The standard prices shown in this catalog consumption tax and expenses of transportation, installation, connection and adjustment.
New Generation Prestige DVD Player, DVP-S9000ES
Now opening a new field in playing back DVD of extremely
pure images and high quality sounds
2
For videophiles, equipment reviewers and consumer electronics professionals, the launch
of a new, top-of-the-line Sony DVD player is always an occasion. In 1997, Sony’s original
DVP-S7000 was acclaimed as the “Reference Standard.” In 1998, the second-generation
DVP-S7700 took DVD playback to a new level of accuracy. Now the Sony DVPS9000ES DVD-Video/CD/SACD player redefines the category. The player is a
comprehensive redesign that represents three significant firsts:
• The world’s first DVD player with 525P outputs
based on Fast and Pure Cinema Detection.
• The world’s first DVD-Video player to incorporate true
Super Audio Compact Disc playback.
• The first DVD player to join Sony’s ES Series,
the Elevated Standard in audio reproduction and now video reproduction.
In addition, the player represents significant refinements in MPEG image processing,
optical transport, construction and craftsmanship.
This booklet serves as an introduction to the technology of the DVP-S9000ES, presenting
advances that promise to shape the development of DVD players for years to come.
SACD/DVD Player
DVP-S9000ES
INDEX
Video ....................................Page 04
Audio ...................................Page 13
Construction .........................Page 17
Conveniences .........................Page 18
Specifications ...................... Page 19
3
A Major New Opportunity
In 1997, Sony’s original DVP-S7000 helped launch the DVDVideo format and was quickly acclaimed as the “Reference
Standard.” In 1998, the second-generation DVP-S7700 took
DVD playback to a new level of accuracy. Of course, both
players were designed to maximize performance with the huge
universe of televisions using 525-line interlace scanning.
second. The “B” field contains the even numbered lines and lasts 1/60
second. This system can be abbreviated 525/60i or simply 525i
(when discussing the line rate) or 60i (when discussing the picture
rate). The 525i solution is a compromise that doubles the picture rate
but halves the vertical resolution at any given instant. While it is a
compromise, the 525i system is highly effective, an elegant
engineering solution that has helped make television an essential part
of entertainment.
Fig. 1: Progressive scanning creates
the picture by illuminating each line
from top to bottom until all scanning
lines in the frame are completed.
Fig. 2: Interlace scanning divides the
frame into two “fields.” The first field
presents the odd-numbered scanning
lines (1, 3, 5, etc.). The second field
presents the even numbered lines.
In the mean time, TV stations have launched the era of Digital
Television (DTV) broadcasting. High Definition satellite
broadcasting has become a commercial reality. In response,
Sony and others have introduced a growing population of
televisions with higher scanning frequencies, capable of better
than 525-line interlace scanning.
Some of these new televisions offer progressive scan or 525P
inputs, which can accept 525P output from a DVD player. And
525P outputs have quickly been promoted as a must-have feature
in high-end DVD players. They promise reproduction that’s
even more detailed, more natural, more film-like.
However, there are important differences in how DVD players
process the 525P signal. Circuitry varies greatly in sophistication and cost. To appreciate the technology behind these
differences, readers need a firm understanding of progressive
versus interlace scanning, film versus video origination, 3-2
pulldown and 3-2 reverse conversion. This section reviews
these basic issues.
Progressive and Interlace Scan
In video, what appears to be a continuously moving image is
actually a series of discrete still pictures, called frames. On the
typical direct-view television, each frame is created on the
picture tube by an electron beam that moves from the left edge of
the screen to the right, illuminating one scanning line at a time.
The American EIA television system uses 525 total scanning lines
per frame.
Due to bandwidth limitations from the early years of television,
the NTSC system was designed to capture 30 frames per second.
The natural way to display these images would be to show the
scanning lines in sequence, an approach called progressivescanning. 525-line progressive scanning at 30 frames per
second is abbreviated 525/30P or simply 525P. Unfortunately,
525/30P creates flicker: the image visibly darkens between
frames. In addition, capturing images at 525/30P yields
unsatisfactory results in fast-paced action like live sports.
For these reasons, the early television engineers developed a
solution called interlace scanning. Instead of capturing and
displaying all 525 lines in their numerical sequence, the NTSC
system divides the image into two fields. The “A” field contains
the odd-numbered scanning lines (1, 3, 5, etc.) and lasts 1/60
In the early days of television, when 12-inch diagonal screens were
commonly used in living rooms, halving the vertical resolution was
not a practical concern. But in today’s environment of 61-inch
diagonal projection systems, the illusion of a continuous picture on the
screen begins to fall apart, especially when you sit close to the screen.
Individual scanning lines become visible and the compromise in
vertical resolution becomes an annoyance. That’s why many of
today’s finest big screen televisions have the ability to input and
display 525P at 60 frames per second (525/60P). When carefully
executed, 525/60P can achieve fluid, lifelike fast motion, along with
breathtaking image detail. The 525/60P system is also superb for
resolving fine print on the screen — one reason why 525/60P is the
basis of the popular VGA computer display standard.
Film and Video Origination
Movie film is conventionally shot and displayed at 24 frames per
second. In the camera, the entire frame of film is exposed at one
time. In the theater, the entire frame is projected at one time.
Unfortunately, projecting at the native film rate of 24 frames per
second creates flicker. That’s why movie projectors use a special
shutter to display each frame twice, creating the effect of 48
frames per second.
Theatrical release movies aren’t the only programs that are
originally captured at 24 frames per second on motion picture
film. The following is a snapshot of common industry practice:
GenreTypical Origination
Theatrical release movies24P film
Made for TV movies24P film
Hour-long primetime dramas24P film
Music videos24P film
Network commercials24P film
SitcomsEither
DocumentariesEither
Network news magazinesEither
Live concerts60i video
Wildlife/natural history60i video
Reality-based shows60i video
Do-it-yourself series60i video
Soap operas60i video
News60i video
Talk shows60i video
Sports60i video
Local Commercials60i video
4
Video
DVD Technical Notes
Of course, the choice of film or video ultimately depends on
individual production budgets and artistic intent. And important
variations occur. A growing number of theatrical releases are
shot on video. And Sony’s latest HDCAM® high definition video
equipment can capture images at 24 frames per second
progressive scan – 24P.
Film-to-Video Transfer and 3-2 Pulldown
We’ve seen that much of television broadcasting starts out as
movie film at 24 frames per second. This means not only
has it been converted from film to video, it’s been converted
from 24P to 60i. A machine called a telecine performs both
conversions. Simple arithmetic says that 60÷24 = 2.5. This
means that each film frame must convert to an average of
2.5 video fields. A process called 3-2 pulldown performs
this conversion. The first film frame is converted to three
video fields. The next film frame is converted to two video
fields. The next film frame is converted to three video
fields, and so on. We get a pattern of 3-2-3-2-3-2 etc, from
which 3-2 pulldown gets its name. This pattern averages out
to 2.5 video fields for every film frame. The telecine
converts a film frame to three video fields by repeating the
first field. For example, the first video field may consist of
odd scanning lines, the second field consists of even
scanning lines and the third field consists of the same odd
scanning lines as the first.
Film and Video on DVD
The 24P encoding of film-originated DVDs means that 3-2
pulldown must be performed in the DVD player before the
picture can be displayed on a conventional television. The
exact pattern of 3-2 pulldown can have a subtle effect on the
rendering of motion. So it’s important that the DVD reproduce
the 3-2 pulldown cadence of the original master videotape.
That’s where the FFRFs come in. They identify each field to be
repeated as part of a “3.”
3-2 Reverse Conversion
The 525/24P encoding of film-originated material has a special
property. In conventional 525/60i video, each “B” field represents a slice of time 1/60th second after the corresponding “A”
field. To the extent that objects in the frame are moving, the two
fields won’t match and aren’t well-suited for direct output in
progressive scan.
In contrast, 525/24P film-originated DVD is inherently progressive and is perfectly suited to progressive scan display. Ironically,
today’s MPEG decoder chips automatically convert the 525/24P
progressive DVD into 525/60i interlaced video. There’s no way
to “tap into” the chips and extract the progressive signal.
Additional processing is required to convert the 525/60i interlaced
signal into a 525/60P progressive signal for output to a compatible television. The required process is called 3-2 reverseconversion. Because the process operates on a digital signal in
the digital domain, it can result in a super high-quality video
source that promises to be the ideal complement to high-end, bigscreen televisions with 525P inputs.
In order to fit a feature-length film onto a CD-sized disc, the
DVD format employs MPEG-2 digital compression. And
one important trick of this compression is to make an
important distinction between footage originally shot on
video and footage originally shot on film. As you would
expect, DVD stores video footage in its native 60i form.
But you might be surprised to learn that most DVDs shot
on film store the images at film’s native rate of 24 frames
per second!
Like material shot on video, the typical DVD shot on film is
encoded from 60i videotape. But in the DVD authoring
process, logic circuits in the majority of high-quality MPEG
encoders detect the telltale pattern of 3-2-3-2 in the incoming
video fields, the so-called 3-2 cadence. Since repeated fields
would waste precious disc space, the DVD eliminates them and
replaces them with First Field Repeat Flags (FFRFs) to tell
the player which fields to repeat. The remaining fields are
reassembled back into their original frames and encoded onto
the DVD in progressive scan at 525/24P. This system is 20%
more space-efficient than 60i. It’s an important advantage
because it enables DVDs to hold films that are 20% longer. Or
DVDs can encode each frame with a 20% more bits, for even
better picture quality.
Unfortunately, not every DVD player with 525P outputs fully
delivers on the promise. Concerns such as flicker, motion
artifacts and 3-2 cadence glitches can visibly degrade the
viewing experience. As later sections will show, the Sony DVPS9000ES represents a thorough engineering solution — one that
realizes the full potential of progressive scanning.
Realizing the Potential of 525P
Progressive scan 525P outputs have been promoted as a
must-have feature in high-end DVD players. But not all
progressive-scan outputs are created equal. Sony, a leader
in progressive scanning equipment for broadcasting and movie
production, understands the limitations of conventional
designs. And Sony engineers were determined to overcome
those limitations. The result is Sony’s exclusive Precision
Cinema Detection — the key to even higher performance in
525P reproduction.
Sony’s Fast and Pure Cinema Detection.
A thorough solution to the engineering challenges of
525P output, Sony’s Fast and Pure Cinema Detection
incorporates four significant advances:
5
1. High accuracy film detection with FFRF.
2. Dedicated microprocessor for motion detecting.
3. Separate 3-2 reverse conversion algorithms for video and film originated DVDs.
4. Full 3-2 reverse conversion.
Together, these advances enable the Sony DVP-S9000ES to
deliver more consistent, more satisfying, more seamless 525P
output with a wider variety of discs. Flicker, motion artifacts and
3-2 cadence glitches are controlled. The visibility of scanning
lines is minimized. Connect the DVP-S9000ES to a 525Pcompatible television, monitor or projector and prepare to be
amazed. You’ll approach the full glory of high definition picture
quality — from today’s standard DVDs!
High Accuracy Film Detection with FFRF
Smooth 525P output depends on proper 3-2 reverse conversion.
To accomplish this, the player must accurately reconstruct the 32 cadence of the original master videotape. The key to achieving
this is the sequence of First Field Repeat Flags (FFRFs) on the
DVD. Most DVDs contain a complete set of FFRFs. But
inconsistencies in videotape editing, MPEG encoding and DVD
authoring can result in irregularity in the FFRF signal. As
reviewers have already noticed, this can cause even highly
regarded players to stumble, producing visible motion artifacts.
Sony’s DVP-S9000ES overcomes the problem. The player
performs high-speed detection of missing flags, with flag lookahead and non-contiguous point detection. The player then
reconstructs missing flags, for smooth, uninterrupted playback of
DVD movies.
Dedicated Microprocessor with Motion Detection
The FFRF signal is designed to be present in all film-originated
DVDs — and absent from all video-originated DVDs. Yet even
in the most extreme case, where a film-originated DVD contains
no FFRFs at all, Sony’s dedicated microprocessor with motion
detection can elicit full performance. The microprocessor can
judge the correlation between fields very accurately,
supplementing the FFRF detection system. As a result, the Sony
DVP-S9000ES can read and reproduce even this worst-case disc
in beautiful, stable 525P.
Separate Algorithms for Video and Film Originated DVDs
“A” and “B” fields originated on film represent a single slice of
time and have no motion between them. “A” and “B” fields
originated on video represent different slices of time and can
have significant motion. For this reason, film and video require
substantially different algorithms in Interlace-to-Progressive
conversion. Conversion of film-originated DVDs can use
relatively simple de-interlacing. Conversion of video-originated
DVDs requires a more complex motion-adaptive algorithm.
The correct application of the video algorithm requires the
precise identification of motion between pairs of video fields.
The DVP-S9000ES accomplishes this with the motion detection
microprocessor. It uses the external graphics memory of the I-toP conversion circuit to read pixel-level motion of each field at
high speed. Then the microprocessor instantly selects the
appropriate conversion algorithm for video, for film or for still
scenes with no motion.
Fig. 3: At the top are the original
3-2 Reverse Conversion
6
film frames, showing a car
moving down the street. Next
comes the original 3-2
pulldown. Simple frame
memory reverse conversion
results in a motion blur every
time fields from different film
frames are combined. (This
occurs for two out of every five
frames — or 40% of the time!)
Sony’s DVP-S9000ES, bottom,
uses full 3-2 reverse conversion,
to preserve the integrity of the
original film frames.
Loading...
+ 14 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.