ST 74LVX132 User Manual

ST 74LVX132 User Manual

74LVX132

LOW VOLTAGE CMOS QUAD 2-INPUT SCHMITT NAND GATE WITH 5V TOLERANT INPUTS

HIGH SPEED:

tPD = 5.9ns (TYP.) at VCC = 3.3V

5V TOLERANT INPUTS

LOW POWER DISSIPATION: ICC = 2 A (MAX.) at TA=25°C

TYPICAL HYSTERESIS: 0.7V at VCC = 3.3V

LOW NOISE:

VOLP = 0.3V (TYP.) at VCC = 3.3V

SYMMETRICAL OUTPUT IMPEDANCE: |IOH| = IOL = 4mA (MIN)

BALANCED PROPAGATION DELAYS: tPLH tPHL

OPERATING VOLTAGE RANGE:

VCC(OPR) = 2V to 3.6V (1.2V Data Retention)

PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 132

IMPROVED LATCH-UP IMMUNITY

POWER DOWN PROTECTION ON INPUTS

DESCRIPTION

The 74LVX132 is a low voltage CMOS QUAD 2-INPUT SCHMITT NAND GATE fabricated with sub-micron silicon gate and double-layer metal wiring C2MOS technology. It is ideal for low power, battery operated and low noise 3.3V applications. Power down protection is provided on all inputs and 0 to 7V can be accepted on inputs with no regard to the supply voltage.

SOP TSSOP

Table 1: Order Codes

PACKAGE

T & R

 

 

SOP

74LVX132MTR

 

 

TSSOP

74LVX132TTR

 

 

This device can be used to interface 5V to 3V system. It combines high speed performance with the true CMOS low power consumption.

Pin configuration and function are the same as those of the 74LVX00 but the 74LVX132 has hysteresis.

This together with its schmitt trigger function allows it to be used on line receivers with slow rise/fall input signals.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

Figure 1: Pin Connection And IEC Logic Symbols

August 2004

Rev. 3

1/11

 

 

74LVX132

Figure 2: Input Equivalent Circuit

 

Table 2: Pin Description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PIN N°

SYMBOL

 

NAME AND FUNCTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1, 4, 9, 12

1A to 4A

 

Data Inputs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2, 5, 10, 13

1B to 4B

 

Data Inputs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3, 6, 8, 11

1Y to 4Y

 

Data Outputs

 

 

 

 

 

 

 

 

 

 

7

GND

 

Ground (0V)

 

 

 

 

 

 

 

 

 

 

14

VCC

 

Positive Supply Voltage

 

 

 

 

 

 

 

 

 

Table 3: Truth Table

 

 

 

 

 

 

A

 

B

Y

 

 

 

 

L

 

L

H

 

 

 

 

L

 

H

H

 

 

 

 

H

 

L

H

 

 

 

 

H

 

H

L

 

 

 

 

Table 4: Absolute Maximum Ratings

Symbol

Parameter

Value

Unit

 

 

 

 

VCC

Supply Voltage

-0.5 to +7.0

V

VI

DC Input Voltage

-0.5 to +7.0

V

VO

DC Output Voltage

-0.5 to VCC + 0.5

V

IIK

DC Input Diode Current

- 20

mA

IOK

DC Output Diode Current

±

20

mA

IO

DC Output Current

±

25

mA

ICC or IGND

DC VCC or Ground Current

±

50

mA

Tstg

Storage Temperature

-65 to +150

°C

TL

Lead Temperature (10 sec)

300

°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 5: Recommended Operating Conditions

Symbol

Parameter

Value

Unit

 

 

 

 

VCC

Supply Voltage (note 1)

2 to 3.6

V

VI

Input Voltage

0 to 5.5

V

VO

Output Voltage

0 to VCC

V

Top

Operating Temperature

-55 to 125

°C

1) Truth Table guaranteed: 1.2V to 3.6V

2/11

74LVX132

Table 6: DC Specifications

 

 

 

Test Condition

 

 

 

 

 

Value

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

VCC

 

 

 

TA = 25°C

 

-40 to 85°C

-55 to 125°C

Unit

 

 

(V)

 

 

Min.

Typ.

Max.

Min.

Max.

Min.

Max.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vt+

High Level Input

3.0

 

 

 

 

 

 

2.2

 

2.2

 

2.2

V

 

Threshold

 

 

 

 

 

 

 

 

 

 

 

 

 

Vt-

Low Level Input

3.0

 

 

0.9

 

 

 

 

 

0.9

 

0.9

V

 

Threshold

 

 

 

 

 

 

 

 

 

 

 

 

 

VH

Hysteresis Voltage

3.0

 

 

0.3

 

 

 

1.2

0.3

1.2

0.3

1.2

V

VOH

High Level Output

2.0

 

IO=-50 A

1.9

 

2.0

 

 

1.9

 

1.9

 

 

 

Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.0

 

IO=-50 A

2.9

 

3.0

 

 

2.9

 

2.9

 

V

 

 

 

 

 

 

 

 

 

 

3.0

 

IO=-4 mA

2.58

 

 

 

 

2.48

 

2.4

 

 

VOL

Low Level Output

2.0

 

IO=50 A

 

 

0.0

 

0.1

 

0.1

 

0.1

 

 

Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.0

 

IO=50 A

 

 

0.0

 

0.1

 

0.1

 

0.1

V

 

 

 

 

 

 

 

 

 

 

3.0

 

IO=4 mA

 

 

 

0.36

 

0.44

 

0.55

 

II

Input Leakage

3.6

 

VI = 5V or GND

 

 

 

±

0.1

 

± 1

 

± 1

A

 

Current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ICC

Quiescent Supply

3.6

 

VI = VCC or GND

 

 

 

 

2

 

20

 

20

A

 

Current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7: Dynamic Switching Characteristics

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test Condition

 

 

 

 

 

Value

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

VCC

 

 

 

TA = 25°C

 

-40 to 85°C

-55 to 125°C

Unit

 

 

(V)

 

 

Min.

Typ.

Max.

Min.

Max.

Min.

Max.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOLP

Dynamic Low

 

 

 

 

 

0.3

 

0.5

 

 

 

 

 

 

Voltage Quiet

3.3

 

 

 

 

 

 

 

 

 

 

 

 

VOLV

 

 

-0.5

 

-0.3

 

 

 

 

 

 

 

Output (note 1, 2)

 

 

 

 

 

 

 

 

 

 

 

VIHD

Dynamic High

3.3

 

CL = 50 pF

2.2

 

 

 

 

 

 

 

 

V

 

Voltage Input (note

 

 

 

 

 

 

 

 

 

 

 

 

1, 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VILD

Dynamic Low

3.3

 

 

 

 

 

 

0.9

 

 

 

 

 

 

Voltage Input (note

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1, 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1)Worst case package.

2)Max number of outputs defined as (n). Data inputs are driven 0V to 3.3V, (n-1) outputs switching and one output at GND.

3)Max number of data inputs (n) switching. (n-1) switching 0V to 3.3V. Inputs under test switching: 3.3V to threshold (VILD), 0V to threshold (VIHD), f=1MHz.

3/11

74LVX132

Table 8: AC Electrical Characteristics (Input tr = tf = 3ns)

 

 

 

Test Condition

 

 

 

 

Value

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

VCC

 

CL

 

TA = 25°C

 

-40 to 85°C

-55 to 125°C

Unit

 

 

(V)

 

(pF)

 

Min.

Typ.

Max.

Min.

Max.

Min.

Max.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tPLH tPHL

Propagation Delay

2.7

 

15

 

 

7.5

 

10.5

1.0

12.0

1.0

12.0

 

 

Time

2.7

 

50

 

 

8.3

 

12.0

1.0

13.5

1.0

13.5

ns

 

 

 

 

 

 

 

 

3.3(*)

 

15

 

 

5.9

 

8.0

1.0

9.0

1.0

9.0

 

 

 

 

 

 

 

 

 

3.3(*)

 

50

 

 

6.5

 

9.0

1.0

10.0

1.0

10.0

 

tOSLH

Output To Output

2.7

 

50

 

 

0.5

 

1.0

 

1.5

 

1.5

 

tOSHL

Skew Time (note1,

3.3(*)

 

50

 

 

0.5

 

1.0

 

1.5

 

1.5

ns

2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1)Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW

2)Parameter guaranteed by design

(*) Voltage range is 3.3V ± 0.3V

Table 9: Capacitive Characteristics

 

 

Test Condition

 

 

 

 

Value

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

VCC

 

TA = 25°C

 

-40 to 85°C

-55 to 125°C

Unit

 

 

(V)

 

Min.

Typ.

Max.

Min.

Max.

Min.

Max.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN

Input Capacitance

3.3

 

 

6

 

10

 

10

 

10

pF

CPD

Power Dissipation

3.3

 

 

16

 

 

 

 

 

 

pF

 

Capacitance

 

 

 

 

 

 

 

 

 

(note 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) CPD is defined as the value of the IC’s internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. ICC(opr) = CPD x VCC x fIN + ICC/4 (per gate)

Figure 3: Test Circuit

CL =15/50pF or equivalent (includes jig and probe capacitance)

RT = ZOUT of pulse generator (typically 50Ω )

4/11

Loading...
+ 7 hidden pages