ST 54AC164245 User Manual

54AC164245

Rad-hard 16-bit transceiver, 3.3 V to 5 V bidirectional level shifter

Features

Fully compatible with 54ACS164245

Dual supply bidirectional level shifter

Extended voltage range from 2.3 V to 5.5 V

Separated enable pin for 3-state output

Schmidt-triggered I/Os: 100 mV hysteresis

Internal 26 Ω limiting resistor on each I/O

High speed: Tpd = 8 ns maximum

Bus hold

Fail safe

Cold spare

Hermetic package

100 krad (Si) at any Mil1019 dose rate

SEL immune to 110MeV.cm2/mg LET ions

RHA QML-V qualified

Description

The 54AC164245 is a rad-hard advanced highspeed CMOS, Schmitt trigger 16-bit bidirectional multi-purpose transceiver with 3-state outputs and cold sparing.

Designed for use as an interface between a 5 V bus and a 3.3 V bus in mixed 5 V/3.3 V supply systems, it achieves high-speed operation while maintaining the CMOS low-power dissipation.

Datasheet production data

Ceramic Flat-48

The upper metallic lid is not electrically connected to any pins, nor to the IC die inside the package

All pins have cold spare buffers to change them to high impedance when VDD is tied to ground.

This IC is intended for two-way asynchronous communication between the data buses and the direction of the data transmission is determined by the nDIR inputs.

The A port interfaces with the 3.3 V bus but can also operate at 2.3 V. The B port operates with the 5 V bus.

Table 1.

Device summary

 

 

 

 

 

 

Reference

SMD pin

Quality

Package

Lead

Mass

EPPL

Temp range

level

finish

 

 

 

 

 

 

 

 

 

RHRAC164245K1

-

Engineering

 

Gold

 

-

 

model

 

 

-55 °C

 

 

 

Flat-48

 

1.50 g

 

 

 

 

 

 

 

RHRAC164245K01V

5962R9858008VYC

QMLV-

Gold

Target

to +125 °C

 

 

 

 

 

Flight

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:

Contact your ST sales office for information on the specific conditions for products in die form.

April 2012

Doc ID 18093 Rev 2

1/22

This is information on a product in full production.

www.st.com

ST 54AC164245 User Manual

Functional description

54AC164245

 

 

1 Functional description

Figure 1. Logic diagram

$)2

 

$)2

 

 

 

/%

 

!

 

 

!

 

"

 

 

!

 

 

!

 

"

 

 

!

 

 

!

 

"

 

 

!

 

 

!

66PORT

"

66PORT

 

 

 

 

!

 

66PORT

!

 

 

 

"

 

 

!

 

 

!

 

 

 

 

"

 

 

!

 

 

!

 

 

 

 

"

 

 

!

 

 

!

 

 

 

 

"

 

 

/%

"

"

"

"

66PORT

"

"

"

"

!-

Table 2.

Function table

 

 

 

Enable,

 

 

Direction, DIRx

Operation

 

OEx

 

 

 

 

 

L

L

B data to A bus

 

 

 

 

 

L

H

A data to B bus

 

 

 

 

 

H

X

Isolation

 

 

 

 

 

 

2/22

Doc ID 18093 Rev 2

54AC164245

Functional description

 

 

1.1Cold spare

The 54AC164245 features a cold spare input and output buffers. In high reliability applications, cold sparing enables a redundant device to be tied to the data bus with its power supply at 0 V (VDD = VSS, VDD - VSS = 0 V) without affecting the bus signals or injecting current from the I/Os to the power supplies. Cold sparing also allows to keep unpowered redundant devices so that they can be switched on only when required. Power consumption is therefore reduced by switching off the redundant circuit. This has no impact on the application. Cold spare is achieved by implementing a high impedance between I/Os and VDD. The ESD protection is ensured through a non-conventional dedicated structure.

1.2Power-up

During power up, all outputs are forced to high impedance. The high-impedance state is maintained approximately until VDD is high, thus avoiding any transient and erroneous signals during power-up.

1.3Pin connections

Figure 2. Pin connections

!-V

Doc ID 18093 Rev 2

3/22

Functional description

 

 

54AC164245

 

 

 

 

 

 

Table 3.

Pin descriptions

 

 

 

 

 

 

 

 

Pin n°

Symbol

Name and function

 

 

 

 

 

 

1

 

DIR1

Direction control inputs

 

 

 

 

 

2, 3, 5, 6, 8, 9, 11, 12

1B1 to 1B8

Side B inputs or 3-state outputs (5 V port)

 

 

 

 

 

4,10, 15, 21, 28, 34, 39, 45

VSS

Reference voltage to ground

 

7, 18

 

VDD1

Supply voltage (5 V)

 

13, 14, 16, 17, 19, 20, 22, 23

2B1 to 2B8

Side B inputs or 3-state outputs (5 V port)

 

 

 

 

 

 

24

 

DIR2

Direction control inputs

 

 

 

 

 

 

25

 

nG2

Output enable inputs (active low)

 

 

 

 

 

 

31, 42

 

VDD2

Supply voltage (3.3 V)

 

47, 46, 44, 43, 41, 40, 38, 37

1A1 to 1A8

Side A inputs or 3-state outputs (3.3 V port)

 

 

 

 

 

36, 35, 33, 32, 30, 29, 27, 26

2A1 to 2A8

Side A inputs or 3-state outputs (3.3 V port)

 

 

 

 

 

 

48

 

nG1

Output enable inputs (active low)

 

 

 

 

 

4/22

Doc ID 18093 Rev 2

54AC164245

Absolute maximum ratings and operating conditions

 

 

2 Absolute maximum ratings and operating conditions

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 4.

Absolute maximum ratings (1) (2) (3)

 

 

Symbol

Parameter

Value

Unit

 

 

 

 

VDD1

5 V supply voltage (4)

-0.3 to +6.0

V

VDD2

3 V supply voltage

-0.3 to +6.0

V

VIA

DC input voltage range port A

-0.3 to VDD1+0.3 V

V

VIB

DC input voltage range port B

-0.3 to VDD1+0.3 V

V

VOA

DC output voltage range port A

-0.3 to VDD1+0.3 V

V

VOB

DC output voltage range port B

-0.3 to VDD1+0.3 V

V

IIA

DC input currents port A, anyone input

± 10

mA

IIB

DC input currents port B, anyone input

± 10

mA

Tstg

Storage temperature range

-65 to +150

°C

TL

Lead temperature (10 sec)

300

°C

TJ

Junction temperature range

175

°C

Rthja

Thermal resistance junction to ambient (5)

TBD

°C/W

Flat package, 48 pins

Rthjc

Thermal resistance junction to case(5)

TBD

°C/W

Flat package, 48 pins

ESD

HBM: human body model(6)

2

kV

1.Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

2.Unless otherwise noted, all voltages are referenced to VSS.

3.The limits for the parameters specified herein shall apply over the full specified VDD range and case temperature range of -55°C to +125°C.

4.VDD1 (5 V) may remain disconnected.

5.Short-circuits can cause excessive heating and destructive dissipation. Values are typical.

6.Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

Doc ID 18093 Rev 2

5/22

Absolute maximum ratings and operating conditions

54AC164245

 

 

 

 

 

 

Table 5.

Operating conditions (1)

 

 

 

Symbol

Parameter

Value

Unit

 

 

 

 

 

 

 

 

VDD1

Supply voltage

 

 

4.5 to 5.5 or 2.3 to 3.6

V

 

VDD2

Supply voltage

 

 

2.3 to 3.6 or 4.5 to 5.5

V

 

 

VI

Input voltage

 

 

0 to VDD1

V

 

VO

Output voltage

 

 

0 to VDD1

V

 

Top

Operating temperature

 

 

-55 to +125

°C

 

d

/ d

Input rise and fall time V

CC

= 3.0, 4.5 or 5.5 (2)

0 to 8

ns / V

 

t

v

 

 

 

 

1.Unless otherwise noted, all voltages are referenced to VSS.

2.Derate system propagation delays by difference in rise time to switch point for tr or tf > 1 ns/V.

6/22

Doc ID 18093 Rev 2

54AC164245

Electrical characteristics

 

 

3 Electrical characteristics

Top = -55°C to +125°C, VDD1 = 4.5 V to 5.5 V, VDD2 = 2.7 V to 3.6 V, unless otherwise

 

specified.

 

 

 

 

 

 

 

 

 

 

 

Table 6.

DC specifications (1)

 

 

 

 

 

 

 

 

Symbol

Parameter

 

 

Port

Test condition (V ) (2)

 

Limits

Unit

 

 

 

 

 

 

 

 

 

 

 

voltage

 

 

DD

Min.

 

Max.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 V

VDD1

= 4.5 and 5.5 V

 

 

0.7 VDD2

 

 

Schmitt trigger positive going

VDD2 = 2.7 and 3.6 V

 

 

 

 

 

 

 

 

 

 

threshold port A

 

 

 

5.0 V

VDD1

= 4.5 and 5.5 V

 

 

0.7 VDD2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD2

= 4.5 and 5.5 V

 

 

 

VT+

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

3.3 V

VDD2

= 2.7 and 3.6 V

 

 

0.7 VDD1

 

 

 

 

 

 

 

 

 

 

Schmitt trigger positive going

VDD1 = 2.7 and 3.6 V

 

 

 

 

 

 

 

 

 

 

threshold port B

 

 

 

5.0 V

VDD1

= 4.5 and 5.5 V

 

 

0.7 VDD1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD2 = 2.7 and 3.6 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 V

VDD1

= 4.5 and 5.5 V

 

 

0.3 VDD2

 

 

Schmitt trigger positive going

VDD2 = 2.7 and 3.6 V

 

 

 

 

 

 

 

 

 

 

threshold port A

 

 

 

5.0 V

VDD1

= 4.5 and 5.5 V

 

 

0.3 VDD2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD2

= 4.5 and 5.5 V

 

 

 

VT-

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

3.3 V

VDD1

= 2.7 and 3.6 V

 

 

0.3 VDD1

 

 

 

 

 

 

 

 

 

 

Schmitt trigger positive going

VDD2 = 2.7 and 3.6 V

 

 

 

 

 

 

 

 

 

 

threshold port B

 

 

 

5.0 V

VDD1

= 4.5 and 5.5 V

 

 

0.3 VDD1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD2 = 2.7 and 3.6 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 V

VDD1

= 4.5 and 5.5 V

0.4

 

 

 

 

Schmitt trigger range of

 

VDD2 = 2.7 and 3.6 V

 

 

 

 

 

 

 

 

 

 

 

hysteresis port A

 

 

 

5.0 V

VDD1

= 4.5 and 5.5 V

0.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD2

= 4.5 and 5.5 V

 

 

 

VH

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

3.3 V

VDD1

= 2.7 and 3.6 V

0.4

 

 

 

 

 

 

 

 

 

 

 

 

Schmitt trigger range of

 

VDD2 = 2.7 and 3.6 V

 

 

 

 

 

 

 

 

 

 

 

hysteresis port B

 

 

 

5.0 V

VDD1

= 4.5 and 5.5 V

0.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD2 = 2.7 and 3.6 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input current high port A (for

3.3 V

VDD1

= 5.5 V

 

 

3

 

 

VDD2 = 3.6 V

 

 

 

 

 

 

 

 

 

 

input under test VI = VDD2 other

 

 

 

 

 

 

 

 

 

 

VDD1

= 5.5 V

 

 

 

 

 

inputs, V = V

DD2

or V

SS

)

5.0 V

 

 

3

 

 

I

 

 

VDD2

= 5.5 V

 

 

 

IIH

 

 

 

 

 

 

 

 

 

µA

Input current high port B (for

3.3 V

VDD1

= 3.6 V

 

 

3

 

 

 

 

 

VDD2 = 3.6 V

 

 

 

 

 

 

 

 

 

 

input under test VI = VDD1 other

 

 

 

 

 

 

 

 

 

 

VDD1

= 5.5 V

 

 

 

 

 

inputs, V = V

DD1

or V

SS

)

5.0 V

 

 

3

 

 

I

 

 

VDD2 = 3.6 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Doc ID 18093 Rev 2

7/22

Loading...
+ 15 hidden pages