internal frequency modulation offers an effective constant current short circuit protection.

VIN=4 to 36V

V

=3.3V

 

OUT

November 2009

Doc ID 13955 Rev 6

1/41

www.st.com

Contents

A5970D

 

 

Contents

1

Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 4

 

1.1

Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

 

1.2

Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

2

Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

 

2.1

Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

 

2.2

Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

3

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

4

Datasheet parameters over the temperature range . . . . . . . . . . . . . . . .

8

5

Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

5.1

Power supply and voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

5.2

Voltages monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

 

5.3

Oscillator and synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

 

5.4

Current protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

5.5

Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

5.6

PWM comparator and power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

5.7

Inhibit function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

5.8

Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

6

Additional features and protection . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

6.1

Feedback disconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

6.2

Output overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

6.3

Zero load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

7

Closing the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

7.1

Error amplifier and compensation network . . . . . . . . . . . . . . . . . . . . . . . .

17

 

7.2

LC filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

7.3

PWM comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

8

Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

2/41

Doc ID 13955 Rev 6

A5970D

 

 

Contents

 

 

 

 

 

8.1

Component selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 21

 

8.2

Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 24

 

8.3

Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 24

 

8.4

Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 26

 

8.5

Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 28

 

8.6

Positive buck-boost regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 31

 

8.7

Negative buck-boost regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 32

 

8.8

Synchronization example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 33

 

8.9

Compensation network with MLCC at the output . . . . . . . . . . . . . . .

. . . . 33

 

8.10

External SOFT_START network . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 35

9

Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 36

10

Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 38

11

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 40

Doc ID 13955 Rev 6

3/41

Pin settings

A5970D

 

 

1 Pin settings

1.1Pin connection

Figure 2. Pin connection (top view)

1.2Pin description

Table 1.

Pin description

N

Pin

Description

 

 

 

1

OUT

Regulator output.

 

 

 

2

SYNCH

Master/slave synchronization.

 

 

 

 

 

A logical signal (active high) disables the device. If INH not used the pin

3

INH

must be grounded. When it is open an internal pull-up disable the

 

 

device.

 

 

 

4

COMP

E/A output for frequency compensation.

 

 

 

 

 

Feedback input. Connecting directly to this pin results in an output

5

FB

voltage of 1.23 V. An external resistive divider is required for higher

 

 

output voltages.

 

 

 

6

VREF

3.3 V VREF. No cap is requested for stability.

 

 

 

7

GND

Ground.

 

 

 

8

VCC

Unregulated DC input voltage.

 

 

 

4/41

Doc ID 13955 Rev 6

A5970D

Electrical data

 

 

2 Electrical data

2.1Maximum ratings

Table 2.

Absolute maximum ratings

 

 

 

Symbol

 

Parameter

Value

Unit

 

 

 

 

 

 

V8

 

Input voltage

40

 

V

V1

 

OUT pin DC voltage

-1 to

40

V

 

OUT pin peak voltage at t = 0.1 μs

-5 to

40

V

 

 

 

 

 

 

 

I1

 

Maximum output current

int. limit.

 

V4, V5

 

Analog pins

4

 

V

V3

 

INH

-0.3 to VCC

V

V2

 

SYNCH

-0.3 to 4

V

PTOT

 

Power dissipation at TA 70 °C

0.6

W

TJ

 

Operating junction temperature range

-40 to

150

°C

TSTG

 

Storage temperature range

-55 to

150

°C

2.2Thermal data

Table 3.

Thermal data

 

 

Symbol

 

Parameter

Value

Unit

 

 

 

 

 

R

 

Maximum thermal resistance junction-ambient

120 (1)

°C/W

thJA

 

 

 

 

1. Package mounted on evaluation board

Doc ID 13955 Rev 6

5/41

Electrical characteristics

A5970D

 

 

3 Electrical characteristics

TJ = -40 °C to 125 °C, VCC = 12 V, unless otherwise specified.

Table 4.

Electrical characteristics

 

 

 

 

Symbol

Parameter

Test condition

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

VCC

Operating input

 

4

 

36

V

voltage range

 

 

RDS(on)

MOSFET on

 

 

0.250

0.5

Ω

resistance

 

 

IL

Maximum limiting

VCC = 5 V

1.35

1.87

2.25

A

current

(1)

 

 

 

 

VCC = 5 V, TJ = 25 °C

1.5

1.87

2.25

 

 

 

fSW

Switching frequency

 

212

250

280

kHz

 

Duty cycle

 

0

 

100

%

 

 

 

 

 

 

 

Dynamic characteristics (see test circuit).

 

 

 

 

 

 

 

 

 

 

 

V5

Voltage feedback

4.4 V < VCC < 36 V,

1.198

1.235

1.272

V

η

Efficiency

V0 = 5 V, VCC = 12 V

 

90

 

%

DC characteristics

 

 

 

 

 

 

 

 

 

 

 

 

 

Iqop

Total operating

 

 

3

5

mA

quiescent current

 

 

Iq

Quiescent current

Duty cycle=0; VFB=1.5 V

 

 

2.5

mA

 

Total stand-by

Vinh > 2.2 V

 

50

100

μA

Iqst-by

VCC = 36 V;

 

 

 

 

quiescent current

 

80

150

μA

 

Vinh > 2.2 V

 

 

 

 

 

 

 

 

Inhibit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INH threshold voltage

Device ON

 

 

0.8

V

 

 

 

 

 

 

 

Device OFF

2.2

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

Error amplifier

 

 

 

 

 

 

 

 

 

 

 

 

 

VOH

High level output

VFB = 1 V

3.5

 

 

V

voltage

 

 

 

VOL

Low level output

VFB = 1.5 V

 

 

0.4

V

voltage

 

 

 

Io source

Source output current

VCOMP = 1.9 V; VFB = 1 V

190

300

 

μA

 

 

 

 

 

 

 

Io sink

Sink output current

VCOMP = 1.9 V; VFB=1.5 V

1

1.5

 

mA

 

 

 

 

 

 

 

Ib

Source bias current

 

 

2.5

4

μA

 

 

 

 

 

 

 

 

DC open loop gain

RL=

50

65

 

dB

 

 

 

 

 

 

 

gm

Transconductance

ICOMP = -0.1 mA to 0.1

 

2.3

 

mS

 

 

 

mA; VCOMP = 1.9 V

 

 

 

 

6/41

Doc ID 13955 Rev 6

A5970D

 

 

 

Electrical characteristics

 

 

 

 

 

 

 

 

 

 

Table 4.

Electrical characteristics (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Test condition

Min.

 

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

 

 

Synch function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High input voltage

VCC= 4.4 to 36 V;

2.5

 

 

VREF

V

 

 

Low input voltage

VCC= 4.4 to 36 V;

 

 

 

0.74

V

 

 

Slave synch current

Vsynch= 0.74 V (2)

0.11

 

 

0.25

mA

 

 

Vsynch= 2.33 V

0.21

 

 

0.45

 

 

 

 

 

 

 

 

Master output

Isource= 3 mA

2.75

 

3

 

V

 

 

amplitude

 

 

 

 

Output pulse width

no load, Vsynch= 1.65 V

0.20

 

0.35

 

μs

 

Reference section

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference voltage

IREF = 0 to 5 mA

3.2

 

3.3

3.399

V

 

 

VCC = 4.4 V to 36 V

 

 

 

 

 

 

 

 

 

 

 

Line regulation

IREF = 0mA

 

 

5

10

mV

 

 

VCC = 4.4 V to 36 V

 

 

 

 

 

 

 

 

 

 

 

 

Load regulation

IREF = 0 mA

 

 

8

15

mV

 

 

Short circuit current

 

5

 

18

35

mA

 

 

 

 

 

 

 

 

 

1.With TJ = 85 °C, Ilim_min = 1.5 A, assured by design, characterization and statistical correlation.

2.Guaranteed by design

Doc ID 13955 Rev 6

7/41

Datasheet parameters over the temperature range

A5970D

 

 

4 Datasheet parameters over the temperature range

The 100% of the population in the production flow is tested at three different ambient temperatures (-40 °C; +25 °C, +125 °C) to guarantee the datasheet parameters inside the junction temperature range (-40 °C; +125 °C).

The device operation is so guaranteed when the junction temperature is inside the (-40 °C; +150 °C) temperature range. The designer can estimate the silicon temperature increase respect to the ambient temperature evaluating the internal power losses generated during the device operation (please refer to the Chapter 2.2).

However the embedded thermal protection disables the switching activity to protect the

device in case the junction temperature reaches the TSHTDWN (+150 °C±10 °C) temperature.

All the datasheet parameters can be guaranteed to a maximum junction temperature of +125 °C to avoid triggering the thermal shutdown protection during the testing phase because of self heating.

8/41

Doc ID 13955 Rev 6

A5970D

Functional description

 

 

5 Functional description

The main internal blocks are shown in the device block diagram in Figure 3. They are:

A voltage regulator supplying the internal circuitry. From this regulator, a 3.3 V reference voltage is externally available.

A voltage monitor circuit which checks the input and the internal voltages.

A fully integrated sawtooth oscillator with a frequency of 250 kHz ± 15%, including also the voltage feed forward function and an input/output synchronization pin.

Two embedded current limitation circuits which control the current that flows through the power switch. The pulse-by-pulse current limit forces the power switch OFF cycle by cycle if the current reaches an internal threshold, while the frequency shifter reduces the switching frequency in order to significantly reduce the duty cycle.

A transconductance error amplifier.

A pulse width modulator (PWM) comparator and the relative logic circuitry necessary to drive the internal power.

A high side driver for the internal P-MOS switch.

An inhibit block for stand-by operation.

A circuit to implement the thermal protection function.

Figure 3. Block diagram

5.1Power supply and voltage reference

The internal regulator circuit (shown in Figure 4) consists of a start-up circuit, an internal voltage pre-regulator, the Bandgap voltage reference and the Bias block that provides current to all the blocks. The Starter supplies the start-up currents to the entire device when the input voltage goes high and the device is enabled (inhibit pin connected to ground). The pre-regulator block supplies the Bandgap cell with a pre-regulated voltage VREG that has a very low supply voltage noise sensitivity.

Doc ID 13955 Rev 6

9/41

Functional description

A5970D

 

 

5.2Voltages monitor

An internal block continuously senses the Vcc, Vref and Vbg. If the voltages go higher than their thresholds, the regulator begins operating. There is also a hysteresis on the VCC (UVLO).

Figure 4. Internal circuit

5.3Oscillator and synchronization

Figure 5 shows the block diagram of the oscillator circuit.

The clock generator provides the switching frequency of the device, which is internally fixed at 250 kHz. The frequency shifter block acts to reduce the switching frequency in case of strong overcurrent or short circuit. The clock signal is then used in the internal logic circuitry and is the input of the ramp generator and synchronizer blocks.

The ramp generator circuit provides the sawtooth signal, used for PWM control and the internal voltage feed-forward, while the synchronizer circuit generates the synchronization signal. The device also has a synchronization pin which can work both as master and slave.

Beating frequency noise is an issue when more than one voltage rail is on the same board. A simple way to avoid this issue is to operate all the regulators at the same switching frequency.

The synchronization feature of a set of the A5970D is simply get connecting together their SYNCH pin. The device with highest switching frequency will be the MASTER and it provides the synchronization signal to the others. Therefore the SYNCH is a I/O pin to deliver or recognize a frequency signal. The synchronization circuitry is powered by the internal reference (VREF) so a small filtering capacitor (≥ 100 nF) connected between VREF pin and the signal ground of the Master device is suggested for its proper operation. However when a set of synchronized devices populates a board it is not possible to know in advance the one working as Master, so the filtering capacitor have to be designed for whole set of devices.

When one or more devices are synchronized to an external signal, its amplitude have to be in comply with specifications given in the Table 4. The frequency of the synchronization signal must be, at a minimum, higher than the maximum guaranteed natural switching frequency of the device (275 kHz, see Table 4) while the duty cycle of the synchronization signal can vary from approximately 10% to 90%. The small capacitor under VREF pin is required for this operation.

10/41

Doc ID 13955 Rev 6

ST A5970D User Manual

A5970D

Functional description

 

 

Figure 5. Oscillator circuit block diagram

Figure 6. Synchronization example

SYNCH

OUT

SYNCH

OUT

A5973D

 

A59703D

 

0

FB

 

FB

 

 

COMP

COMP

SS/INH

GND

SS/INH

GND

SYNCH

OUT

SYNCH

OUT

A5970D

FB

A5970D5973D

FB

A5973D

 

 

 

COMP

 

COMP

SS/INH

GND

SS/INH

GND

5.4Current protection

The A5970D features two types of current limit protection: pulse-by-pulse and frequency foldback.

The schematic of the current limitation circuitry for the pulse-by-pulse protection is shown in Figure 7. The output power PDMOS transistor is split into two parallel PDMOS transistors. The smallest one includes a resistor in series, RSENSE. The current is sensed through

RSENSE and if it reaches the threshold, the mirror becomes unbalanced and the PDMOS is switched off until the next falling edge of the internal clock pulse. Due to this reduction of the

ON time, the output voltage decreases. Since the minimum switch ON time necessary to sense the current in order to avoid a false overcurrent signal is too short to obtain a sufficiently low duty cycle at 250 kHz (see Chapter 8.4), the output current in strong overcurrent or short circuit conditions could be not properly limited. For this reason the switching frequency is also reduced, thus keeping the inductor current under its maximum

Doc ID 13955 Rev 6

11/41

Functional description

A5970D

 

 

threshold. The frequency shifter (Figure 5) functions based on the feedback voltage. As the feedback voltage decreases (due to the reduced duty cycle), the switching frequency decreases also.

Figure 7. Current limitation circuitry

5.5Error amplifier

The voltage error amplifier is the core of the loop regulation. It is a transconductance operational amplifier whose non inverting input is connected to the internal voltage reference (1.235 V), while the inverting input (FB) is connected to the external divider or directly to the output voltage. The output (COMP) is connected to the external compensation network. The uncompensated error amplifier has the following characteristics:

Table 5.

Uncompensated error amplifier characteristics

 

Description

Values

 

 

Transconductance

2300 µS

 

 

 

Low frequency gain

 

65 dB

 

 

 

Minimum sink/source voltage

1500

µA/300 µA

 

 

 

Output voltage swing

0.4

V/3.65 V

 

 

Input bias current

2.5 µA

 

 

 

 

The error amplifier output is compared to the oscillator sawtooth to perform PWM control.

5.6PWM comparator and power stage

This block compares the oscillator sawtooth and the error amplifier output signals to generate the PWM signal for the driving stage.

The power stage is a highly critical block, as it functions to guarantee a correct turn ON and turn OFF of the PDMOS. The turn ON of the power element, or more accurately, the rise time of the current at turn ON, is a very critical parameter. At a first approach, it appears that the faster the rise time, the lower the turn ON losses.

However, there is a limit introduced by the recovery time of the recirculation diode.

12/41

Doc ID 13955 Rev 6

A5970D

Functional description

 

 

In fact, when the current of the power element is equal to the inductor current, the diode turns OFF and the drain of the power is able to go high. But during its recovery time, the diode can be considered a high value capacitor and this produces a very high peak current, responsible for numerous problems:

Spikes on the device supply voltage that cause oscillations (and thus noise) due to the board parasites.

Turn ON overcurrent leads to a decrease in the efficiency and system reliability.

Major EMI problems.

Shorter freewheeling diode life.

The fall time of the current during turn OFF is also critical, as it produces voltage spikes (due to the parasites elements of the board) that increase the voltage drop across the PDMOS.

In order to minimize these problems, a new driving circuit topology has been used and the block diagram is shown in Figure 8. The basic idea is to change the current levels used to turn the power switch ON and OFF, based on the PDMOS and the gate clamp status.

This circuitry allows the power switch to be turned OFF and ON quickly and addresses the freewheeling diode recovery time problem. The gate clamp is necessary to ensure that VGS of the internal switch does not go higher than VGSmax. The ON/OFF Control block protects against any cross conduction between the supply line and ground.

Figure 8. Driving circuitry

5.7Inhibit function

The inhibit feature is used to put the device in standby mode. With the INH pin higher than 2.2 V the device is disabled and the power consumption is reduced to less than 100 µA. With the INH pin lower than 0.8 V, the device is enabled. If the INH pin is left floating, an internal pull up ensures that the voltage at the pin reaches the inhibit threshold and the device is disabled. The pin is also Vcc compatible.

Doc ID 13955 Rev 6

13/41

Loading...
+ 28 hidden pages