Sony ICX432DQF Datasheet

ICX432DQF
2
8
V
H
Pin 1
Pin 11
48
4
Diagonal 6.67mm (Type 1/2.7) Frame Readout CCD Image Sensor with a Square Pixel for Color Cameras
Description
The ICX432DQF is a diagonal 6.67mm (Type 1/2.7) interline CCD solid-state image sensor with a square pixel array and 3.24M effective pixels. Adoption of a 3-field readout system ensures small size and high performance. This chip features an electronic shutter with variable charge-storage time.
R, G, B primary color mosaic filters are used as the color filters, and at the same time high sensitivity and low dark current are achieved through the adoption of Super HAD CCD technology.
This chip is suitable for applications such as electronic still cameras, etc.
Features
Supports frame readout system
High horizontal and vertical resolution
Supports high frame rate readout mode : 30 frames/s,
AF mode : 60 frames/s, 50 frames/s
Square pixel
Horizontal drive frequency: 24.3MHz
No voltage adjustments (reset gate and substrate bias are not adjusted.)
R, G, B primary color mosaic filters on chip
High sensitivity, low dark current
Continuous variable-speed shutter
Excellent anti-blooming characteristics
18-pin high-precision plastic package
18 pin SOP (Plastic)
(T op View)
Device Structure
Interline CCD image sensor
Total number of pixels: 2140 (H) × 1560 (V) approx. 3.34M pixels
Number of effective pixels: 2088 (H) × 1550 (V) approx. 3.24M pixels
Number of active pixels: 2080 (H) × 1542 (V) approx. 3.21M pixels diagonal 6.667mm
Number of recommended recording pixels:
2048 (H) × 1536 (V) approx. 3.15M pixels diagonal 6.592mm aspect ratio 4:3
Chip size: 6.10mm (H) × 4.95mm (V)
Unit cell size: 2.575µm (H) × 2.575µm (V)
Optical black: Horizontal (H) direction: Front 4 pixels, rear 48 pixels
Vertical (V) direction: Front 8 pixels, rear 2 pixels
Number of dummy bits: Horizontal 28
Vertical 1 (3rd field only)
Substrate material: Silicon
Super HAD CCD is a trademark of Sony Corporation. The Super HAD CCD is a version of Sony's high performance CCD HAD (Hole-
Accumulation Diode) sensor with sharply improved sensitivity by the incorporation of a new semiconductor technology developed by
Sony Corporation.
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
– 1 –
E02123A27
Block Diagram and Pin Configuration
(Top View)
GND
Vφ1Vφ2Vφ3AVφ3BVφ4Vφ5AVφ5BVφ
9 8 7 6 5 4 3 2 1
ICX432DQF
6
Gb
Gb
R
Gb
R
Gb
R
Vertical register
Gb
10 11 12 13 14 15 16 17 18
DD
OUT
V
V
φRG
B
SUB
C
R
Gb
R
Gb
R
Gb
Gr
B
Gr
B
Gr
B
Horizontal register
GND
φSUB
B
Gr
B
Gr
B
Gr
B
GrRGrR
Note)
Note) : Photo sensor
L
V
2
Hφ1Hφ
Pin Description
Pin No. Description Pin No. Symbol Description
1
Symbol Vφ6
Vertical register transfer clock
10
VOUT
Signal output 2 3 4 5 6 7 8 9
1
DC bias is generated within the CCD, so that this pin should be grounded externally through a
Vφ5B Vφ5A Vφ4 Vφ3B Vφ3A Vφ2 Vφ1 GND
Vertical register transfer clock Vertical register transfer clock Vertical register transfer clock Vertical register transfer clock Vertical register transfer clock Vertical register transfer clock Vertical register transfer clock GND
11 12 13 14 15 16 17 18
VDD φRG GND φSUB CSUB VL Hφ1 Hφ2
Supply voltage
Reset gate clock
GND
Substrate clock
Substrate bias
Protective transistor bias
Horizontal register transfer clock
Horizontal register transfer clock
capacitance of 0.1µF.
– 2 –
1
Absolute Maximum Ratings
ICX432DQF
Item
DD, VOUT, φRG – φSUB
V Vφ
1, Vφ3A, Vφ3B, Vφ5A, Vφ5BφSUB
Against φSUB
Vφ2, Vφ4, Vφ6, VLφSUB Hφ1, Hφ2, GND – φSUB CSUBφSUB VDD, VOUT, φRG, CSUB – GND
Against φGND
Vφ1, Vφ2, Vφ3A, Vφ3B, Vφ4, Vφ5A, Vφ5B, Vφ6 – GND Hφ1, Hφ2 – GND Vφ1, Vφ3A, Vφ3B, Vφ5A, Vφ5B – VL
Against φVL
Vφ2, Vφ4, Vφ6, Hφ1, Hφ2, GND – VL
Voltage difference between vertical clock input pins Between input clock pins
Hφ1 – Hφ2
Hφ1, Hφ2 – Vφ6 Storage temperature Guaranteed temperature of performance Operating temperature
Ratings Unit Remarks
40 to +12
50 to +1550 to +0.340 to +0.325 to0.3 to +22
10 to +1810 to +6.50.3 to +280.3 to +15
to +15
6.5 to +6.5
10 to +16
30 to +80
10 to +60
10 to +75
V V V V V V V V V V V V V
°C °C °C
1
1
+24V (Max.) when clock width < 10µs, clock duty factor < 0.1%. +16V (Max.) is guaranteed for turning on or off power supply.
– 3 –
Bias Conditions
ICX432DQF
Item Supply voltage Protective transistor bias Substrate clock Reset gate clock
1
VL setting is the VVL voltage of the vertical clock waveform, or the same voltage as the VL power supply for
Symbol
VDD VL
φSUB φRG
Min.
14.55 15.45
15.0
1
2
2
Unit RemarksTyp. Max.
V
the V driver should be used.
2
Do not apply a DC bias to the substrate clock and reset gate clock pins, because a DC bias is generated within the CCD.
DC Characteristics
Item Supply current
Symbol
IDD
Min. Unit RemarksTyp. Max.
7.0
mA9.05.0
Clock V olta ge Conditions
V
Waveform Diagram
1
Remarks
Item
Readout clock voltage
VVT
Symbol
Min.
14.55
Typ.
15.0
Max. Unit
15.45
Vertical transfer clock voltage
Horizontal transfer clock voltage
Reset gate clock voltage
VVH1, VVH2 VVH3, VVH4
VVH5, VVH6 VVL1, VVL2,
VVL3, VVL4, VVL5, VVL6
VφV VVH5 – VVH VVH6 – VVH VVHH VVHL VVLH VVLL VφH VHL VCR VφRG VRGLH – VRGLL VRGL – VRGLm
0.05
0.2
8.0
6.8
0.250.25
3.0
–0.05
0.5
3.0
0 0
–7.5
7.5
3.3 0
1.65
3.3
0.05
0.05
–7.0
8.05
0.1
0.1
0.8
0.9
0.9
0.8
3.6
0.05
3.6
0.4
0.5
VVH = (VVH1 + VVH2 + VVH3
V V
V
V V V V V V V V V V V V V
2
+ VVH4)/2
2
2
VVL = (VVL5 + VVL6)/2
2
VφV = VVHn – VVLn (n = 1 to 6) 2 2 2
High-level coupling 2
High-level coupling 2
Low-level coupling 2
Low-level coupling 3 3 3
Cross-point voltage 4 4
Low-level coupling 4
Low-level coupling
Substrate clock voltage
VφSUB
21.5
22.5
– 4 –
23.5
V
5
Clock Equivalent Circuit Constants
ICX432DQF
Item Min. Typ. Max.
Capacitance between vertical transfer clock and GND
Capacitance between vertical transfer clocks
Capacitance between horizontal transfer clock and GND
Capacitance between horizontal transfer clocks
Capacitance between reset gate clock and GND
Capacitance between substrate clock and GND
Symbol CφV1 CφV3A, CφV3B,
CφV5A, CφV5B CφV2, CφV4,
V6
Cφ CφV12 CφV23A, CφV23B,
CφV45A, CφV45B CφV3A4, CφV3B4,
CφV5A6, CφV5B6 CφV61
CφH1, CφH2
CφHH
CφRG
CφSUB
1280
640
400 510
50
260 100
40
70
8
1000
Unit Remarks
pF pF
pF pF pF
pF pF pF
pF
pF
pF
Vertical transfer clock series resistor
Vertical transfer clock ground resistor Horizontal transfer clock series resistor
CφV12
CφV2
CφV5A
CφV45A
Vφ2
R2
CφV23A
CφV3A
CφV23B
CφV3B
RGND
CφV4
Cφ
CφV3A4
R4R5A
Vφ4Vφ5A
Vφ6
Vφ5B
R6
CφV5B6
R5B
Vφ1
R1
CφV61
CφV1
CφV6
CφV5A6
CφV5B
CφV45B
R1, R2, R4, R6 R3A, R5A R3B, R5B RGND RφH
R3A
Vφ3A
R3B
Vφ3B
V3B4
Hφ
Cφ
Ω Ω Ω Ω Ω
Rφ
H
Hφ
2
H2
60
240
80 18 13
Rφ
H
1
Cφ
H1
Cφ
HH
Vertical transfer clock equivalent circuit Horizontal transfer clock equivalent circuit
5
Drive Clock Waveform Conditions
(1) Readout clock waveform
100%
90%
V
VT
10%
0%
tr tf
twh
(2) Vertical transfer clock waveform
Vφ1 Vφ2 V
VH1
V
VHH
V
VH
V
VHH
V
VHL
V
VHL
ICX432DQF
φM
φM
2
0V
V
VH2
V
V
VHH
V
VHL
VH
V
VHH
V
VHL
V
VHL
V
VHH
V
VL1
V
VLH
V
VLL
V
VL
Vφ3A, Vφ3B Vφ4
V
VH3
V
V
VHL
V
VLL
V
VL
VHH
V
VH
V
VHH
V
VHL
V
VHL
V
VL3
V
VLH
Vφ5A, Vφ5B Vφ6
V
V
VHH
V
VHL
V
VH5
VHH
V
VHL
V
VH
V
VL2
V
VLH
V
VLL
V
VL
V
VHH
V
V
VHH
V
VH4
V
VHL
V
VHL
V
VL
V
V
VHH
V
VH6
VHH
V
VHL
VH
V
VHL
V
VLH
V
VL4
V
VLL
V
VH
V
VL5
V
VL
VVH = (VVH1 + VVH2 + VVH3 + VVH4)/4 VVL = (VVL5 + VVL6)/2 VφV = VVHn – VVLn (n = 1 to 6)
V
V
V
VLH
V
VLL
VLH
V
V
VLL
VL
VL6
– 6 –
(3) Horizontal transfer clock waveform
ICX432DQF
tf
VCR
twl
VHL
Hφ
90%
10%
Hφ
tr
2
1
twh
Vφ
H
VφH
2
two
Cross-point voltage for the Hφ1 rising side of the horizontal transfer clocks Hφ1 and Hφ2 waveforms is VCR. The overlap period for twh and twl of horizontal transfer clocks Hφ1 and Hφ2 is two.
(4) Reset gate clock waveform
RG waveform
tr twh
Vφ
RG
tf
V
RGH
twl
Point A
V V
V
RGLH RGLL
RGLm
V
RGL
VRGLH is the maximum value and VRGLL is the minimum value of the coupling waveform during the period from Point A in the above diagram until the rising edge of RG. In addition, VRGL is the average value of VRGLH and VRGLL.
VRGL = (VRGLH + VRGLL)/2
Assuming VRGH is the minimum value during the interval with twh, then:
VφRG = VRGH – VRGL
Negative overshoot level during the falling edge of RG is VRGLm.
(5) Substrate clock waveform
100%
90%
φM
Vφ
10%
V
(A bias generated within the CCD)
SUB
0%
SUB
tr tftwh
φM
2
– 7 –
Clock Switching Characteristics (Horizontal drive frequency: 24.3MHz)
ICX432DQF
Item
Readout clock
Symbol
VT
Vφ1, Vφ2, Vertical transfer clock
Vφ3A, Vφ3B,
Vφ4, Vφ5A,
Vφ5B, Vφ6 Horizontal
transfer clock
Reset gate clock
Substrate clock
Hφ1
Hφ2
φRG
φSUB
Horizontal transfer clock
Min.
2.63
11 11
6
2.5
Symbol
Hφ1, Hφ2
twh
twl tr tf
Typ. Max.Min. Typ. Max.Min. Typ. Max. Min. T yp . Max.
2.83
15 15
8
3.02
111115
15 28
0.5
6.0
6.0 3
9.5
9.5
0.5
15
0.5
6.0
6.0 3
350
9.5
9.5
0.5
two
UnitnsRemarksItem
Min.
Typ. Max.
10 15
Unit
µs
ns
ns
ns
µs
Remarks
During readout
When using CXD3400N
tf tr – 2ns
During drain charge
Spectral Sensitivity Characteristics (excludes lens characteristics and light source characteristics)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
Relative Response
0.3
0.2
0.1 0
400
B
450 500 550
G
R
600 650 700
Wave Length [nm]
– 8 –
ICX432DQF
Image Sensor Characteristics (horizontal drive frequency: 24.3MHz) (Ta = 25°C)
Item
G Sensitivity Sensitivity
comparison Saturation signal
Smear
Symbol
Sg Rr Rb Vsat
Sm
Min.
165
0.46
0.33 420
Typ. 220
87.5
78
Max.
275
0.72
0.59
80
70.5
20
Video signal shading
SHg
25 Dark signal Dark signal shading Line crawl G Line crawl R Line crawl B Lag
1
After closing the mechanical shutter, the smear can be reduced to below the detection limit by performing
Vdt Vdt Lcg Lcr Lcb Lag
10
8
3.8
3.8
3.8
0.5
Measurement
Unit
method
mV
mV
dB
%
mV mV
% % % %
Remarks
1
1/30s accumulation 1 1 2
Ta = 60°C
Frame readout mode
1
3
High frame rate readout mode
Zone 0 and I 4
Zone 0 to II' 5 6
Ta = 60°C, 5.0 frame/s
Ta = 60°C, 5.0 frame/s, 7 7 7 8
vertical register sweep operation.
2
Excludes vertical dark signal shading caused by vertical register high-speed transfer.
2
Zone Definition of Video Signal Shading
2088 (H)
4
V
H 8
10
Zone 0, I
V
10
4
H 8
Zone II, II'
Ignored region
Effective pixel region
Measurement System
CCD signal output [∗A]
CCD C.D.S
AMP
4
1550 (V)
4
S/H
Gr/Gb channel signal output [∗B]
S/H
R/B channel signal output [∗C]
Note) Adjust the amplifier gain so that the gain between [∗A] and [∗B], and between [∗A] and [∗C] equals 1.
– 9 –
Loading...
+ 21 hidden pages