SOLOMON SYSTECH SSD1331, SSD1331U3R1, SSD1331U1R1, SSD1331Z Technical Data Manual

SOLOMON SYSTECH
SEMICONDUCTOR TECHNICAL DATA
This document contains information on a new product. Specifications and information herein are subject to change without notice.
http://www.solomon-systech.com
Copyright © 2007 Solomon Systech Limited
Advance Information
96RGB x 64 Dot Matrix
OLED/PLED Segment/Common Driver with Controller
SSD1331
Solomon Systech Nov 2007 P 2/68 Rev 1.2 SSD1331
CONTENTS
CONTENTS.........................................................................................................................................................2
1 GERENAL INFORMATION..................................................................................................................... 6
2 FEATURES..............................................................................................................................................6
3 ORDERING INFORMATION ...................................................................................................................6
4 BLOCK DIAGRAM ..................................................................................................................................7
5 SSD1331Z GOLD BUMP DIE PAD ASSIGNMENT................................................................................ 8
6 PIN DESCRIPTION................................................................................................................................ 12
7 FUNCTIONAL BLOCK DESCRIPTIONS..............................................................................................15
7.1 MCU INTERFACE SELECTION .................................................................................................................15
7.1.1 6800-series Parallel Interface ......................................................................................................15
7.1.2 8080-series Parallel Interface ......................................................................................................16
7.1.3 Serial Interface.............................................................................................................................17
7.2 COMMAND DECODER............................................................................................................................. 18
7.3 OSCILLATOR CIRCUIT AND DISPLAY TIME GENERATOR ............................................................................18
7.3.1 Oscillator ...................................................................................................................................... 18
7.3.2 FR synchronization ...................................................................................................................... 19
7.4 RESET CIRCUIT .....................................................................................................................................19
7.5 GRAPHIC DISPLAY DATA RAM (GDDRAM)............................................................................................ 20
7.5.1 GDDRAM structure ......................................................................................................................20
7.5.2 Data bus to RAM mapping under different input mode ...............................................................20
7.5.3 RAM mapping and Different color depth mode............................................................................21
7.6 GRAY SCALE DECODER .........................................................................................................................21
7.7 SEG / COM DRIVING BLOCK..................................................................................................................23
7.8 COMMON AND SEGMENT DRIVERS..........................................................................................................24
7.9 POWER ON AND OFF SEQUENCE........................................................................................................... 27
8 COMMAND TABLE...............................................................................................................................28
8.1 DATA READ / WRITE ..............................................................................................................................34
9 COMMAND DESCRIPTIONS................................................................................................................35
9.1 FUNDAMENTAL COMMAND......................................................................................................................35
9.1.1 Set Column Address (15h)...........................................................................................................35
9.1.2 Set Row Address (75h)................................................................................................................ 35
9.1.3 Set Contrast for Color A, B, C (81h, 82h, 83h) ........................................................................... 36
9.1.4 Master Current Control (87h).......................................................................................................36
9.1.5 Set Second Pre-charge Speed for Color A, B, C (8Ah)...............................................................37
9.1.6 Set Re-map & Data Format (A0h) ...............................................................................................37
9.1.7 Set Display Start Line (A1h).........................................................................................................42
9.1.8 Set Display Offset (A2h) ..............................................................................................................42
9.1.9 Set Display Mode (A4h ~ A7h) ....................................................................................................45
9.1.10 Set Multiplex Ratio (A8h) .............................................................................................................45
9.1.11 Dim mode setting (ABh)............................................................................................................... 45
9.1.12 Set Master Configuration (ADh)...................................................................................................45
9.1.13 Set Display ON/OFF (ACh / AEh / AFh) ......................................................................................45
9.1.14 Power Save Mode (B0h)..............................................................................................................46
9.1.15 Phase 1 and 2 Period Adjustment (B1h) ..................................................................................... 46
9.1.16 Set Display Clock Divide Ratio/ Oscillator Frequency (B3h) ....................................................... 46
9.1.17 Set Gray Scale Table (B8h)......................................................................................................... 46
9.1.18 Enable Linear Gray Scale Table (B9h)........................................................................................ 47
9.1.19 Set Pre-charge voltage (BBh)...................................................................................................... 47
9.1.20 Set V
COMH
Voltage (BEh).............................................................................................................. 47
9.1.21 NOP (BCh, BDh, E3h) ................................................................................................................. 47
9.1.22 Set Command Lock (FDh) ...........................................................................................................47
9.2 GRAPHIC ACCELERATION COMMAND SET DESCRIPTION.......................................................... 48
9.2.1 Draw Line (21h) ...........................................................................................................................48
9.2.2 Draw Rectangle (22h)..................................................................................................................48
SSD1331 Rev 1.2 P 3/68 Nov 2007 Solomon Systech
9.2.3 Copy (23h) ...................................................................................................................................49
9.2.4 Dim Window (24h) .......................................................................................................................49
9.2.5 Clear Window (25h) ..................................................................................................................... 50
9.2.6 Fill Enable/Disable (26h).............................................................................................................. 50
9.2.7 Continuous Horizontal & Vertical Scrolling Setup (27h) ..............................................................51
9.2.8 Deactivate scrolling (2Eh) ............................................................................................................51
9.2.9 Activate scrolling (2Fh) ................................................................................................................51
10 MAXIMUM RATINGS.............................................................................................................................52
11 DC CHARACTERISTICS.......................................................................................................................53
12 AC CHARACTERISTICS.......................................................................................................................54
13 APPLICATION EXAMPLE ....................................................................................................................58
14 PACKAGE OPTIONS............................................................................................................................59
14.1 SSD1331Z DIE TRAY INFORMATION...................................................................................................59
14.2 SSD1331U1R1 COF PACKAGE DIMENSIONS..............................................................................60
14.3 SSD1331U1R1 COF PACKAGE PIN ASSIGNMENT...................................................................... 62
14.4 SSD1331U3R1 COF PACKAGE DIMENSIONS..............................................................................64
14.5 SSD1331U3R1 COF PACKAGE PIN ASSIGNMENT...................................................................... 66
Solomon Systech Nov 2007 P 4/68 Rev 1.2 SSD1331
TABLES
Table 1 - Ordering Information ............................................................................................................................6
Table 2 - SSD1331Z Die Pad Coordinates..........................................................................................................9
Table 3 - Bus Interface selection .......................................................................................................................12
Table 4 - MCU interface assignment under different bus interface mode.........................................................15
Table 5 - Control pins of 6800 interface ............................................................................................................15
Table 6 - Control pins of 8080 interface (Form 1) .............................................................................................16
Table 7 - Control pins of 8080 interface (Form 2) .............................................................................................16
Table 8 - Control pins of Serial interface ........................................................................................................... 17
Table 9 - Data bus usage under different bus width and color depth mode......................................................20
Table 10 - Command Table...............................................................................................................................28
Table 11 - Address increment table (Automatic) ...............................................................................................34
Table 12 - Illustration of different COM output settings .....................................................................................39
Table 13 - Example of Set Display Offset and Display Start Line with no Remap............................................43
Table 14 - Example of Set Display Offset and Display Start Line with Remap.................................................44
Table 15 - Result of Change of Brightness by Dim Window Command............................................................ 49
Table 16 - Maximum Ratings............................................................................................................................. 52
Table 17 - DC Characteristics ...........................................................................................................................53
Table 18 - AC Characteristics............................................................................................................................ 54
Table 19 - 6800-Series MPU Parallel Interface Timing Characteristics ............................................................ 55
Table 20 - 8080-Series MPU Parallel Interface Timing Characteristics ............................................................ 56
Table 21 - Serial Interface Timing Characteristics ............................................................................................57
Table 22 - SSD1331U1R1 pin assignment .......................................................................................................63
Table 23 - SSD1331U3R1 pin assignment .......................................................................................................67
SSD1331 Rev 1.2 P 5/68 Nov 2007 Solomon Systech
FIGURES
Figure 1 - SSD1331 Block Diagram ....................................................................................................................7
Figure 2 - SSD1331Z Die Drawing ......................................................................................................................8
Figure 3 - SSD1331Z Alignment mark dimensions ...........................................................................................11
Figure 4 - Display data read back procedure - insertion of dummy read .......................................................... 15
Figure 5 – Example of Write procedure in 8080 parallel interface mode .......................................................... 16
Figure 6 – Example of Read procedure in 8080 parallel interface mode ..........................................................16
Figure 7 - Display data read back procedure - insertion of dummy read .......................................................... 17
Figure 8 - Write procedure in SPI mode ............................................................................................................17
Figure 9 - Oscillator Circuit ................................................................................................................................18
Figure 10 - 65k Color Depth Graphic Display Data RAM Structure .................................................................. 20
Figure 11 - 256-color mode mapping ................................................................................................................21
Figure 12 - Relation between GDRAM content and gray scale table entry for three colors in 65K color mode21
Figure 13 - Illustration of relation between graphic display RAM value and gray scale control........................22
Figure 14 - I
REF
Current Setting by Resistor Value............................................................................................23
Figure 15 - I
SEG
current vs VCC setting at constant I
REF
, Contrast = FFh ...........................................................23
Figure 16 - Segment and Common Driver Block Diagram................................................................................ 24
Figure 17 - Segment and Common Driver Signal Waveform............................................................................25
Figure 18 - Gray Scale Control by PWM in Segment........................................................................................26
Figure 19 : The Power ON sequence ................................................................................................................27
Figure 20 : The Power OFF sequence .............................................................................................................. 27
Figure 21 - Example of Column and Row Address Pointer Movement............................................................. 35
Figure 22 - Effect of setting the second pre-charge under different speeds ..................................................... 37
Figure 23 - Address Pointer Movement of Horizontal Address Increment Mode..............................................37
Figure 24 - Address Pointer Movement of Vertical Address Increment Mode .................................................. 37
Figure 25 - Example of Column Address Mapping............................................................................................ 38
Figure 26 - COM Pins Hardware Configuration (MUX ratio: 64) .......................................................................40
Figure 27 – Transition between different modes ...............................................................................................45
Figure 28 - Typical Oscillator frequency adjustment by B3 command (V
DD
=2.7V) .......................................... 46
Figure 29 - Example of gamma correction by gray scale table setting .............................................................47
Figure 30 – Typical Pre-charge voltage level setting by command BBh........................................................... 47
Figure 31 - Example of Draw Line Command ................................................................................................... 48
Figure 32 - Example of Draw Rectangle Command.......................................................................................... 48
Figure 33 - Example of Copy Command ...........................................................................................................49
Figure 34 - Example of Copy + Clear = Move Command ................................................................................50
Figure 35 - Examples of Continuous Horizontal and Vertical Scrolling command setup .................................. 51
Figure 36 - 6800-series parallel interface characteristics..................................................................................55
Figure 37 - 8080-series parallel interface characteristics (Form 1)...................................................................56
Figure 38 - 8080-series parallel interface characteristics (Form 2)...................................................................56
Figure 39 - Serial interface characteristics ........................................................................................................ 57
Figure 40 - Application Example for SSD1331U1R1.........................................................................................58
Figure 41 - Die Tray Information........................................................................................................................ 59
Figure 42 - SSD1331U1R1 outline drawing ......................................................................................................60
Figure 43 - SSD1331U1R1 pin assignment drawing......................................................................................... 62
Figure 44 - SSD1331U3R1 outline drawing ......................................................................................................64
Figure 45 - SSD1331U3R1 pin assignment drawing......................................................................................... 66
Solomon Systech Nov 2007 P 6/68 Rev 1.2 SSD1331
1 GERENAL INFORMATION
The SSD1331 is a single chip CMOS OLED/PLED driver with 288 segments and 64 commons output, supporting up to 96RGB x 64 dot matrix display. This chip is designed for Common Cathode type OLED/PLED panel.
The SSD1331 had embedded Graphic Display Data RAM (GDDRAM). It supports with 8, 9, 16 bits 8080 / 6800 parallel interface as well as serial peripheral interface. It has 256-step contrast and 65K color control. To facilitate communication between lower operating voltages MCU, it has separate power for I/O interface logic. SSD1331 is suitable for mobile phones, MP3, MP4 and other industrial devices.
2 FEATURES
Resolution: 96RGB x 64 dot matrix panel  65k color depth support by embedded 96x64x16 bit GDDRAM display buffer  Power supply:
o
V
DD
= 2.4V to 3.5V for IC logic
o
V
CC
= 8.0V to 18.0V for Panel driving
o
V
DDIO
= 1.6V to VDD for MCU interface
Segment maximum source current: 200uA  Common maximum sink current: 60mA  256 step contrast control for the each color component plus 16 step master current control 
Pin selectable MCU interface
o 8/9/16 bits 6800-series parallel Interface o 8/9/16 bits 8080-series Parallel Interface o Serial Peripheral Interface
Color swapping function (RGB <-> BGR)  Graphic Accelerating Command (GAC) set with Continuous Horizontal, Vertical and Diagonal
Scrolling
Programmable Frame Rate
Wide range of operating temperature: -40 to 85 °C
3 ORDERING INFORMATION
Table 1 - Ordering Information
Ordering Part Number SEG COM Package Form Reference Remark
SSD1331Z 96x3 64 COG Page 8, 59
Min SEG pad pitch: 40.2 um
Min COM pad pitch: 41.8 um
SSD1331U1R1 96x3 64 COF Page 60
35mm film, 5 sprocket hole
8 bit or SPI interface
Output lead pitch: 0.06mm for SEG,
0.09mm for COM
SSD1331U3R1 96x3 64 COF Page 64
35mm film, 4 sprocket hole
8 bit or SPI interface
Output lead pitch: 0.06mm for SEG,
0.09mm for COM
SSD1331 Rev 1.2 P 7/68 Nov 2007 Solomon Systech
4 BLOCK DIAGRAM
Figure 1 - SSD1331 Block Diagram
MCU Interface
GDDRAM
Gray Scale Decoder
Common Drivers Segment Drivers Common Drivers
SEG/COM Driving block
Oscillator
Display Timing
Generator
Command Decoder
(Even) (odd)
RES#
CS#
D/C#
E(RD#)
R/W #(WR#)
BS[3:0]
D[15:0]
V
CC
V
DD
V
DDIO
V
SS
V
LSS
CL
CLS
FR
I
REF
V
COMH
COM0 COM2 COM4 . . . COM58 COM60 COM62
COM63 COM61 COM59 . . . COM5 COM3 COM1
SC95 SB95 SA95 SC94 SB94 SA94 SC93 SB93 SA93 . . . SC2 SB2 SA2 SC1 SB1 SA1 SC0 SB0 SA0
GPIO0
GPIO1
AV
DD
Solomon Systech Nov 2007 P 8/68 Rev 1.2 SSD1331
5 SSD1331Z GOLD BUMP DIE PAD ASSIGNMENT
Figure 2 - SSD1331Z Die Drawing
Pad 1
Die size 13.1mm x 1.58mm
Die height 457um
Min I/O pad pitch 76.2 um
Min SEG pad pitch 40.2 um
Min COM pad pitch 41.8 um
Bump height Nominal 15um
Bump size Pad 1-163 50um x 72um
Pad164-195, 486-517 72um x 28um
Pad 196-485 28um x 72um
Alignment mark + shape (5446.0, -402.0) 75um x 75um + shape (-5446.0, -402.0) 75um x 75um
SSD1331Z
Pad 1,2,3,…->163
Gold Bumps face up
X
Y
SSD1331 Rev 1.2 P 9/68 Nov 2007 Solomon Systech
Table 2 - SSD1331Z Die Pad Coordinates
Pad no. Pad Name X-Axis Y-Axis Pad no. Pad Name X-Axis Y-Axis Pad no. Pad Name X-Axis Y-Axis
1 NC -6319.4 -712.5 81 BS2 -76.2 -712.5 161 N C 6167.0 -712.5 2 NC -6243.2 -712.5 82 VSS 0.0 -712.5 162 NC 6243.2 -712.5 3 NC -6167.0 -712.5 83 B S3 76.2 -712.5 163 NC 6319.4 -712.5 4 NC -6090.8 -712.5 84 VD DIO 152.4 -712.5 164 COM 31 6420.1 -647.9 5 NC -6014.6 -712.5 85 VDDIO 228.6 -712.5 165 COM 30 6420.1 -606.1 6 NC -5791.2 -712.5 86 IREF 304.8 -712.5 166 COM 29 6420.1 -564.3 7 VC C -5715.0 -712.5 87 VC C 381.0 -712.5 167 COM 28 6420.1 -522.5 8 VC C -5638.8 -712.5 88 VC C 457.2 -712.5 168 COM 27 6420.1 -480.7 9 VC C -5562.6 -712.5 89 VC C 533.4 -712.5 169 COM 26 6420.1 -438.9
10 VLSS -5486.4 -712.5 90 F R 609.6 -712.5 170 COM 25 6420.1 -397.1
11 VLSS - 5410.2 -712.5 91 C L 685.8 -712.5 171 C OM24 6420.1 -355.3 12 VLSS -5334.0 -712.5 92 VSS 762.0 -712.5 172 COM 23 6420.1 -313.5 13 VLSS -5257.8 -712.5 93 CLS 838.2 -712.5 173 COM 22 6420.1 -271.7 14 VLSS -5181.6 -712.5 94 VD DIO 914.4 -712.5 174 COM 21 6420.1 -229.9 15 VLSS -5105.4 -712.5 95 VDD IO 990.6 -712.5 175 COM 20 6420.1 -188.1 16 VLSS -5029.2 -712.5 96 VDD IO 1066.8 -712.5 176 COM 19 6420.1 -146.3 17 VLSS -4953.0 -712.5 97 VDD IO 1143.0 -712.5 177 COM 18 6420.1 -104.5 18 VLSS -4876.8 -712.5 98 CSB 1219.2 -712.5 178 COM 17 6420.1 -62.7 19 VLSS -4800.6 -712.5 99 VSS 1295.4 -712.5 179 C OM16 6420.1 -20.9 20 VLSS -4724.4 -712.5 100 RESB 1371.6 -712.5 180 COM 15 6420.1 20.9 21 VLSS -4648.2 -712.5 101 VD DIO 1447.8 -712.5 181 C OM14 6420.1 62.7 22 VSS -4572.0 -712.5 102 VDD IO 1524.0 -712.5 182 C OM13 6420.1 104.5 23 VSS -4495.8 -712.5 103 D C 1600.2 -712.5 183 COM 12 6420.1 146.3 2 4 V S S - 4 4 19 . 6 - 7 12 . 5 10 4 V S S 16 7 6 . 4 - 7 12 . 5 18 4 C O M 11 6 4 2 0 . 1 18 8 . 1 25 B GGND -4343.4 -712.5 105 RW 1752.6 -712.5 185 C OM10 6420.1 229.9 26 VDD -4267.2 -712.5 106 E 1828.8 -712.5 186 C OM9 6420.1 271.7 27 VDD -4191.0 -712.5 107 VD DIO 1905.0 -712.5 187 COM 8 6420.1 313.5 28 VDD -4114.8 -712.5 108 VDD 1981.2 -712.5 188 COM 7 6420.1 355.3 29 VDDIO -4038.6 -712.5 109 VD D 2057.4 -712.5 189 COM 6 6420.1 397.1 30 VDDIO -3962.4 -712.5 110 VDD 2133.6 -712.5 190 C OM5 6420.1 438.9 31 VDD IO -3886.2 -712.5 111 D0 2209.8 -712.5 191 COM 4 6420.1 480.7 32 VCC -3810.0 -7 12.5 112 D 1 2286.0 -712.5 192 C OM3 6420.1 522.5 33 VCC -3733.8 -712.5 113 D 2 2362.2 -712.5 193 C OM2 6420.1 564.3 34 VCC -3657.6 -712.5 114 D 3 2438.4 -712.5 194 C OM1 6420.1 606.1 35 VSSB -3581.4 -712.5 115 D4 2514.6 -712.5 195 COM 0 6420.1 647.9 36 VSSB -3505.2 -712.5 116 D5 2590.8 - 712.5 196 VLSS 5908.5 643.6 37 VSSB -3429.0 -712.5 117 D6 2667.0 -712.5 197 SA0 5828.1 643.6 38 GDR -3352.8 -712.5 118 D7 2743.2 -712.5 198 SB 0 5787.9 643.6 39 GDR -3276.6 -712.5 119 D8 2819.4 -712.5 199 SC0 5747.7 643.6 40 GDR -3200.4 -712.5 120 D9 2895.6 -712.5 200 SA 1 5707.5 643.6 41 GDR -3124.2 -712.5 121 D10 2971.8 -712.5 201 SB 1 5667.3 643.6 42 GDR -3048.0 -712.5 122 D11 3048.0 -712.5 202 SC 1 5627.1 643.6 43 GDR -2971.8 -712.5 123 D12 3124.2 -712.5 203 SA2 5586.9 643.6 44 GDR -2895.6 -712.5 124 D13 3200.4 -712.5 204 SB 2 5546.7 643.6 45 VDDB -2819.4 -712.5 125 D14 3276.6 -712.5 205 SC2 5506.5 643.6 46 VDDB -2743.2 -712.5 126 D15 3352.8 -712.5 206 SA 3 5466.3 643.6 47 VDDB -2667.0 -712.5 127 VSS 3429.0 -712.5 207 SB 3 5426.1 643.6 48 VDDB -2590.8 -712.5 128 T R11 3505.2 -712.5 208 SC3 5385.9 643.6 49 VDDB -2514.6 -712.5 129 TR10 3581.4 -712.5 209 SA 4 5345.7 643.6 50 VDD -2438.4 -712.5 130 TR9 3657.6 -712.5 210 SB4 5305.5 643.6 51 VDD IO -2362.2 -712.5 131 T R8 3733.8 -712.5 211 SC4 5265.3 643.6 52 VDD -2286.0 -712.5 132 TR7 3810.0 -712.5 212 SA 5 5225.1 643.6 53 VDD -2209.8 -712.5 133 TR6 3886.2 -712.5 213 SB 5 5184.9 643.6 54 FB -2133.6 -712.5 134 VSS 3962.4 -712.5 214 SC 5 5144.7 643.6 55 VB REF -2057.4 -712.5 135 T R5 4038.6 -712.5 215 SA 6 5104.5 643.6 56 VSS -1981.2 -712.5 136 TR 4 4114.8 -712.5 216 SB 6 5064.3 643.6 57 GP IO0 -1905.0 -712.5 137 T R3 4191.0 -712.5 217 SC 6 5024.1 643.6 58 GPIO1 -1828.8 -712.5 138 T R2 4267.2 -712.5 218 SA 7 4983.9 643.6 59 VDDIO -1752.6 -712.5 139 T R1 4343.4 -712.5 219 SB 7 4943.7 643.6 60 VCIR -1676.4 -712.5 140 T R0 4419.6 -712.5 220 SC7 4903.5 643.6 61 VCIR -1600.2 -712.5 141 VSS 4495.8 -712.5 221 SA 8 4863.3 643.6 62 VCIR -1524.0 -712.5 142 VCOM H 4572.0 -712.5 222 SB8 4823.1 643.6 63 VCIR -1447.8 -712.5 143 VCOM H 4648.2 -712.5 223 SC8 4782.9 643.6 64 VCIR -1371.6 -712.5 144 VCOM H 4724.4 -712.5 224 SA 9 4742.7 643.6 65 VDD -1295.4 -712.5 145 VDD 4800.6 -712.5 225 SB9 4702.5 643.6 66 VDD -1219.2 -712.5 146 VDD 4876.8 -712.5 226 SC9 4662.3 643.6 67 VDD -1143.0 -712.5 147 VD DIO 4953.0 -712.5 227 SA 10 4622.1 643.6 68 VDD -1066.8 -712.5 148 VD DIO 5029.2 -712.5 228 SB 10 4581.9 643.6 69 AVD D -990.6 -712.5 149 VCC 5105.4 -712.5 229 SC10 4541.7 643.6 70 AVD D -914.4 -712.5 150 VCC 5181.6 -712.5 230 SA 11 4501.5 643.6 71 VDD IO -838.2 -712.5 151 VC C 5257.8 -712.5 231 SB 11 4461.3 643.6 72 VDDIO -762.0 -712.5 152 VC C 5334.0 -712.5 232 SC11 4421.1 643.6 73 VDDIO -685.8 -712.5 153 VCC 5410.2 -712.5 233 SA 12 4380.9 643.6 74 VDDIO -609.6 -712.5 154 VCC 5486.4 -712.5 234 SB12 4340.7 643.6 75 VDDIO -533.4 -712.5 155 NC 5562.6 -712.5 235 SC 12 4300.5 643.6 76 VDDIO -457.2 -712.5 156 VLSS 5638.8 -712.5 236 SA13 4260.3 643.6 77 B S0 -381.0 -712.5 157 VLSS 5715.0 -712.5 237 SB 13 4220.1 643.6 78 VSS -304.8 -712.5 158 N C 5791.2 -712.5 238 SC13 4179.9 643.6 79 B S1 -228.6 -712.5 159 N C 6014.6 -712.5 239 SA 14 4139.7 643.6 80 VDDIO -152.4 -712.5 160 NC 6090.8 -712.5 240 SB 14 4099.5 643.6
Solomon Systech Nov 2007 P 10/68 Rev 1.2 SSD1331
P a d no . Pa d N ame X - Axis Y - A xis P ad no . P ad N a m e X - A xis Y - A xis P ad no . P ad N a m e X -A xis Y-Axis
241 SC 14 4059.3 643.6 321 SB 41 843.3 643.6 401 SA 68 -2493.3 643.6 242 SA 15 4019.1 643.6 322 SC 41 803.1 643.6 402 SB68 -2533.5 643.6 243 SB 15 3978.9 643.6 323 SA 42 762.9 643.6 403 SC68 -2573.7 643.6 244 SC15 3938.7 643.6 324 SB 42 722.7 643.6 404 SA69 -2613.9 643.6 245 SA 16 3898.5 643.6 325 SC42 682.5 643.6 405 SB 69 -2654.1 643.6 246 SB 16 3858.3 643.6 326 SA 43 642.3 643.6 406 SC 69 -2694.3 643.6 247 SC16 3818.1 643.6 327 SB 43 602.1 643.6 407 SA 70 -2734.5 643.6 248 SA 17 3777.9 643.6 328 SC43 561.9 643.6 408 SB 70 -2774.7 643.6 249 SB 17 3737.7 643.6 329 SA 44 521.7 643.6 409 SC70 -2814.9 643.6 250 SC17 3697.5 643.6 330 SB 44 481.5 643.6 410 SA 71 -2855.1 643.6
251 SA 18 3657.3 643.6 331 SC44 441.3 643.6 411 SB 71 -2895.3 643.6 252 SB 18 3617.1 643.6 332 SA 45 401.1 643.6 412 SC 71 -2935.5 643.6 253 SC18 3576.9 643.6 333 SB 45 360.9 643.6 413 SA72 -2975.7 643.6 254 SA 19 3536.7 643.6 334 SC45 320.7 643.6 414 SB 72 -3015.9 643.6 255 SB 19 3496.5 643.6 335 SA 46 280.5 643.6 415 SC 72 -3056.1 643.6 256 SC19 3456.3 643.6 336 SB 46 240.3 643.6 416 SA73 -3096.3 643.6 257 SA 20 3416.1 643.6 337 SC 46 200.1 643.6 417 SB 73 -3136.5 643.6 258 SB 20 3375.9 643.6 338 SA 47 159.9 643.6 418 SC73 -3176.7 643.6 259 SC 20 3335.7 643.6 339 SB 47 119.7 643.6 419 SA74 -3216.9 643.6 260 SA 21 3295.5 643.6 340 SC47 79.5 643.6 420 SB 74 -3257.1 643.6
261 SB 21 3255.3 643.6 341 SA 48 -81.3 643.6 421 SC 74 -3297.3 643.6 262 SC21 3215.1 643.6 342 SB 48 -121.5 643.6 422 SA 75 -3337.5 643.6 263 SA 22 3174.9 643.6 343 SC48 -161.7 643.6 423 SB 75 -3377.7 643.6 264 SB 22 3134.7 643.6 344 SA49 -201.9 643.6 424 SC75 -3417.9 643.6 265 SC 22 3094.5 643.6 345 SB 49 -242.1 643.6 425 SA 76 -3458.1 643.6 266 SA 23 3054.3 643.6 346 SC 49 -282.3 643.6 426 SB 76 -3498.3 643.6 267 SB 23 3014.1 643.6 347 SA 50 -322.5 643.6 427 SC 76 -3538.5 643.6 268 SC 23 2973.9 643.6 348 SB 50 -362.7 643.6 428 SA 77 -3578.7 643.6 269 SA 24 2933.7 643.6 349 SC 50 -402.9 643.6 429 SB 77 -3618.9 643.6 270 SB 24 2893.5 643.6 350 SA 51 -443.1 643.6 430 SC 77 -3659.1 643.6
271 SC 24 2853.3 643.6 351 SB 51 -483.3 643.6 431 SA 78 -3699.3 643.6 272 SA 25 2813.1 643.6 352 SC 51 -523.5 643.6 432 SB 78 -3739.5 643.6 273 SB 25 2772.9 643.6 353 SA 52 -563.7 643.6 433 SC 78 -3779.7 643.6 274 SC 25 2732.7 643.6 354 SB 52 -603.9 643.6 434 SA 79 -3819.9 643.6 275 SA 26 2692.5 643.6 355 SC 52 -644.1 643.6 435 SB 79 -3860.1 643.6 276 SB 26 2652.3 643.6 356 SA 53 -684.3 643.6 436 SC 79 -3900.3 643.6 277 SC 26 2612.1 643.6 357 SB 53 -724.5 643.6 437 SA 80 -3940.5 643.6 278 SA 27 2571.9 643.6 358 SC53 -764.7 643.6 438 SB 80 -3980.7 643.6 279 SB 27 2531.7 643.6 359 SA54 -804.9 643.6 439 SC80 -4020.9 643.6 280 SC 27 2491.5 643.6 360 SB 54 -845.1 643.6 440 SA 81 -4061.1 643.6
281 SA 28 2451.3 643.6 361 SC54 -885.3 643.6 441 SB 81 -4101.3 643.6 282 SB 28 2411.1 643.6 362 SA55 -925.5 643.6 442 SC81 -4141.5 643.6 283 SC 28 2370.9 643.6 363 SB 55 -965.7 643.6 443 SA 82 -4181.7 643.6 284 SA 29 2330.7 643.6 364 SC 55 -1005.9 643.6 444 SB 82 -4221.9 643.6 285 SB 29 2290.5 643.6 365 SA 56 -1046.1 643.6 445 SC 82 -4262.1 643.6 286 SC 29 2250.3 643.6 366 SB 56 -1086.3 643.6 446 SA 83 -4302.3 643.6 287 SA 30 2210.1 643.6 367 SC 56 -1126.5 643.6 447 SB 83 -4342.5 643.6 288 SB 30 2169.9 643.6 368 SA57 -1166.7 643.6 448 SC83 -4382.7 643.6 289 SC 30 2129.7 643.6 369 SB 57 -1206.9 643.6 449 SA 84 -4422.9 643.6 290 SA 31 2089.5 643.6 370 SC57 -1247.1 643.6 450 SB 84 -4463.1 643.6
291 SB 31 2049.3 643.6 371 SA 58 -1287.3 643.6 451 SC84 -4503.3 643.6 292 SC31 2009.1 643.6 372 SB 58 -1327.5 643.6 452 SA 85 -4543.5 643.6 293 SA 32 1968.9 643.6 373 SC58 -1367.7 643.6 453 SB 85 -4583.7 643.6 294 SB 32 1928.7 643.6 374 SA59 -1407.9 643.6 454 SC 85 -4623.9 643.6 295 SC 32 1888.5 643.6 375 SB 59 -1448.1 643.6 455 SA 86 -4664.1 643.6 296 SA 33 1848.3 643.6 376 SC59 -1488.3 643.6 456 SB 86 -4704.3 643.6 297 SB 33 1808.1 643.6 377 SA 60 -1528.5 643.6 457 SC 86 -4744.5 643.6 298 SC 33 1767.9 643.6 378 SB 60 -1568.7 643.6 458 SA 87 -4784.7 643.6 299 SA 34 1727.7 643.6 379 SC60 -1608.9 643.6 459 SB 87 -4824.9 643.6 300 SB 34 1687.5 643.6 380 SA 61 -1649.1 643.6 460 SC87 -4865.1 643.6
301 SC 34 1647.3 643.6 381 SB 61 -1689.3 643.6 461 SA88 -4905.3 643.6 302 SA 35 1607.1 643.6 382 SC 61 -1729.5 643.6 462 SB 88 -4945.5 643.6 303 SB 35 1566.9 643.6 383 SA62 -1769.7 643.6 463 SC 88 -4985.7 643.6 304 SC 35 1526.7 643.6 384 SB 62 -1809.9 643.6 464 SA 89 -5025.9 643.6 305 SA 36 1486.5 643.6 385 SC62 -1850.1 643.6 465 SB 89 -5066.1 643.6 306 SB 36 1446.3 643.6 386 SA63 -1890.3 643.6 466 SC 89 -5106.3 643.6 307 SC 36 1406.1 643.6 387 SB 63 -1930.5 643.6 467 SA 90 -5146.5 643.6 308 SA 37 1365.9 643.6 388 SC63 -1970.7 643.6 468 SB 90 -5186.7 643.6 309 SB 37 1325.7 643.6 389 SA64 -2010.9 643.6 469 SC 90 -5226.9 643.6
310 S C37 1285.5 643.6 390 SB 64 -2051.1 643.6 470 SA 91 -5267.1 643.6
311 SA 38 1245.3 643.6 391 SC 64 -2091.3 643.6 471 SB 91 -5307.3 643.6 312 S B38 1205.1 643.6 392 SA 65 -2131.5 643.6 472 SC91 -5347.5 643.6 313 S C38 1164.9 643.6 393 SB 65 -2171.7 643.6 473 SA 92 -5387.7 643.6 314 S A39 1124.7 643.6 394 SC 65 -2211.9 643.6 474 SB 92 -5427.9 643.6 315 S B39 1084.5 643.6 395 SA 66 -2252.1 643.6 475 SC92 -5468.1 643.6 316 S C39 1044.3 643.6 396 SB 66 -2292.3 643.6 476 SA 93 -5508.3 643.6 317 S A40 1004.1 643.6 397 SC 66 -2332.5 643.6 477 SB 93 -5548.5 643.6 318 S B40 963.9 643.6 398 SA 67 -2372.7 643.6 478 SC93 -5588.7 643.6 319 S C40 923.7 643.6 399 SB 67 -2412.9 643.6 479 SA 94 -5628.9 643.6
320 SA 41 883.5 643.6 400 SC67 -2453.1 643.6 480 SB 94 -5669.1 643.6
SSD1331 Rev 1.2 P 11/68 Nov 2007 Solomon Systech
Figure 3 - SSD1331Z Alignment mark dimensions
Pad no . Pad N a m e X- Axis Y- Axis
481 SC 94 -5709.3 643.6 482 SA 95 -5749.5 643.6 483 SB 95 -5789.7 643.6 484 SC95 -5829.9 643.6 485 VLSS -5910.3 643.6 486 COM 32 -6420.1 647.9 487 COM 33 -6420.1 606.1 488 COM 34 -6420.1 564.3 489 COM 35 -6420.1 522.5 490 COM 36 -6420.1 480.7 491 COM37 -6420.1 438.9 492 COM 38 -6420.1 397.1 493 COM 39 -6420.1 355.3 494 COM 40 -6420.1 313.5 495 COM 41 -6420.1 271.7 496 COM 42 -6420.1 229.9 497 COM 43 -6420.1 188.1 498 COM 44 -6420.1 146.3 499 COM 45 -6420.1 104.5 500 COM 46 -6420.1 62.7 501 COM47 -6420.1 20.9 502 COM 48 -6420.1 -20.9 503 COM 49 -6420.1 -62.7 504 COM 50 -6420.1 -104.5 505 COM 51 -6420.1 -146.3 506 COM 52 -6420.1 -188.1 507 COM 53 -6420.1 -229.9 508 COM 54 -6420.1 -271.7 509 COM 55 -6420.1 -313.5 510 COM 56 -6420.1 -355.3
511 COM 57 -6420.1 -397.1 512 COM 58 -6420.1 -438.9 513 COM 59 -6420.1 -480.7 514 COM 60 -6420.1 -522.5 515 COM 61 -6420.1 -564.3 516 COM 62 -6420.1 -606.1 517 COM 63 -6420.1 -647.9
+ shape
Unit in um
Solomon Systech Nov 2007 P 12/68 Rev 1.2 SSD1331
6 PIN DESCRIPTION
Pin Name Pin Type Description
VDD Power Power supply pin for core VDD
AVDD Power Analog power supply. It must be connected to V
DD
during operation.
V
DDIO
Power Power supply for interface logic level. It should be match with the MCU interface
voltage level. V
DDIO
must always be equal or lower than VDD.
VCC Power Power supply for panel driving voltage. This is also the most positive power
voltage supply pin.
VSS Power Ground pin
V
LSS
Power Analog system ground pin.
V
COMH
O COM signal deselected voltage level.
A capacitor should be connected between this pin and V
SS
.
BGGND Power Connect to Ground
V
DDB
Power Reserved pin. It should be connect to VDD externally.
V
SSB
Power Reserved pin. It should be connected to VSS externally.
GDR O Reserved pin. Keep NC (i.e. no connection).
FB I Reserved pin. Keep NC (i.e. no connection).
V
BREF
O Reserved pin. Keep NC (i.e. no connection).
GPIO0 I/O Reserved pin. Keep NC (i.e. no connection).
GPIO1 I/O Reserved pin. Keep NC (i.e. no connection).
V
CIR
O Reserved pin. Keep NC (i.e. no connection).
BS[3:0] I MCU bus interface selection pins.
Table 3 - Bus Interface selection
BS[3:0] Bus Interface Selection
0000 SPI 0100 8-bit 6800 parallel 0101 16-bit 6800 parallel 0110 8-bit 8080 parallel 0111 16-bit 8080 parallel 1100 9-bit 6800 parallel 1110 9-bit 8080 parallel
I
REF
I This pin is the segment output current reference pin.
A resistor should be connected between this pin and V
SS
to maintain the I
REF
current at 10uA. Please refer to Figure 14 for the details formula of resistor value.
SSD1331 Rev 1.2 P 13/68 Nov 2007 Solomon Systech
Pin Name Pin Type Description
FR O This pin outputs RAM write synchronization signal. Proper timing between MCU
data writing and frame display timing can be achieve to prevent tearing effect. Keep NC if not used. Refer to section
7.3.2 for details usage.
CL I This is external clock input pin.
When internal clock is enabled (i.e. HIGH in CLS pin), this pin is not used and should be connected to V
SS
. When internal clock is disabled (i.e. LOW in CLS
pin), this pin is the external clock source input pin.
CLS I Internal clock selection pin.
When this pin is pulled high (i.e. connect to V
DDIO
), internal oscillator is enable (normal operation). When this pin is pulled low, an external clock signal should be connected to CL.
CS# I This pin is the chip select input connecting to the MCU.
RES# I This pin is reset signal input.
When the pin is low, initialization of the chip is executed. Keep this pin high (i.e. connect to V
DDIO
) during normal operation.
D/C# I This pin is Data/Command control pin connecting to the MCU.
When the pin is pulled high (i.e. connect to V
DDIO
), the data at D[15:0]will be interpreted as data. When the pin is pulled low, the data at D[15:0] will be interpreted as command.
R/W# (WR#) I This pin is read / write control input pin connecting to the MCU interface.
When interfacing to a 6800-series microprocessor, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled high (i.e. connect to V
DDIO
) and write mode when low.
When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled low and the chip is selected.
When serial interface is selected, this pin R/W#(WR#) must be connected to V
SS
.
E (RD#) I This pin is MCU interface input.
When interfacing to a 6800-series microprocessor, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled high (i.e. connect to V
DDIO
) and the chip is selected.
When connecting to an 8080-microprocessor, this pin receives the Read (RD#) signal. Read operation is initiated when this pin is pulled low and the chip is selected.
When serial interface is selected, this pin E(RD#) must be connected to V
SS
.
D[15:0] I/O These pins are bi-directional data bus connecting to the MCU data bus.
Unused pins are recommended to tie low. (Except for D2 pin in serial mode)
Refer to Section
7.1 for different bus interface connection.
SA[95:0] SB[95:0] SC[95:0]
O These pins provide the OLED segment driving signals. These pins are in high
impedance state when display is OFF by command Set Display OFF.
These 288 segment pins are divided into 3 groups, SA, SB and SC. Each group can have different color settings for color A, B and C.
Solomon Systech Nov 2007 P 14/68 Rev 1.2 SSD1331
Pin Name Pin Type Description
COM[63:0] I/O These pins provide the Common switch signals to the OLED panel. These pins
are in high impedance state when display is OFF by command Set Display OFF.
TR[11:0] I Testing reserved pins. These pins should be kept float.
NC NC Dummy pins. These pins should be kept float and should not be connected to
any other signal pins nor any electrical signal. Do not connect NC pins together.
SSD1331 Rev 1.2 P 15/68 Nov 2007 Solomon Systech
7 FUNCTIONAL BLOCK DESCRIPTIONS
7.1 MCU Interface Selection
SSD1331 MCU interface consist of 16 data pin and 5 control pins. The pin assignment at different interface mode is summarized in
Table 4. Different MCU mode can be set by hardware selection on BS[3:0] pins (refer
to
Table 3 for BS pins setting)
Table 4 - MCU interface assignment under different bus interface mode
                                         
          
  
SCLK
  
Tie LowTie Low
Tie Low
Tie Low



 


Tie Low
Tie Low 

7.1.1 6800-series Parallel Interface
A low in R/W# indicates WRITE operation and high in R/W# indicates READ operation. A low in D/C# indicates COMMAND read/write and high in D/C# indicates DATA read/write. The E input serves as data latch signal while CS# is low. Data is latched at the falling edge of E signal.
Table 5 - Control pins of 6800 interface
Function E R/W# CS# D/C#
Write command
LLL
Read status
HLL
Write data
LLH
Read data
HLH
Note
(1)
stands for falling edge of signal
(2)
H stands for high in signal
(3)
L stands for low in signal
In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in
Figure 4
Figure 4 - Display data read back procedure - insertion of dummy read
N n n+1 n+2
R/W#
E
Databus
Write column
address
Read 1st data
Dumm
y
read Read 2nd data Read 3rd data
Solomon Systech Nov 2007 P 16/68 Rev 1.2 SSD1331
7.1.2 8080-series Parallel Interface
A low in D/C# indicates COMMAND read/write and high in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept low. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept low.
Figure 5 – Example of Write procedure in 8080 parallel interface mode
CS#
WR#
D[7:0]
D/C#
RD#
high
low
Figure 6 – Example of Read procedure in 8080 parallel interface mode
CS#
WR#
D[7:0]
D/C#
RD#
high
low
Table 6 - Control pins of 8080 interface (Form 1)
Function RD# WR# CS# D/C#
Write command H
LL
Read status
HLL
Write data H
LH
Read data
HLH
Note
(1)
stands for rising edge of signal
(2)
H stands for high in signal
(3)
L stands for low in signal
(4)
Refer to Figure 37 for Form 1 8080-Series MPU Parallel Interface Timing Characteristics
Alternatively, E(RD#) and
R/W#(WR#) can be keep stable while CS# is serve as the data/command latch
signal.
Table 7 - Control pins of 8080 interface (Form 2)
Function RD# WR# CS# D/C#
Write command H
L
L
Read status
L
H
L
Write data H
L
H
Read data
L
H
H
Note
(1)
stands for rising edge of signal
(2)
H stands for high in signal
(3)
L stands for low in signal
(4)
Refer to Figure 38 for Form 2 8080-Series MPU Parallel Interface Timing Characteristics
SSD1331 Rev 1.2 P 17/68 Nov 2007 Solomon Systech
In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in
Figure 7.
Figure 7 - Display data read back procedure - insertion of dummy read
N n n+1 n+2
WR#
RD#
Databus
Write column
address
Read 1st dataDummy read Read 2nd data Read 3rd data
7.1.3 Serial Interface
The serial interface consists of serial clock SCLK (D0), serial data SDIN (D1), D/C# and CS#. SCLK is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6… D0. D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Display Data RAM or command register in the same clock.
Under serial mode, only write operations are allowed.
Table 8 - Control pins of Serial interface
Function E R/W# CS# D/C#
Write command
Tie low Tie low L
L
Write data
Tie low Tie low L
H
Figure 8 - Write procedure in SPI mode
D7 D6 D5 D4 D3 D2 D1 D0
SCLK(D0)
SDIN(D1)
DB1 DB2 DBn
CS#
D/C#
SDIN/
SCLK
Solomon Systech Nov 2007 P 18/68 Rev 1.2 SSD1331
7.2 Command Decoder
This module determines whether the input should be interpreted as data or command based upon the input of the D/C# pin.
If D/C# pin is high, data is written to Graphic Display Data RAM (GDDRAM). If it is low, the inputs at D0-D15 are interpreted as a Command and it will be decoded and be written to the corresponding command register.
7.3 Oscillator Circuit and Display Time Generator
7.3.1 Oscillator
Divider
Internal
Oscillator
Fosc
M U
X
CL
CLK DCLK
Display Clock
CLS
Figure 9 - Oscillator Circuit
This module is an On-Chip low power RC oscillator circuitry (Figure 9). The operation clock (CLK) can be generated either from internal oscillator or external source CL pin by CLS pin. If CLS pin is high, internal oscillator is selected. If CLS pin is low, external clock from CL pin will be used for CLK. The frequency of internal oscillator F
OSC
can be programmed by command B3h (Set oscillator frequency).
The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor “D” can be programmed from 1 to 16 by command B3h.
DCLK = F
OSC
/ D
The frame frequency of display is determined by the following formula.
MuxofNo.K D
F
F
osc
FRM
××
=
where
D stands for clock divide ratio. It is set by command B3h A[3:0]. The divide ratio has the range from
1 to 16.
K is the number of display clocks per row. The value is derived by
K = Phase 1 period + Phase 2 period + PW63 (longest current drive pulse width) = 4 + 7 + 125 = 136 at reset
Number of multiplex ratio is set by command A8h. The reset value is 64
F
OSC
is the oscillator frequency. It can be adjusted by command B3h A[7:4]
SSD1331 Rev 1.2 P 19/68 Nov 2007 Solomon Systech
7.3.2 FR synchronization
FR synchronization signal can be used to prevent tearing effect.
The starting time to write a new image to OLED driver is depended on the MCU writing speed. If MCU can finish writing a frame image within one frame period, it is classified as fast write MCU. For MCU needs longer writing time to complete
(more than one frame but within two frames), it is a slow write one.
For fast write MCU: MCU should start to write new frame of ram data just after rising edge of FR pulse and
should be finished well before the rising edge of the next FR pulse.
For slow write MCU: MCU should start to write new frame ram data after the falling edge of the 1
st
FR pulse
and must be finished before the rising edge of the 3
rd
FR pulse.
7.4 Reset Circuit
When RES# input is pulled low, the chip is initialized with the following status:
1. Display is OFF
2. 64 MUX Display Mode
3. Display start line is set at display RAM address 0
4. Display offset set to 0
5. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00H and COM0 mapped to address 00H)
6. Column address counter is set at 0
7. Master contrast control register is set at 0FH
8. Individual contrast control registers of color A, B, and C are set at 80H
9. Shift register data clear in serial interface
10. Normal display mode (Equivalent to A4 command)
Fast write MCU Slow write MCU
SSD1331 displaying memory updates to OLED screen
One frame
FR
100%
0%
Memory
Access
Process
Time
Solomon Systech Nov 2007 P 20/68 Rev 1.2 SSD1331
7.5 Graphic Display Data RAM (GDDRAM)
7.5.1 GDDRAM structure
The GDDRAM is a bit mapped static RAM holding the pattern to be displayed. The RAM size is 96 x 64 x 16bits. For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. For vertical scrolling of the display, an internal register storing display start line can be set to control the portion of the RAM data to be mapped to the display. Each pixel has 16-bit data. Three sub-pixels for color A, B and C have 6 bits, 5 bits and 6 bits respectively. The arrangement of data pixel in graphic display data RAM is shown below.
Figure 10 - 65k Color Depth Graphic Display Data RAM Structure
7.5.2 Data bus to RAM mapping under different input mode
Table 9 - Data bus usage under different bus width and color depth mode
Data bus
Bus width
Color Depth Input order D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
8 bits
256
X X XXXXXX
C4 C3 C2 B5 B4 B3 A4 A
3
8 bits
65k
format 1
1st
X X XXXXXX
C4 C3 C2 C1 C0 B5 B4 B
3
2nd
X X XXXXXX
B2 B1 B0 A4 A3 A2 A1 A
0
8 bits
65k
format 2
1st
X X XXXXXXXX
C4 C3 C2 C1 C0 X
2nd
X X XXXXXXXX
B5 B4 B3 B2 B1 B
0
3rd
X X XXXXXXXX
A4 A3 A2 A1 A0 X
16 bits
65k
C4 C3 C2 C1 C0 B5 B4 B3 B2 B1 B0 A4 A3 A2 A1 A
0
9 bits
65k 1st
X X XXXXX
C4 C3 C2 C1 C0 X B5 B4 B
3
2nd
X X XXXXX
B2 B1 B0 A4 A3 A2 A1 A0 X
Normal
:
Remap
:
A
4 B5 C4
A
4 B5 C4
A
4 B5 C4
A
4 B5 C4A4 B5 C4A4 B5 C4
A
3 B4 C3
A
3 B4 C3
A
3 B4 C3
A
3 B4 C3A3 B4 C3A3 B4 C3
A
2 B3 C2
A
2 B3 C2
A
2 B3 C2
A
2 B3 C2A2 B3 C2A2 B3 C2
A
1 B2 C1
A
1 B2 C1
A
1 B2 C1
A
1 B2 C1A1 B2 C1A1 B2 C1
A
0 B1 C0
A
0 B1 C0
A
0 B1 C0
A
0 B1 C0A0 B1 C0A0 B1 C0
B0
B0
B0 B0 B0 B0 COM
Normal
Remap
OUTPU
T
0
63 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5
COM0
1
62
COM1
2
61
COM2
:
:
:
61
2
COM61
62
1
COM62
63
0
COM63
SA0
SB0 SC0 SA1 SB1 SC1 SA2 SB2 SC2 : SA93 SB93 SC93 SA94 SB94 SC94 SA95 SB95 SC95
:
:
Data
Format
Row
A
ddress
2
93
93
2
0
95
:
Column
A
ddress
SEG OUTPUT
1
95
0
94
1
94
no. of bits of data in this cell
SSD1331 Rev 1.2 P 21/68 Nov 2007 Solomon Systech
7.5.3 RAM mapping and Different color depth mode
At 65k color depth mode, color A, B, C are directly mapped to the RAM content. At 256-color mode, the RAM content will be filled up to 65k format.
Figure 11 - 256-color mode mapping
65k color
C
4C3C2C1C0B5B4B3B2B1B0A4A3A2A1A0
256 color
C
4C3C2
*C4*C4B5B4B3B5*B5*B5A4A3*A4*A4*A
4
SBn SAnSCn
Note:
(1)
n = 0 ~ 95
(2)
bits with * are copied from corresponding bits in order to fill up 65K format.
7.6 Gray Scale Decoder
The gray scale effect is generated by controlling the pulse width of segment drivers in current drive phase. The gray scale table stores the corresponding pulse widths of the 63 gray scale levels (GS0~GS63). The wider the pulse width, the brighter the pixel will be. A single gray scale table supports all the three colors A, B and C. The pulse widths can be set by software commands.
As shown in
Figure 12, color B sub-pixel RAM data has 6 bits, represent the 64 gray scale levels from GS0 to GS63. color A and color C sub-pixel RAM data has only 5 bits, represent 32 gray scale levels from GS0, GS2, …, GS62.
Figure 12 - Relation between GDRAM content and gray scale table entry for three colors in 65K colo r mo de
Color A, C
RAM data (5 bits)
Color B
RAM data (6 bits)
Gray Scale Default pulse width of GS[0:63]
in terms of DCLK
00000 000000 GS0 0
- 000001 GS1 1
00001 000010 GS2 3
- 000011 GS3 5
00010 000100 GS4 7
: : : : : : : : : : : :
11110 111100 GS60 119
- 111101 GS61 121
11111 111110 GS62 123
- 111111 GS63 125
The duration of different GS are programmable.
Solomon Systech Nov 2007 P 22/68 Rev 1.2 SSD1331
Figure 13 - Illustration of relation between graphic display RAM value and gray scale control
Gray scale table
Gray Scale Value/DCLKs
GS0 0 GS1 1 GS2 3
: : GS62 123 GS63 125
Segment
Voltage
Time
VP
V
LSS
Color A RAM data = 00001
GS2
pulse width = 3 DCLKs
Color A RAM data = 11111
GS62
pulse width = 123 DCLKs
Segment
Voltage
Time
VP
V
LSS
Color B RAM data = 000001
GS1
pulse width = 1 DCLKs
Color B RAM data = 111111
GS63
pulse width = 125 DCLKs
SSD1331 Rev 1.2 P 23/68 Nov 2007 Solomon Systech
7.7 SEG / COM Driving block
This block is used to derive the incoming power sources into the different levels of internal use voltage and current.
V
CC
is the most positive voltage supply.
V
COMH
is the Common deselected level. It is internally regulated.
V
LSS
is the ground path of the analog and panel current.
I
REF
is a reference current source for segment current drivers I
SEG
. The relationship between
reference current and segment current of a color is:
I
SEG
= Contrast / 256 x I
REF
x scale factor
in which
the contrast (0~255) is set by Set Contrast command; and the scale factor (1 ~ 16) is set by Master Current Control command.
For example, in order to achieve I
SEG
= 160uA at maximum contrast 255, I
REF
is set to around 10uA.
This current value is obtained by connecting an appropriate resistor from
I
REF
pin to VSS as shown in Figure 14. Recommended range for
I
REF
= 10uA +/- 2uA
Figure 14 - I
REF
Current Setting by Resistor Value
Since the voltage at I
REF
pin is VCC – 3V, the value of resistor R1 can be found as below.
R1 = (Voltage at
I
REF
– VSS) / I
REF
= (VCC – 3) / 10uA 1.3MΩ for VCC = 16V.
Figure 15 - I
SEG
current vs VCC setting at constant I
REF
, Contrast = FFh
SSD1331
I
REF
(voltage at this pin = V
CC
– 3)
R1
VSS
I
REF
10uA
Typical I
SEG
current vs VCC (I
REF
= 10uA, Contrast = FFh)
140
150
160
170
180
190
200
210
7
9
11
13 15 17 19
VCC (V)
I
SEG
(uA)
Solomon Systech Nov 2007 P 24/68 Rev 1.2 SSD1331
7.8 Common and Segment Drivers
Segment drivers consist of 288 (96 x 3 colors) current sources to drive OLED panel. The driving current can be adjusted from 0 to 160uA with 256 steps by contrast setting command (81h,82h,83h). Common drivers generate scanning voltage pulse. The block diagrams and waveforms of the segment and common driver are shown as follow.
Figure 16 - Segment and Common Driver Block Diagram
The commons are scanned sequentially, row by row. If a row is not selected, all the pixels on the row are in reverse bias by driving those commons to voltage V
COMH
as shown in Figure 17
In the scanned row, the pixels on the row will be turned ON or OFF by sending the corresponding data signal to the segment pins. If the pixel is turned OFF, the segment current is kept at 0. On the other hand, the segment drives to I
SEG
when the pixel is turned ON.
V
COMH
Non-select
Row
Selected
Row
V
CC
Current
Drive
Reset
V
LSS
V
LSS
Common Driver
Segment Driver
OLED
Pixel
I
SEG
SSD1331 Rev 1.2 P 25/68 Nov 2007 Solomon Systech
Figure 17 - Segment and Common Driver Signal Waveform
COM1
V
COMH
V
LSS
V
COMH
V
LSS
COM0
One Frame Period
Non-select Row
Selected Row
COM
Voltage
V
COMH
V
LSS
This row is selected to
turn on
Time
Segment
Voltage
V
LSS
Waveform for ON
Waveform for OFF
Time
VP
Solomon Systech Nov 2007 P 26/68 Rev 1.2 SSD1331
There are four phases to driving an OLED a pixel. In phase 1, the pixel is reset by the segment driver to V
LSS
in order to discharge the previous data charge stored in the parasitic capacitance along the segment electrode. The period of phase 1 can be programmed by command B1h A[3:0] from 1 to 15 DCLK. An OLED panel with larger capacitance requires a longer period for discharging.
In phase 2, first pre-charge is performed. The pixel is driven to attain the corresponding voltage level V
P
from
V
LSS
. The amplitude of VP can be programmed by the command BBh. The period of phase 2 can be programmed in length from 1 to 15 DCLK by command B1h A[7:4]. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage.
In phase 3, the OLED pixel is driven to the targeted driving voltage through second pre-charge. The second pre-charge can control the speed of the charging process. The period of phase 3 can be programmed by commands 8Ah, 8Bh and 8Ch.
Last phase (phase 4) is current drive stage. The current source in the segment driver delivers constant current to the pixel. The driver IC employs Pulse Width Modulation (PWM) method to control the gray scale of each pixel individually. The wider pulse widths in the current drive stage results in brighter pixels and vice versa. This is shown in the following figure.
Figure 18 - Gray Scale Control by PWM in Segment
After finishing phase 4, the driver IC will go back to phase 1 to display the next row image data. This four-step cycle is run continuously to refresh image display on OLED panel.
The length of phase 4 is defined by command B8h “Set Gray Scale Table” or B9h “Enable Linear Gray Scale Table”. In the table, the gray scale is defined in incremental way, with reference to the length of previous table entry.
Time
Segment
Voltage
V
LSS
OLED
Panel
Wider pulse width
drives pixel brighter
Phase1
Phase2
Phase3
Phase4
VP
SSD1331 Rev 1.2 P 27/68 Nov 2007 Solomon Systech
7.9 Power ON and OFF sequence
The following figures illustrate the recommended power ON and power OFF sequence of SSD1331 (assume V
DD
and V
DDIO
are at the same voltage level).
Power ON sequence:
1. Power ON V
DD, VDDIO.
2. After V
DD
, V
DDIO
become stable, set RES# pin LOW (logic low) for at least 3us (t1) and then HIGH
(logic high).
3. After set RES# pin LOW (logic low), wait for at least 3us (t
2
). Then Power ON V
CC.
(1)
4. After V
CC
become stable, send command AFh for display ON. SEG/COM will be ON after 100ms (tAF).
Figure 19 : The Power ON sequence
Power OFF sequence:
1. Send command AEh for display OFF.
2. Power OFF V
CC.
(1), (2)
3. Wait for t
OFF
. Power OFF V
DD, VDDIO.
(where Minimum t
OFF
=0ms, Typical t
OFF
=100ms)
Figure 20 : The Power OFF sequence
Note:
(1)
Since an ESD protection circuit is connected between VDD,V
DDIO
and VCC, VCC becomes lower than VDD
whenever V
DD,VDDIO
is ON and VCC is OFF as shown in the dotted line of V
CC
in Figure 19 and Figure 20 .
(2)
VCC
should be kept float (disable) when it is OFF.
OFF V
DD ,VDDIO
V
DD ,VDDIO
VCC
Send command AEh for display OFF
OFF V
CC
GND
GND
t
OFF
GND
ON V
DD, VDDIO
RES#
ON VCC Send AFh command for Display ON
V
DD, VDDIO
RES#
GND
t1
SEG/COM
tAF
ON
OFF
VCC
GND
t2
Solomon Systech Nov 2007 P 28/68 Rev 1.2 SSD1331
8 COMMAND TABLE
Table 10 - Command Table Fundamental Commands
D/C#
Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description Default
0 15 0 0 0 1 0 1 0 1 Setup Column start and end address
0 A[6:0] * A6 A5 A4 A3 A2 A1 A0 A[6:0] start address from 00d-95d 00d (00h)
0 B[6:0] * B6 B5 B4 B3 B2 B1 B0
Set Column
Address
B[6:0] end address from 00d-95d
95d (5Fh)
0 75 0 1 1 1 0 1 0 1 Setup Row start and end address
0 A[5:0] * * A5 A4 A3 A2 A1 A0 A[5:0] start address from 00d-63d 00d (00h)
0 B[5:0] * * B5 B4 B3 B2 B1 B0
Set Row Address
B[5:0] end address from 00d-63d
63d (3Fh)
0 81 1 0 0 0 0 0 0 1 Set contrast for all color "A" segment
(Pins:SA0 – SA95)
0 A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
Set Contrast
for Color "A"
A[7:0] valid range: 00d to 255d
128d (80h)
0 82 1 0 0 0 0 0 1 0 Set contrast for all color "B" segment
(Pins:SB0 – SB95).
0 A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
Set Contrast
for Color "B"
A[7:0] valid range: 00d to 255d
128d (80h)
0 83 1 0 0 0 0 0 1 1 Set contrast for all color "C" segment
(Pins:SC0 – SC95).
0 A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
Set Contrast for Color "C"
A[7:0] valid range: 00d to 255d
128d (80h)
0 87 1 0 0 0 0 1 1 1
0 A[3:0] 0 0 0 0 A3 A2 A1 A0
Master Current
Control
Set master current attenuation factor A[3:0] from 00d to 15d corresponding to 1/16, 2/16… to 16/16 attenuation.
15d (0Fh)
SSD1331 Rev 1.2 P 29/68 Nov 2007 Solomon Systech
Fundamental Commands
D/C#
Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description Default
0 8A 1 0 0 0 1 0 1 0 A[7:0] of 81h
0 A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
0 8B 1 0 0 0 1 0 1 1 A[7:0] of 82h
0 A[7:0] A7 A6 A5 A4 A3 A2 A1 A0 0 8C 1 0 0 0 1 1 0 0 A[7:0] of 83h 0 A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
Set Second
Pre-charge
Speed for
Color “A”, “B”
and “C”
A[7:0]: Set Second Pre-charge Speed
Ranges: 0000000b to 1111111b, a higher value of A[7:0] gives a higher Second Pre-charge speed.
Note
(1)
The default values of A[7:0] in 8Ah, A[7:0]
in 8Bh and A[7:0] in 8Ch are equal to the contrast values for color A, B and C( refer to commands: 81h, 82h, 83h) respectively.
(2)
All six bytes (8Ah A[7:0], 8Bh A[7:0] and
8Ch A[7:0]) must be inputted together. For example: the original value is like that
Original value 8Ah A[7:0]: 80h 8Bh A[7:0]: 80h 8Ch A[7:0]: 80h
If it is wanted to change the value of 8Bh A[7:0] to 75h, then all the following 6 bytes must be inputted:
8Ah,80h, 8Bh,75h, 8Ch,80h.
0 A0 1 0 1 0 0 0 0 0 Set driver remap and color depth
0 A[7:0] A7 A6 A5 A4 A3 A2 A1 A0 A[0]=0, Horizontal address increment A[0]=0
A[0]=1, Vertical address increment
A[1]=0, RAM Column 0 to 95 maps to Pin Seg
(SA,SB,SC) 0 to 95
A[1]=0
A[1]=1, RAM Column 0 to 95 maps to Pin Seg
(SA,SB,SC) 95 to 0
A[2]=0, normal order SA,SB,SC (e.g. RGB) A[2]=0
A[2]=1, reverse order SC,SB,SA (e.g. BGR)
A[3]=0, Disable left-right swapping on COM A[3]=0
A[3]=1, Set left-right swapping on COM
A[4]=0, Scan from COM 0 to COM [N –1] A[4]=0
A[4]=1, Scan from COM [N-1] to COM0.
Where N is the multiplex ratio.
A[5]=0, Disable COM Split Odd Even
(RESET)
A[5]=0
A[5]=1, Enable COM Split Odd Even
A[7:6] = 00; 256 color format
A[7:6] = 01; 65k color format A[7:6]=01
A[7:6] = 10; 65k color format 2
Remap & Color
Depth setting
If 9 / 18 bit mode is selected, color depth will be fixed to 65k regardless of the setting.
0 A1 1 0 1 0 0 0 0 1 Set display start line register by Row
0 A[5:0] 0 0 A5 A4 A3 A2 A1 A0
Set Display
Start Line
A[5:0]: from 00d to 63d
00d (00h)
0 A2 1 0 1 0 0 0 1 0 Set vertical offset by Com
0 A[5:0] 0 0 A5 A4 A3 A2 A1 A0
Set Display
Offset
A[5:0]: from 00d to 63d
00d (00h)
Solomon Systech Nov 2007 P 30/68 Rev 1.2 SSD1331
Fundamental Commands
D/C#
Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description Default
0 A4 / 1 0 1 0 0 1 X1 X0 A4h=Normal Display A4h
0 A5 / A5h=Entire Display ON, all pixels turn ON at
GS63
0 A6 / A6h=Entire Display OFF, all pixels turn OFF
0 A7 /
Set Display
Mode
A7h=Inverse Display
0 A8 1 0 1 0 1 0 0 0 Set MUX ratio to N+1 Mux
0 A[5:0] 0 0 A5 A4 A3 A2 A1 A0 N = A[5:0] from 15d to 63d 63d (3Fh)
Set Multiplex
Ratio
A[5:0] from 00d to 14d are invalid entry
0 AB 1 0 1 0 1 0 1 1
0 A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
0 B[7:0] B7 B6 B5 B4 B3 B2 B1 B0
0 C[7:0] C7 C6 C5 C4 C3 C2 C1 C0
0 D[7:0] D7 D6 D5 D4 D3 D2 D1 D0
0 E[4:0] 0 0 0 E4 E3 E2 E1 E0
Dim Mode
Setting
Configure dim mode setting A[7:0] = Reserved. (Set as 00h)
B[7:0] = Contrast setting for Color A, valid range 0 to 255d.
C[7:0] = Contrast setting for Color B, valid range 0 to 255d.
D[7:0] = Contrast setting for Color C, valid range 0 to 255d.
E[4:0] = Precharge voltage setting, valid range 0 to 31d.
\
0 AD 1 0 1 0 1 1 0 1
0 A[0] 1 0 0 0 1 1 1 A0
A[0] = 1
Set Master
Configuration
A[0]=0b, Select external V
CC
supply
A[0]=1b, Reserved (RESET)
Note
(1)
Bit A[0] must be set to 0b after RESET.
(2)
The setting will be activated after issuing
Set Display ON command (AFh)
0 AC 1 0 1 0 1 1 A1 A0 ACh = Display ON in dim mode
AE AEh = Display OFF (sleep mode) AEh
AF AFh = Display ON in normal mode
Set Display
ON/OFF
0 B0 1 0 1 1 0 0 0 0
0 A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
A[7:0]=1Ah, Enable Power save mode (RESET)
1Ah
Power Save
Mode
A[7:0]=0Bh, Disable Power save mode
0 B1 1 0 1 1 0 0 0 1 A[3:0] Phase 1 period in N DCLK. 1~15
DCLK allowed.
74h
0 A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
Phase 1 and 2
period
adjustment
A[7:4] Phase 2 period in N DCLK. 1~15 DCLK allowed
Note
(1)
0 DCLK is invalid in phase 1 & phase 2
0 B3 1 0 1 1 0 0 1 1 A[3:0]: Define the divide ratio (D) of the D0h
0 A[7:0] A7 A6 A5 A4 A3 A2 A1 A0 display clocks (DCLK):
Divide ratio (D) = A[3:0] + 1 (i.e., 1 to 16)
A[7:4] Fosc frequency.
Display Clock
Divider /
Oscillator
Frequency
Frequency increases as setting value increases
SSD1331 Rev 1.2 P 31/68 Nov 2007 Solomon Systech
Fundamental Commands
D/C#
Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description Default
0 B8 1 0 1 1 1 0 0 0 \
0 A[6:0] * A6 A5 A4 A3 A2 A1 A0
0 B[6:0] * B6 B5 B4 B3 B2 B1 B0
0 C[6:0] * C6 C5 C4 C3 C2 C1 C0
0 … ... … … … … … … …
0 AE[6:0] *
AE
6
AE5 AE4 AE3 AE2 AE1 AE0
0 AF[6:0] *
AF
6
AF5 AF4 AF3 AF2 AF1 AF0
Set Gray Scale
Table
These 32 parameters define pulse widths of GS1 to GS63 in terms of DCLK A[6:0]: Pulse width for GS1, RESET=01d B[6:0]: Pulse width for GS3, RESET=05d C[6:0]: Pulse width for GS5, RESET=09d … AE[6:0]: Pulse width for GS61, RESET=121d AF[6:0]: Pulse width for GS63, RESET=125d Note:
(1)
GS0 has no pre-charge and current drive
stages.
(2)
GS2, GS4…GS62 are derived by
Pn = (Pn-1+Pn+1)/2
(3)
Pn will be truncated to integer if it is with
decimal point.
(4)
Pn+1 should always be set to larger than
Pn-1
(5)
Max pulse width is 125
0 B9 1 0 1 1 1 0 0 1 Reset built in gray scale table (Linear) \
Pulse width for GS1 = 1d;
Pulse width for GS2 = 3d;
Pulse width for GS3 = 5d;
Pulse width for GS61 = 121d;
Pulse width for GS62 = 123d;
Enable Linear
Gray Scale
Table
Pulse width for GS63 = 125d.
0 BB 1 0 1 1 1 0 1 1 Set pre-charge voltage level. All three color
share the same pre-charge voltage.
3Eh
0 A[5:0] 0 0 A5 A4 A3 A2 A1 0
A[5:1] Hex code pre-charge voltage
00000 00h 0.10 x VCC
: : :
11111 3Eh 0.50 x VCC
Set Pre-charge
level
Refer to
Figure 30 for the details setting of
A[5:1].
0 BC-BD 1 0 1 1 1 1 0 X0
NOP
Command for No operation
\
BE 1 0 1 1 1 1 1 0
0 A[5:1] 0 0 A5 A4 A3 A2 A1 0
Set V
COMH
Set COM deselect voltage level (V
COMH
)
A[5:1] Hex code V
COMH
00000 00h 0.44 x VCC 01000 10h 0.52 x VCC 10000 20h 0.61 x VCC 11000 30h 0.71 x VCC 11111 3Eh 0.83 x VCC
3Eh
0 E3 1 1 1 0 0 0 1 1
NOP
Command for No operation
\
0 FD 1 1 1 1 1 1 0 1
0 A[2] 0 0 0 1 0 A2 1 0
Set Command
Lock
A[2]: MCU protection status A[2] = 0b, Unlock OLED driver IC MCU interface from entering command [reset]
A[2] = 1b, Lock OLED driver IC MCU interface from entering command
Note
(1)
The locked OLED driver IC MCU interface prohibits all commands and memory access except the FDh command.
12h
Solomon Systech Nov 2007 P 32/68 Rev 1.2 SSD1331
Graphic Acceleration Commands D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description
0 21 0 0 1 0 0 0 0 1
A[6:0]: Column Address of Start
0 A[6:0] * A6 A5 A4 A3 A2 A1 A0
B[5:0]: Row Address of Start
0 B[5:0] * * B5 B4 B3 B2 B1 B0
C[6:0]: Column Address of End
0 C[6:0] * C6 C5 C4 C3 C2 C1 C0
D[5:0]: Row Address of End
0 D[5:0] * * D5 D4 D3 D2 D1 D0
E[5:1]: Color C of the line
0 E[5:1] * * E5 E4 E3 E2 E1 *
F[5:0]: Color B of the line
0 F[5:0] * * F5 F4 F3 F2 F1 F0
G[5:1]: Color A of the line
0 G[5:1] * * G5 G4 G3 G2 G1 *
Draw Line
0 22 0 0 1 0 0 0 1 0 A[6:0]: Column Address of Start
0 A[6:0] * A6 A5 A4 A3 A2 A1 A0 B[5:0]: Row Address of Start
0 B[5:0] * * B5 B4 B3 B2 B1 B0 C[6:0]: Column Address of End
0 C[6:0] * C6 C5 C4 C3 C2 C1 C0 D[5:0]: Row Address of End
0 D[5:0] * * D5 D4 D3 D2 D1 D0 E[5:1]: Color C of the line
0 E[5:1] * * E5 E4 E3 E2 E1 * F[5:0]: Color B of the line
0 F[5:0] * * F5 F4 F3 F2 F1 F0 G[5:1]: Color A of the line
0 G[5:1] * * G5 G4 G3 G2 G1 * H[5:1]: Color C of the fill area
0 H[5:1] * * H5 H4 H3 H2 H1 * I[5:0]: Color B of the fill area
0 I[5:0] * * I5 I4 I3 I2 I1 I0 J[5:1]: Color A of the fill area
0 J[5:1] * * J5 J4 J3 J2 J1 *
Drawing
Rectangle
0 23 0 0 1 0 0 0 1 1 A[6:0]: Column Address of Start
0 A[6:0] * A6 A5 A4 A3 A2 A1 A0 B[5:0]: Row Address of Start
0 B[5:0] * * B5 B4 B3 B2 B1 B0 C[6:0]: Column Address of End
0 C[6:0] * C6 C5 C4 C3 C2 C1 C0 D[5:0]: Row Address of End
0 D[5:0] * * D5 D4 D3 D2 D1 D0 E[6:0]: Column Address of New Start
0 E[6:0] * E6 E5 E4 E3 E2 E1 E0 F[5:0]: Row Address of New Start
0 F[5:0] * * F5 F4 F3 F2 F1 F0
Copy
0 24 0 0 1 0 0 1 0 0 A[6:0]: Column Address of Start
0 A[6:0] * A6 A5 A4 A3 A2 A1 A0 B[5:0]: Row Address of Start
0 B[5:0] * * B5 B4 B3 B2 B1 B0 C[6:0]: Column Address of End
0 C[6:0] * C6 C5 C4 C3 C2 C1 C0 D[5:0]: Row Address of End
0 D[5:0] * * D5 D4 D3 D2 D1 D0 The effect of dim window:
GS15~GS0 no change
GS19~GS16 become GS4
GS23~GS20 become GS5
...
Dim Window
GS63~GS60 become GS15
0 25 0 0 1 0 0 1 0 1 A[6:0]: Column Address of Start
0 A[6:0] * A6 A5 A4 A3 A2 A1 A0 B[5:0]: Row Address of Start
0 B[5:0] * * B5 B4 B3 B2 B1 B0 C[6:0]: Column Address of End
0 C[6:0] * C6 C5 C4 C3 C2 C1 C0 D[5:0]: Row Address of End
0 D[5:0] * * D5 D4 D3 D2 D1 D0
Clear Window
0 26 0 0 1 0 0 1 1 0 A0 0 : Disable Fill for Draw Rectangle
Command (RESET)
0 A[4:0] * * * A4 0 0 0 A0 1 : Enable Fill for Draw Rectangle
Command
A[3:1] 000: Reserved values
A4 0 : Disable reverse copy (RESET)
Fill Enable /
Disable
1 : Enable reverse during copy
command.
SSD1331 Rev 1.2 P 33/68 Nov 2007 Solomon Systech
Graphic Acceleration Commands D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description
0 27 0 0 1 0 0 1 1 1 A[6:0]: Set number of column as horizontal
scroll offset
0 A[6:0] * A6 A5 A4 A3 A2 A1 A0 Range: 0d-95d ( no horizontal scroll if
equals to 0)
0 B[5:0] * * B5 B4 B3 B2 B1 B0 B[5:0]: Define start row address
0 C[6:0] * C6 C5 C4 C3 C2 C1 C0 C[6:0]: Set number of rows to be horizontal
scrolled
B[5:0]+C[6:0] <=64
0 D[5:0] * * D5 D4 D3 D2 D1 D0 D[5:0]: Set number of row as vertical scroll
offset Range: 0d-63d ( no vertical scroll if equals to 0)
0 E[1:0] * * * * * * E1 E0
Continuous
Horizontal &
Vertical
Scrolling Setup
E[1:0]: Set time interval between each scroll
step 00b 6 frames 01b 10 frames 10b 100 frames 11b 200 frames
Note:
(1)
Vertical scroll is run with 64MUX setting
only
(2)
The parameters should not be changed
after scrolling is activated
0 2E 0 0 1 0 1 1 1 0 Deactivate
scrolling
This command deactivates the scrolling action.
Note
(1)
After sending 2Eh command to deactivate
the scrolling action, the ram data needs to be rewritten.
0 2F 0 0 1 0 1 1 1 1 Activate
scrolling
This command activates the scrolling function according to the setting done by Continuous Horizontal & Vertical Scrolling Setup command 27h.
Solomon Systech Nov 2007 P 34/68 Rev 1.2 SSD1331
8.1 Data Read / Write
To read data from the GDDRAM, input HIGH to R/W#(WR#)# pin and D/C# pin for 6800-series parallel mode, LOW to E (RD#) pin and HIGH to D/C# pin for 8080-series parallel mode. No data read is provided in serial mode operation.
In normal data read mode, GDDRAM column address pointer will be increased by one automatically after each data read.
Also, a dummy read is required before the first data read.
To write data to the GDDRAM, input LOW to R/W#(WR#) pin and HIGH to D/C# pin for 6800-series parallel mode AND 8080-series parallel mode. For serial interface mode, it is always in write mode. GDDRAM column address pointer will be increased by one automatically after each data write.
Table 11 - Address increment table (Automatic)
D/C#
R/W#(WR#)
Comment
Address Increment
0 0 Write Command No 0 1 Read Status No 1 0 Write Data Yes 1 1 Read Data Yes
SSD1331 Rev 1.2 P 35/68 Nov 2007 Solomon Systech
9 COMMAND DESCRIPTIONS
9.1 Fundamental Command
9.1.1 Set Column Address (15h)
This command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command A0h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address.
9.1.2 Set Row Address (75h)
This command specifies row start address and end address of the display data RAM. This command also sets the row address pointer to row start address. This pointer is used to define the current read/write row address in graphic display data RAM. If vertical address increment mode is enabled by command A0h, after finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start row address.
The figure below shows the way of column and row address pointer movement through the example: column start address is set to 2 and column end address is set to 93, row start address is set to 1 and row end address is set to 62. Horizontal address increment mode is enabled by command A0h. In this case, the graphic display data RAM column accessible range is from column 2 to column 93 and from row 1 to row 62 only. In addition, the column address pointer is set to 2 and row address pointer is set to 1. After finishing read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM
location for next read/write operation (solid line in
Figure 21). Whenever the column address pointer finishes
accessing the end column 93, it is reset back to column 2 and row address is automatically increased by 1
(solid line in
Figure 21). While the end row 62 and end column 93 RAM location is accessed, the row address
is reset back to 1 (dotted line in
Figure 21).
Col 0 Col 1 Col 2 ….. ……. Col 93 Col 94 Col 95
Row 0
Row 1
Row 2
: :
: :
: :
Row 61
Row 62
Row 63
Figure 21 - Example of Column and Row Address Pointer Movement
Solomon Systech Nov 2007 P 36/68 Rev 1.2 SSD1331
9.1.3 Set Contrast for Color A, B, C (81h, 82h, 83h)
This command is to set Contrast Setting of each color A, B and C. The chip has three contrast control circuits for color A, B and C. Each contrast circuit has 256 contrast steps from 00h to FFh. The segment output current I
SEG
increases with the contrast step, which results in brighter of the color.
9.1.4 Master Current Control (87h)
This command is to control the segment output current by a scaling factor. This factor is common to color A, B and C. The chip has 16 master control steps. The factor is ranged from 1 [0000b] to 16 [1111b]. RESET is 16 [1111b]. The smaller the master current value, the dimmer the OLED panel display is set. For example, if original segment output current of a color is 160uA at scale factor = 16, setting scale factor to 8 to reduce the current to 80uA.
SSD1331 Rev 1.2 P 37/68 Nov 2007 Solomon Systech
9.1.5 Set Second Pre-charge Speed for Color A, B, C (8Ah)
The value set should match with the contrast of the color A, B, C. An initial trial should be the value same as the contrast A, B, C. When faster speed is needed, higher value can be set and vice versa.
Figure 22 shows
the effect of setting second pre-charge under different speeds through using command 8Ah, 8Bh and 8Ch.
Figure 22 - Effect of setting the second pre-charge under different speeds
9.1.6 Set Re-map & Data Format (A0h)
This command has multiple configurations and each bit setting is described as follows.
Address increment mode (A[0])
When it is set to 0, the driver is set as horizontal address increment mode. After the display RAM is read/written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and row address pointer is increased by 1. The sequence of movement of the row and column address point for horizontal address increment mode is shown in
Figure 23.
Figure 23 - Address Pointer Movement of Horizontal Address Increment Mode
Col 0 Col 1 ….. Col 94 Col 95 Row 0 Row 1
: : : : : : Row 62 Row 63
When A[0] is set to 1, the driver is set to vertical address increment mode. After the display RAM is read/written, the row address pointer is increased automatically by 1. If the row address pointer reaches the row end address, the row address pointer is reset to row start address and column address pointer is increased by 1. The sequence of movement of the row and column address point for vertical address increment mode is shown in
Figure 24.
Figure 24 - Address Pointer Movement of Vertical Address Increment Mode
Col 0 Col 1 ….. Col 94 Col 95 Row 0 ….. Row 1 …..
: : Row 62 ….. Row 63 …..
Segment
Voltage
Phase1
Phase2
Phase4
VP
Different settings in Second Pre-charge speed
...
Second Pre-charge speed = 1
Second Pre-charge speed = 255
V
LSS
Phase3
Time
Solomon Systech Nov 2007 P 38/68 Rev 1.2 SSD1331
Column Address Mapping (A[1])
This command bit is made for flexible layout of segment signals in OLED module with segment arranged from left to right or vice versa. The display direction is either mapping display data RAM column 0 to SEG0 pin (A[1] = 0), or mapping display data RAM column 95 to SEG0 pin (A[1] = 1). The effects of both are shown in
Figure 25.
Figure 25 - Example of Column Address Mapping
RGB Mapping (A[2])
This command bit is made for flexible layout of segment signals in OLED module to match filter design.
COM Left / Right Remap (A[3])
This command bit is made for flexible layout of common signals in OLED module with COM0 arranged on either left or right side. Details of pin arrangement can be found in
Table 12 and Figure
26.
COM Scan Direction Remap (A[4])
This bit determines the scanning direction of the common for flexible layout of common signals in OLED module either from up to down or vice versa. Details of pin arrangement can be found in
Table
12 and
Figure 26.
Odd Even Split of COM pins (A[5])
This bit can set the odd even arrangement of COM pins. A[5] = 0: Disable COM split odd even, pin assignment of common is in sequential as
COM63 COM62 .... COM 33 COM32..SC95..SA0..COM0 COM1.... COM30 COM31
A[5] = 1: Enable COM split odd even, pin assignment of common is in odd even split as
COM63 COM61.... COM3 COM1..SC95..SA0..COM0 COM2.... COM60 COM62
Details of pin arrangement can be found in
Table 12 and Figure 26.
Display color mode (A[7:6])
Select either 65k or 256 color mode. The display RAM data format in different mode is described in section
7.5
SSD1331
SA0 SB0 SC0
SA95 SB95 SC95
SSD1331
SA0 SB0 SC0
SA95 SB95 SC95
Column 0 maps to SEG0 pin
Column 95 maps to SEG0 pin
……………… ………………
SSD1331 Rev 1.2 P 39/68 Nov 2007 Solomon Systech
Table 12 - Illustration of different COM output settings
Case A Case B Case C Case D Case E Case F Case G Case H
A[5:3]=000 A[5:3]=001 A[5:3]=010 A[5:3]=011 A[5:3]=100 A[5:3]=101 A[5:3]=110 A[5:3]=111
IC Pad no. Pin name
195 COM0 Row0 Row 32 Row63 Row31 Row0 Row 1 Row63 Row62 194 COM1 Row1 Row 33 Row62 Row30 Row2 Row 3 Row61 Row60 193 COM2 Row2 Row 34 Row61 Row29 Row4 Row 5 Row59 Row58 192 COM3 Row3 Row 35 Row60 Row28 Row6 Row 7 Row57 Row56 191 COM4 Row4 Row 36 Row59 Row27 Row8 Row 9 Row55 Row54 190 COM5 Row5 Row37 Row58 Row26 Row10 Row11 Row53 Row52
…………………………
169 COM26 Row26 Row58 Row37 Row5 Row52 Row53 Row11 Row10 168 COM27 Row27 Row59 Row36 Row4 Row54 Row55 Row9 Row8 167 COM28 Row28 Row60 Row35 Row3 Row56 Row57 Row7 Row6 166 COM29 Row29 Row61 Row34 Row2 Row58 Row59 Row5 Row4 165 COM30 Row30 Row62 Row33 Row1 Row60 Row61 Row3 Row2 164 COM31 Row31 Row63 Row32 Row0 Row62 Row63 Row1 Row0
488 COM32 Row32 Row 0 Row31 Row63 Row1 Row0 Row62 Row63 489 COM33 Row33 Row 1 Row30 Row62 Row3 Row2 Row60 Row61 490 COM34 Row34 Row 2 Row29 Row61 Row5 Row4 Row58 Row59 491 COM35 Row35 Row 3 Row28 Row60 Row7 Row6 Row56 Row57 492 COM36 Row36 Row 4 Row27 Row59 Row9 Row8 Row54 Row55 493 COM37 Row37 Row 5 Row26 Row58 Row11 Row10 Row 52 Row 53
…………………………
514 COM58 Row58 Row26 Row5 Row37 Row53 Row52 Row10 Row11 515 COM59 Row59 Row27 Row4 Row36 Row55 Row54 Row8 Row9 516 COM60 Row60 Row28 Row3 Row35 Row57 Row56 Row6 Row7 517 COM61 Row61 Row29 Row2 Row34 Row59 Row58 Row4 Row5 518 COM62 Row62 Row30 Row1 Row33 Row61 Row60 Row2 Row3 519 COM63 Row63 Row31 Row0 Row32 Row63 Row62 Row0 Row1
Output signal
Solomon Systech
Nov 2007 P 40/68 Rev 1.2 SSD1331
Figure 26 - COM Pins Hardware Configuration (MUX ratio: 64)
Case and Conditions COM pins Configurations
A
A[5] =0 A[4]=0 A[3]=0 Disable Odd Even Split of COM pins
COM Scan Direction: from COM0 to COM63
Disable COM Left / Right Remap
B
A[5] =0 A[4]=0 A[3]=1 Disable Odd Even Split of COM pins
COM Scan Direction: from COM0 to COM63
Enable COM Left / Right Remap
C
A[5] =0 A[4]=1 A[3]=0 Disable Odd Even Split of COM pins
COM Scan Direction: from COM63 to COM0
Disable COM Left / Right Remap
96 x 64
ROW0
ROW31
ROW32
ROW63
Pad 1,2,3,…->163 Gold Bumps face up
SSD1331Z
COM0
COM31
COM32
COM63
96 x 64
ROW32
ROW63
ROW0
ROW31
Pad 1,2,3,…->163 Gold Bumps face up
SSD1331Z
COM0
COM31
COM63
COM32
96 x 64
ROW63
ROW32
ROW31
ROW0
Pad 1,2,3,…->163 Gold Bumps face up
SSD1331Z
COM0
COM31
COM32
COM63
SSD1331
Rev 1.2 P 41/68 Nov 2007 Solomon Systech
Case and Conditions COM pins Configurations
D
A[5] =0 A[4]=1 A[3]=1 Disable Odd Even Split of COM pins
COM Scan Direction: from COM63 to COM0
Enable COM Left / Right Remap
E
A[5] =1 A[4]=0 A[3]=0 Enable Odd Even Split of COM pins
COM Scan Direction: from COM0 to COM63
Disable COM Left / Right Remap
F
A[5] =1 A[4]=0 A[3]=1 Enable Odd Even Split of COM pins
COM Scan Direction: from COM0 to COM63
Enable COM Left / Right Remap
96 x 64
ROW0
ROW62
ROW1
ROW63
Pad 1,2,3,…->163
Gold Bumps face up
SSD1331Z
COM0
COM31
COM32
COM63
ROW61
COM62
ROW2
COM1
96 x 64
ROW31
ROW0
ROW63
ROW32
Pad 1,2,3,…->163 Gold Bumps face up
SSD1331Z
COM0
COM31
COM63
COM32
96 x 64
ROW0
ROW62
ROW1
ROW63
Pad 1,2,3,…->163 Gold Bumps face up
SSD1331Z
COM0
COM31
COM32
COM63
ROW61
COM33
ROW2
COM30
Solomon Systech
Nov 2007 P 42/68 Rev 1.2 SSD1331
Case and Conditions COM pins Configurations
G
A[5] =1 A[4]=1 A[3]=0 Enable Odd Even Split of COM pins
COM Scan Direction: from COM63 to COM0
Disable COM Left / Right Remap
H
A[5] =1 A[4]=1 A[3]=1 Enable Odd Even Split of COM pins
COM Scan Direction: from COM63 to COM0
Enable COM Left / Right Remap
9.1.7 Set Display Start Line (A1h)
This command is to set Display Start Line register to determine starting address of display RAM to be displayed by selecting a value from 0 to 63.
Table 13 and Table 14 show examples of this command. In
there, “Row” means the graphic display data RAM row.
9.1.8 Set Display Offset (A2h)
This command specifies the mapping of display start line (it is assumed that COM0 is the display start line, display start line register equals to 0) to one of COM0-63. For example, to move the COM16 towards the COM0 direction for 16 lines, the 6-bit data in the second command should be given by 0010000b.
Table 13
and
Table 14 show examples of this command. In there, “Row” means the graphic display data RAM row.
96 x 64
ROW63
ROW1
ROW62
ROW0
Pad 1,2,3,…->163 Gold Bumps face up
SSD1331Z
COM0
COM31
COM32
COM63
ROW2
COM62
ROW61
COM1
96 x 64
ROW63
ROW1
ROW62
ROW0
Pad 1,2,3,…->163 Gold Bumps face up
SSD1331Z
COM0
COM31
COM32
COM63
ROW2
COM33
ROW61
COM30
SSD1331
Rev 1.2 P 43/68 Nov 2007 Solomon Systech
Table 13 - Example of Set Display Offset and Display Start Line with no Remap
Set MUX ratio(A8h)
COM Scan Direction Remap (A0h A[4])
Display offset (A2h)
Display start line (A1h)
COM0 Row0 RAM0 Row8 RAM8 Row0 RAM8 Row0 RAM0 Row8 RAM8 Row0 RAM8
COM1 Row1 RAM1 Row9 RAM9 Row1 RAM9 Row1 RAM1 Row9 RAM9 Row1 RAM9
COM2 Row2 RAM2 Row10 RAM10 Row2 RAM10 Row2 RAM2 Row10 RAM10 Row2 RAM10
COM3 Row3 RAM3 Row11 RAM11 Row3 RAM11 Row3 RAM3 Row11 RAM11 Row3 RAM11
COM4 Row4 RAM4 Row12 RAM12 Row4 RAM12 Row4 RAM4 Row12 RAM12 Row4 RAM12
COM5 Row5 RAM5 Row13 RAM13 Row5 RAM13 Row5 RAM5 Row13 RAM13 Row5 RAM13
COM6 Row6 RAM6 Row14 RAM14 Row6 RAM14 Row6 RAM6 Row14 RAM14 Row6 RAM14
COM7 Row7 RAM7 Row15 RAM15 Row7 RAM15 Row7 RAM7 Row15 RAM15 Row7 RAM15
COM8 Row8 RAM8 Row16 RAM16 Row8 RAM16 Row8 RAM8 Row16 RAM16 Row8 RAM16
COM9 Row9 RAM9 Row17 RAM17 Row9 RAM17 Row9 RAM9 Row17 RAM17 Row9 RAM17
COM10 Row10 RAM10 Row18 RAM18 Row10 RAM18 Row10 RAM10 Row18 RAM18 Row10 RAM18
COM11 Row11 RAM11 Row19 RAM19 Row11 RAM19 Row11 RAM11 Row19 RAM19 Row11 RAM19
COM12 Row12 RAM12 Row20 RAM20 Row12 RAM20 Row12 RAM12 Row20 RAM20 Row12 RAM20
COM13 Row13 RAM13 Row21 RAM21 Row13 RAM21 Row13 RAM13 Row21 RAM21 Row13 RAM21
COM14 Row14 RAM14 Row22 RAM22 Row14 RAM22 Row14 RAM14 Row22 RAM22 Row14 RAM22
COM15 Row15 RAM15 Row23 RAM23 Row15 RAM23 Row15 RAM15 Row23 RAM23 Row15 RAM23
COM16 Row16 RAM16 Row24 RAM24 Row16 RAM24 Row16 RAM16 Row24 RAM24 Row16 RAM24
COM17 Row17 RAM17 Row25 RAM25 Row17 RAM25 Row17 RAM17 Row25 RAM25 Row17 RAM25
COM18 Row18 RAM18 Row26 RAM26 Row18 RAM26 Row18 RAM18 Row26 RAM26 Row18 RAM26
COM19 Row19 RAM19 Row27 RAM27 Row19 RAM27 Row19 RAM19 Row27 RAM27 Row19 RAM27
COM20 Row20 RAM20 Row28 RAM28 Row20 RAM28 Row20 RAM20 Row28 RAM28 Row20 RAM28
COM21 Row21 RAM21 Row29 RAM29 Row21 RAM29 Row21 RAM21 Row29 RAM29 Row21 RAM29
COM22 Row22 RAM22 Row30 RAM30 Row22 RAM30 Row22 RAM22 Row30 RAM30 Row22 RAM30
COM23 Row23 RAM23 Row31 RAM31 Row23 RAM31 Row23 RAM23 Row31 RAM31 Row23 RAM31
COM24 Row24 RAM24 Row32 RAM32 Row24 RAM32 Row24 RAM24 Row32 RAM32 Row24 RAM32
COM25 Row25 RAM25 Row33 RAM33 Row25 RAM33 Row25 RAM25 Row33 RAM33 Row25 RAM33
COM26 Row26 RAM26 Row34 RAM34 Row26 RAM34 Row26 RAM26 Row34 RAM34 Row26 RAM34
COM27 Row27 RAM27 Row35 RAM35 Row27 RAM35 Row27 RAM27 Row35 RAM35 Row27 RAM35
COM28 Row28 RAM28 Row36 RAM36 Row28 RAM36 Row28 RAM28 Row36 RAM36 Row28 RAM36
COM29 Row29 RAM29 Row37 RAM37 Row29 RAM37 Row29 RAM29 Row37 RAM37 Row29 RAM37
COM30 Row30 RAM30 Row38 RAM38 Row30 RAM38 Row30 RAM30 Row38 RAM38 Row30 RAM38
COM31 Row31 RAM31 Row39 RAM39 Row31 RAM39 Row31 RAM31 Row39 RAM39 Row31 RAM39
COM32 Row32 RAM32 Row40 RAM40 Row32 RAM40 Row32 RAM32 Row40 RAM40 Row32 RAM40
COM33 Row33 RAM33 Row41 RAM41 Row33 RAM41 Row33 RAM33 Row41 RAM41 Row33 RAM41
COM34 Row34 RAM34 Row42 RAM42 Row34 RAM42 Row34 RAM34 Row42 RAM42 Row34 RAM42
COM35 Row35 RAM35 Row43 RAM43 Row35 RAM43 Row35 RAM35 Row43 RAM43 Row35 RAM43
COM36 Row36 RAM36 Row44 RAM44 Row36 RAM44 Row36 RAM36 Row44 RAM44 Row36 RAM44
COM37 Row37 RAM37 Row45 RAM45 Row37 RAM45 Row37 RAM37 Row45 RAM45 Row37 RAM45
COM38 Row38 RAM38 Row46 RAM46 Row38 RAM46 Row38 RAM38 Row46 RAM46 Row38 RAM46
COM39 Row39 RAM39 Row47 RAM47 Row39 RAM47 Row39 RAM39 Row47 RAM47 Row39 RAM47
COM40 Row40 RAM40 Row48 RAM48 Row40 RAM48 Row40 RAM40 Row48 RAM48 Row40 RAM48
COM41 Row41 RAM41 Row49 RAM49 Row41 RAM49 Row41 RAM41 Row49 RAM49 Row41 RAM49
COM42 Row42 RAM42 Row50 RAM50 Row42 RAM50 Row42 RAM42 Row50 RAM50 Row42 RAM50
COM43 Row43 RAM43 Row51 RAM51 Row43 RAM51 Row43 RAM43 Row51 RAM51 Row43 RAM51
COM44 Row44 RAM44 Row52 RAM52 Row44 RAM52 Row44 RAM44 Row52 RAM52 Row44 RAM52
COM45 Row45 RAM45 Row53 RAM53 Row45 RAM53 Row45 RAM45 Row53 RAM53 Row45 RAM53
COM46 Row46 RAM46 Row54 RAM54 Row46 RAM54 Row46 RAM46 Row54 RAM54 Row46 RAM54
COM47 Row47 RAM47 Row55 RAM55 Row47 RAM55 Row47 RAM47 Row55 RAM55 Row47 RAM55
COM48 Row48 RAM48 Row56 RAM56 Row48 RAM56 Row48 RAM48 - - Row48 RAM56
COM49 Row49 RAM49 Row57 RAM57 Row49 RAM57 Row49 RAM49 - - Row49 RAM57
COM50 Row50 RAM50 Row58 RAM58 Row50 RAM58 Row50 RAM50 - - Row50 RAM58
COM51 Row51 RAM51 Row59 RAM59 Row51 RAM59 Row51 RAM51 - - Row51 RAM59
COM52 Row52 RAM52 Row60 RAM60 Row52 RAM60 Row52 RAM52 - - Row52 RAM60
COM53 Row53 RAM53 Row61 RAM61 Row53 RAM61 Row53 RAM53 - - Row53 RAM61
COM54 Row54 RAM54 Row62 RAM62 Row54 RAM62 Row54 RAM54 - - Row54 RAM62
COM55 Row55 RAM55 Row63 RAM63 Row55 RAM63 Row55 RAM55 - - Row55 RAM63
COM56 Row56 RAM56 Row0 RAM0 Row56 RAM0 - - Row0 RAM0 - -
COM57 Row57 RAM57 Row1 RAM1 Row57 RAM1 - - Row1 RAM1 - -
COM58 Row58 RAM58 Row2 RAM2 Row58 RAM2 - - Row2 RAM2 - -
COM59 Row59 RAM59 Row3 RAM3 Row59 RAM3 - - Row3 RAM3 - -
COM60 Row60 RAM60 Row4 RAM4 Row60 RAM4 - - Row4 RAM4 - -
COM61 Row61 RAM61 Row5 RAM5 Row61 RAM5 - - Row5 RAM5 - -
COM62 Row62 RAM62 Row6 RAM6 Row62 RAM6 - - Row6 RAM6 - -
COM63 Row63 RAM63 Row7 RAM7 Row63 RAM7 - - Row7 RAM7 - -
080
008
56 56 56
000
64
0
0
8
Output
Hardware pin
name 0
0
0
64 64
0
8
0
Display examples refe
r
to figures:
(a) (b) (c) (d) (e) (f)
(a) (b) (d)(c)
(e) (f)
(
RAM
)
Solomon Systech
Nov 2007 P 44/68 Rev 1.2 SSD1331
Table 14 - Example of Set Display Offset and Display Start Line with Remap
Display examples refe
r
to figures:
(a) (b) (c) (d) (e) (f) (g)
Set MUX r atio(A8h)
COM Sc an Direction Remap (A0h A [4])
Display off set (A2h)
Display start line (A1h)
COM0 Row 63 RAM63 Row 7 RAM7 Row 63 RAM7 Row 47 RAM47 - - Row 47 RAM7 - -
COM1 Row 62 RAM62 Row 6 RAM6 Row 62 RAM6 Row 46 RAM46 - - Row 46 RAM6 - -
COM2 Row 61 RAM61 Row 5 RAM5 Row 61 RAM5 Row 45 RAM45 - - Row 45 RAM5 - -
COM3 Row 60 RAM60 Row 4 RAM4 Row 60 RAM4 Row 44 RAM44 - - Row 44 RAM4 - -
COM4 Row 59 RAM59 Row 3 RAM3 Row 59 RAM3 Row 43 RAM43 - - Row 43 RAM3 - -
COM5 Row 58 RAM58 Row 2 RAM2 Row 58 RAM2 Row 42 RAM42 - - Row 42 RAM2 - -
COM6 Row 57 RAM57 Row 1 RAM1 Row 57 RAM1 Row 41 RAM41 - - Row 41 RAM1 - -
COM7 Row 56 RAM56 Row 0 RAM0 Row 56 RAM0 Row 40 RAM40 - - Row 40 RAM0 - -
COM8 Row55 RAM55 Row63 RAM63 Row55 RAM63 Row39 RAM39 Row47 RAM47 Row39 RAM47 Row 47 RAM63
COM9 Row54 RAM54 Row62 RAM62 Row54 RAM62 Row38 RAM38 Row46 RAM46 Row38 RAM46 Row 46 RAM62
COM10 Row 53 RAM53 Row 61 RAM61 Row 53 RAM61 Row 37 RAM37 Row 45 RAM45 Row 37 RAM45 Row 45 RAM61
COM11 Row 52 RAM52 Row 60 RAM60 Row 52 RAM60 Row 36 RAM36 Row 44 RAM44 Row 36 RAM44 Row 44 RAM60
COM12 Row 51 RAM51 Row 59 RAM59 Row 51 RAM59 Row 35 RAM35 Row 43 RAM43 Row 35 RAM43 Row 43 RAM59
COM13 Row 50 RAM50 Row 58 RAM58 Row 50 RAM58 Row 34 RAM34 Row 42 RAM42 Row 34 RAM42 Row 42 RAM58
COM14 Row 49 RAM49 Row 57 RAM57 Row 49 RAM57 Row 33 RAM33 Row 41 RAM41 Row 33 RAM41 Row 41 RAM57
COM15 Row 48 RAM48 Row 56 RAM56 Row 48 RAM56 Row 32 RAM32 Row 40 RAM40 Row 32 RAM40 Row 40 RAM56
COM16 Row 47 RAM47 Row 55 RAM55 Row 47 RAM55 Row 31 RAM31 Row 39 RAM39 Row 31 RAM39 Row 39 RAM55
COM17 Row 46 RAM46 Row 54 RAM54 Row 46 RAM54 Row 30 RAM30 Row 38 RAM38 Row 30 RAM38 Row 38 RAM54
COM18 Row 45 RAM45 Row 53 RAM53 Row 45 RAM53 Row 29 RAM29 Row 37 RAM37 Row 29 RAM37 Row 37 RAM53
COM19 Row 44 RAM44 Row 52 RAM52 Row 44 RAM52 Row 28 RAM28 Row 36 RAM36 Row 28 RAM36 Row 36 RAM52
COM20 Row 43 RAM43 Row 51 RAM51 Row 43 RAM51 Row 27 RAM27 Row 35 RAM35 Row 27 RAM35 Row 35 RAM51
COM21 Row 42 RAM42 Row 50 RAM50 Row 42 RAM50 Row 26 RAM26 Row 34 RAM34 Row 26 RAM34 Row 34 RAM50
COM22 Row 41 RAM41 Row 49 RAM49 Row 41 RAM49 Row 25 RAM25 Row 33 RAM33 Row 25 RAM33 Row 33 RAM49
COM23 Row 40 RAM40 Row 48 RAM48 Row 40 RAM48 Row 24 RAM24 Row 32 RAM32 Row 24 RAM32 Row 32 RAM48
COM24 Row 39 RAM39 Row 47 RAM47 Row 39 RAM47 Row 23 RAM23 Row 31 RAM31 Row 23 RAM31 Row 31 RAM47
COM25 Row 38 RAM38 Row 46 RAM46 Row 38 RAM46 Row 22 RAM22 Row 30 RAM30 Row 22 RAM30 Row 30 RAM46
COM26 Row 37 RAM37 Row 45 RAM45 Row 37 RAM45 Row 21 RAM21 Row 29 RAM29 Row 21 RAM29 Row 29 RAM45
COM27 Row 36 RAM36 Row 44 RAM44 Row 36 RAM44 Row 20 RAM20 Row 28 RAM28 Row 20 RAM28 Row 28 RAM44
COM28 Row 35 RAM35 Row 43 RAM43 Row 35 RAM43 Row 19 RAM19 Row 27 RAM27 Row 19 RAM27 Row 27 RAM43
COM29 Row 34 RAM34 Row 42 RAM42 Row 34 RAM42 Row 18 RAM18 Row 26 RAM26 Row 18 RAM26 Row 26 RAM42
COM30 Row 33 RAM33 Row 41 RAM41 Row 33 RAM41 Row 17 RAM17 Row 25 RAM25 Row 17 RAM25 Row 25 RAM41
COM31 Row 32 RAM32 Row 40 RAM40 Row 32 RAM40 Row 16 RAM16 Row 24 RAM24 Row 16 RAM24 Row 24 RAM40
COM32 Row 31 RAM31 Row 39 RAM39 Row 31 RAM39 Row 15 RAM15 Row 23 RAM23 Row 15 RAM23 Row 23 RAM39
COM33 Row 30 RAM30 Row 38 RAM38 Row 30 RAM38 Row 14 RAM14 Row 22 RAM22 Row 14 RAM22 Row 22 RAM38
COM34 Row 29 RAM29 Row 37 RAM37 Row 29 RAM37 Row 13 RAM13 Row 21 RAM21 Row 13 RAM21 Row 21 RAM37
COM35 Row 28 RAM28 Row 36 RAM36 Row 28 RAM36 Row 12 RAM12 Row 20 RAM20 Row 12 RAM20 Row 20 RAM36
COM36 Row 27 RAM27 Row 35 RAM35 Row 27 RAM35 Row 11 RAM11 Row 19 RAM19 Row 11 RAM19 Row 19 RAM35
COM37 Row 26 RAM26 Row 34 RAM34 Row 26 RAM34 Row 10 RAM10 Row 18 RAM18 Row 10 RAM18 Row 18 RAM34
COM38 Row 25 RAM25 Row 33 RAM33 Row 25 RAM33 Row 9 RAM9 Row 17 RAM17 Row 9 RAM17 Row 17 RAM33
COM39 Row 24 RAM24 Row 32 RAM32 Row 24 RAM32 Row 8 RAM8 Row 16 RAM16 Row 8 RAM16 Row 16 RAM32
COM40 Row 23 RAM23 Row 31 RAM31 Row 23 RAM31 Row 7 RAM7 Row 15 RAM15 Row 7 RAM15 Row 15 RAM31
COM41 Row 22 RAM22 Row 30 RAM30 Row 22 RAM30 Row 6 RAM6 Row 14 RAM14 Row 6 RAM14 Row 14 RAM30
COM42 Row 21 RAM21 Row 29 RAM29 Row 21 RAM29 Row 5 RAM5 Row 13 RAM13 Row 5 RAM13 Row 13 RAM29
COM43 Row 20 RAM20 Row 28 RAM28 Row 20 RAM28 Row 4 RAM4 Row 12 RAM12 Row 4 RAM12 Row 12 RAM28
COM44 Row 19 RAM19 Row 27 RAM27 Row 19 RAM27 Row 3 RAM3 Row 11 RAM11 Row 3 RAM11 Row 11 RAM27
COM45 Row 18 RAM18 Row 26 RAM26 Row 18 RAM26 Row 2 RAM2 Row 10 RAM10 Row 2 RAM10 Row 10 RAM26
COM46 Row 17 RAM17 Row 25 RAM25 Row 17 RAM25 Row 1 RAM1 Row 9 RAM9 Row 1 RA M9 Row 9 RAM25
COM47 Row 16 RAM16 Row 24 RAM24 Row 16 RAM24 Row 0 RAM0 Row 8 RAM8 Row 0 RA M8 Row 8 RAM24
COM48 Row 15 RAM15 Row 23 RAM23 Row 15 RAM23 - - Row 7 RA M7 - - Row 7 RAM23
COM49 Row 14 RAM14 Row 22 RAM22 Row 14 RAM22 - - Row 6 RA M6 - - Row 6 RAM22
COM50 Row 13 RAM13 Row 21 RAM21 Row 13 RAM21 - - Row 5 RA M5 - - Row 5 RAM21
COM51 Row 12 RAM12 Row 20 RAM20 Row 12 RAM20 - - Row 4 RA M4 - - Row 4 RAM20
COM52 Row 11 RAM11 Row 19 RAM19 Row 11 RAM19 - - Row 3 RA M3 - - Row 3 RAM19
COM53 Row 10 RAM10 Row 18 RAM18 Row 10 RAM18 - - Row 2 RA M2 - - Row 2 RAM18
COM54 Row 9 RAM9 Row 17 RAM17 Row9 RAM17 - - Row1 RAM1 - - Row 1 RAM17
COM55 Row 8 RAM8 Row 16 RAM16 Row8 RAM16 - - Row0 RAM0 - - Row 0 RAM16
COM56Row7RAM7Row15RAM15Row7RAM15--------
COM57Row6RAM6Row14RAM14Row6RAM14--------
COM58Row5RAM5Row13RAM13Row5RAM13--------
COM59Row4RAM4Row12RAM12Row4RAM12--------
COM60Row3RAM3Row11RAM11Row3RAM11--------
COM61Row2RAM2Row10RAM10Row2RAM10--------
COM62Row1RAM1Row9RAM9Row1RAM9--------
COM63Row0RAM0Row8RAM8Row0RAM8--------
48 48
1 111
Hardware
pin name
Output
64 64 64 48 48
11
0800808
1
08160080
(a) (b)
(d)
(c)
(e
) (f)
(
g)
(
RAM)
SSD1331
Rev 1.2 P 45/68 Nov 2007 Solomon Systech
9.1.9 Set Display Mode (A4h ~ A7h)
These are single byte command and they are used to set Normal Display, Entire Display ON, Entire Display OFF and Inverse Display.
Normal Display (A4h)
Reset the above effect and turn the data to ON at the corresponding gray level.
Set Entire Display ON (A5h)
Forces the entire display to be at “GS63” regardless of the contents of the display data RAM.
Set Entire Display OFF (A6h)
Forces the entire display to be at gray level “GS0” regardless of the contents of the display data RAM.
Inverse Display (A7h)
The gray level of display data are swapped such that “GS0” <-> “GS63”, “GS1” <-> “GS62”, ….
9.1.10 Set Multiplex Ratio (A8h)
This command switches default 1:64 multiplex mode to any multiplex mode from 16 to 64. For example, when multiplex ratio is set to 16, only 16 common pins are enabled. The starting and the ending of the enabled common pins are depended on the setting of “Display Offset” register programmed by command A2h.
9.1.11 Dim mode setting (ABh)
This command contains multiple bits to configure the dim mode display parameters. Contrast setting of color A, B, C and precharge voltage can be set different to normal mode (AFh).
9.1.12 Set Master Configuration (ADh)
This command selects the external VCC power supply. External VCC power should be connected to the VCC pin. A[0] bit must be set to 0b after RESET.
This command will be activated after issuing Set Display ON command (AFh)
9.1.13 Set Display ON/OFF (ACh / AEh / AFh)
These single byte commands are used to turn the OLED panel display ON or OFF. When the display is ON, the selected circuits by Set Master Configuration command will be turned ON. When the display is OFF, those circuits will be turned OFF and the segment and common output are in high impedance state.
These commands set the display to one of the three states:
o ACh : Dim Mode Display ON o AEh : Display OFF (sleep mode) o AFh : Normal Brightness Display ON
where the dim mode settings are controlled by command ABh.
Figure 27 – Transition between different modes
Normal mode
Dim mode
Slee
p
mode
AFh
AEh
ACh
AFh
ACh
AEh
Solomon Systech
Nov 2007 P 46/68 Rev 1.2 SSD1331
9.1.14 Power Save Mode (B0h)
This command is used in enabling or disabling the power save mode.
9.1.15 Phase 1 and 2 Period Adjustment (B1h)
This command sets the length of phase 1 and 2 of segment waveform of the driver.
Phase 1 (A[3:0]): Set the period from 1 to 15 in the unit of DCLKs. A larger capacitance of the OLED
pixel may require longer period to discharge the previous data charge completely.
Phase 2 (A[7:4]): Set the period from 1 to 15 in the unit of DCLKs. A longer period is needed to
charge up a larger capacitance of the OLED pixel to the target voltage V
P
for color A, B and C.
9.1.16 Set Display Clock Divide Ratio/ Oscillator Frequency (B3h)
This command consists of two functions:
Display Clock Divide Ratio (A[3:0])
Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16, with reset value = 1. Please refer to section
7.3.1 for the details relationship of DCLK and CLK.
Oscillator Frequency (A[7:4])
Program the oscillator frequency Fosc that is the source of CLK if CLS pin is pulled high. The 4-bit value results in 16 different frequency settings available as shown below. The default setting is 1101b
Figure 28 - Typical Oscillator frequency adjustment by B3 command (VDD =2.7V)
9.1.17 Set Gray Scale Table (B8h)
This command is used to set the gray scale table for the display. Except gray scale entry 0, which is zero as it has no pre-charge and current drive, each odd entry gray scale level is programmed in the length of current drive stage pulse width with unit of DCLK. The longer the length of the pulse width, the brighter is the OLED pixel when it’s turned ON. Please refer to section
7.6 for more detailed explanation of relation of display data
RAM, gray scale table and the pixel brightness.
Following the command B8h, the user has to set the pulse width for GS1, GS3, GS5, …, GS59, GS61, and GS63 one by one in sequence and complies the following conditions.
GS1 > 0; GS3 > GS1 + 1; GS5 > GS3 + 1; ……
Afterwards, the driver automatically derives the pulse width of even entry of gray scale table GS2, GS4, …, GS62 with the formula like below.
GSn = (GSn-1 + GSn+1) / 2
For example, if GS1 = 3 DCLKs and GS3 = 7 DCLKs, GS2 = (3+7)/2 = 5 DCLKs
The setting of gray scale table entry can perform gamma correction on OLED panel display. Normally, it is desired that the brightness response of the panel is linearly proportional to the image data value in display
Note
(1)
There is 10% tolerance in the frequency values
SSD1331
Rev 1.2 P 47/68 Nov 2007 Solomon Systech
data RAM. However, the OLED panel is somehow responded in non-linear way. Appropriate gray scale table setting like example below can compensate this effect.
Figure 29 - Example of gamma correction by gray scale table setting
9.1.18 Enable Linear Gray Scale Table (B9h)
This command reloads the preset linear gray scale table as GS1 = 1, GS2 = 3, GS3 = 5, …., GS62 = 123, GS63 = 125 DCLKs.
9.1.19 Set Pre-charge voltage (BBh)
This command sets the pre-charge voltage level of segment pins. The level of VP is programmed with reference to
V
CC
. Figure 30 shows the details of setting Pre-charge voltage level by command BBh A[5:1].
Figure 30 – Typical Pre-charge voltage level setting by command BBh.
VP ratio vs BBh A[5:1] setting
0
0.1
0.2
0.3
0.4
0.5
0.6
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111
BBh A[5:1] Setting
V
P
ratio
Note
(!)
VP ratio = 0.1 refers to VP voltage = 0.1 x V
CC.
9.1.20 Set V
COMH
Voltage (BEh)
This command sets the high voltage level of common pins. The level of V
COMH
is programmed with reference
to
V
CC
.
9.1.21 NOP (BCh, BDh, E3h)
These are command for no operation.
9.1.22 Set Command Lock (FDh)
This command is used to lock the OLED driver IC from accepting any command except itself. After entering FDh 16h (A[2]=1b), the OLED driver IC will not respond to any newly entered command (except FDh 12h A[2]=0b) and there will be no memory access. This is call “Lock” state. That means the OLED driver IC ignore all the commands (except FDh 12h A[2]=0b) during the “Lock” state.
Entering FDh 12h (A[2]=0b) can unlock the OLED driver IC. That means the driver IC resume from the “Lock” state. And the driver IC will then respond to the command and memory access.
Pulse Width
Gray Scale
Panel response
Brightness Brightness
Pulse width
Gray Scale
Gray scale table setting
Result in linear response
Solomon Systech
Nov 2007 P 48/68 Rev 1.2 SSD1331
9.2 GRAPHIC ACCELERATION COMMAND SET DESCRIPTION
9.2.1 Draw Line (21h)
This command draws a line by the given start, end column and row coordinates and the color of the line.
Figure 31 - Example of Draw Line Command
For example, the line above can be drawn by the following command sequence.
1. Enter into draw line mode by command 21h
2. Send column start address of line, column1, for example = 1h
3. Send row start address of line, row 1, for example = 10h
4. Send column end address of line, column 2, for example = 28h
5. Send row end address of line, row 2, for example = 4h
6. Send color C, B and A of line, for example = 35d, 0d, 0d for blue color
9.2.2 Draw Rectangle (22h)
Given the starting point (Row 1, Column 1) and the ending point (Row 2, Column 2), specify the outline and fill area colors, a rectangle that will be drawn with the color specified. Remarks: If fill color option is disabled, the enclosed area will not be filled.
Figure 32 - Example of Draw Rectangle Command
The following example illustrates the rectangle drawing command sequence.
1. Enter the “draw rectangle mode” by execute the command 22h
2. Set the starting column coordinates, Column 1. e.g., 03h.
3. Set the starting row coordinates, Row 1. e.g., 02h.
4. Set the finishing column coordinates, Column 2. e.g., 12h
5. Set the finishing row coordinates, Row 2. e.g., 15h
6. Set the outline color C, B and A. e.g., (28d, 0d, 0d) for blue color
7. Set the filled color C, B and A. e.g., (0d, 0d, 40d) for red color
Row 1, Column 1
Row 2, Column 2
Line Color
Row 1, Column 1
Row 2, Column 2
Outline Color
Filled Color
SSD1331
Rev 1.2 P 49/68 Nov 2007 Solomon Systech
9.2.3 Copy (23h)
Copy the rectangular region defined by the starting point (Row 1, Column 1) and the ending point (Row 2, Column 2) to location (Row 3, Column 3). If the new coordinates are smaller than the ending points, the new image will overlap the original one.
The following example illustrates the copy procedure.
1. Enter the “copy mode” by execute the command 23h
2. Set the starting column coordinates, Column 1. E.g., 00h.
3. Set the starting row coordinates, Row 1. E.g., 00h.
4. Set the finishing column coordinates, Column 2. E.g., 05h
5. Set the finishing row coordinates, Row 2. E.g., 05h
6. Set the new column coordinates, Column 3. E.g., 03h
7. Set the new row coordinates, Row 3. E.g., 03h
Figure 33 - Example of Copy Command
9.2.4 Dim Window (24h)
This command will dim the window area specify by starting point (Row 1, Column 1) and the ending point (Row 2, Column 2). After the execution of this command, the selected window area will become darker as follow.
Table 15 - Result of Change of Brightness by Dim Window Command
Original gray scale New gray scale after dim window command
GS0 ~ GS15 No change GS16 ~ GS19 GS4 GS20 ~ GS23 GS5
: :
GS60 ~ GS63 GS15
Additional execution of this command over the same window area will not change the data content.
Row 3 + Row 2, Column 3 + Column 2
Row 1, Column 1
Row 3, Column 3
Original Image
New Copied Image
Solomon Systech
Nov 2007 P 50/68 Rev 1.2 SSD1331
9.2.5 Clear Window (25h)
This command sets the window area specify by starting point (Row 1, Column 1) and the ending point (Row 2, Column 2) to clear the window display. The graphic display data RAM content of the specified window area will be set to zero.
This command can be combined with Copy command to make as a “move” result. The following example illustrates the copy plus clear procedure and results in moving the window object.
1. Enter the “copy mode” by execute the command 23h
2. Set the starting column coordinates, Column 1. E.g., 00h.
3. Set the starting row coordinates, Row 1. E.g., 00h.
4. Set the finishing column coordinates, Column 2. E.g., 05h
5. Set the finishing row coordinates, Row 2. E.g., 05h
6. Set the new column coordinates, Column 3. E.g., 06h
7. Set the new row coordinates, Row 3. E.g., 06h
8. Enter the “clear mode” by execute the command 25h
9. Set the starting column coordinates, Column 1. E.g., 00h.
10. Set the starting row coordinates, Row 1. E.g., 00h.
11. Set the finishing column coordinates, Column 2. E.g., 05h
12. Set the finishing row coordinates, Row 2. E.g., 05h
Figure 34 - Example of Copy + Clear = Move Command
9.2.6 Fill Enable/Disable (26h)
This command has two functions.
Enable/Disable fill (A[0])
0 = Disable filling of color into rectangle in draw rectangle command. (RESET) 1 = Enable filling of color into rectangle in draw rectangle command.
Enable/Disable reverse copy (A[4])
0 = Disable reverse copy (RESET) 1 = During copy command, the new image colors are swapped such that “GS0” <-> “GS63”, “GS1” <­> “GS62”, ….
Clear Command
SSD1331
Rev 1.2 P 51/68 Nov 2007 Solomon Systech
9.2.7 Continuous Horizontal & Vertical Scrolling Setup (27h)
This command setup the parameters required for horizontal and vertical scrolling. The parameters should not be
changed after scrolling is activated
Figure 35 - Examples of Continuous Horizontal and Vertical Scrolling command setup
Start row
address
No of scrolling
rows
Display before scrolling start
Display snap shot after scrolling start
Sample code 27h // Continuous horizontal scroll 01h // Horizontal scroll by 1 column
28h // Define row 40 as start row address 18h // Scrolling 24 rows 00h // No vertical scroll 00h // Set time interval between each scroll step as 6 frames 2Fh // Activate scrolling
Example 2 : Full screen vertical
scrolling with 1 row up in every
6 frames.
Example 3 : Full screen diagonal scrolling (horizontal left side scrolling with 1 column shift
plus vertical scrolling with 1 row
up) in every 10 frames.
Start row
address
Sample code 27h // Continuous diagonal scroll 01h // Horizontal scroll by 1 column
00h // Define row 0 as start row address 40h // Scrolling 64 rows 01h // Set vertical scrolling offset as 1 row 01h // Set time interval between each scroll step as 10 frames 2Fh // Activate scrolling
No of scrolling
rows
Sample code 27h // Continuous vertical scroll 00h // No horizontal scroll 00h // Start row address for vertical scrolling 40h // Number of scrolling rows for vertical scrolling 01h // Set vertical scrolling offset as 1 row 00h // Set time interval between each
scroll step as 6 frames 2Fh // Activate scrolling
Example 1 : Partial screen
horizontal left side scrolling with 1
column shift in every 6 frames
Display snap shot after scrolling start
Display snap shot after scrolling start
Display before scrolling start
Display before scrolling start
9.2.8 Deactivate scrolling (2Eh)
This command deactivates the scrolling action. After sending 2Eh command to deactivate the scrolling action, the
ram data needs to be rewritten.
9.2.9 Activate scrolling (2Fh)
This command activates the scrolling function according to the setting done by Continuous Horizontal & Vertical Scrolling Setup command 27h.
Solomon Systech
Nov 2007 P 52/68 Rev 1.2 SSD1331
10 MAXIMUM RATINGS
Table 16 - Maximum Ratings
(Voltage Reference to VSS)
Symbol Parameter Value Unit
VDD -0.3 to +4 V
V
DDIO
-0.3 to VDD+0.5 V
VCC
Supply Voltage
0 to 19.0 V
V
SEG
SEG output voltage 0 to VCC V
V
COM
COM output voltage 0 to 0.9* VCC V Vin Input voltage VSS -0.3 to VDD +0.3 V TA Operating Temperature -40 to +85 ºC
T
stg
Storage Temperature Range -65 to +150 ºC
*Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description.
*This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.
SSD1331
Rev 1.2 P 53/68 Nov 2007 Solomon Systech
11 DC CHARACTERISTICS
Table 17 - DC Characteristics
Conditions (unless specified):
Voltage referenced to V
SS
V
DD
= 2.7, V
DDIO
= 1.8V, VCC = 11.0V, I
REF
= 10uA, at TA = 25°C.
Symbol Parameter Test Condition Min Typ Max Unit
VCC Operating Voltage - 8 11 18 V VDD Logic Supply Voltage - 2.4 2.7 3.5 V
V
DDIO
Power Supply for I/O pins - 1.6 1.8 VDD V
VOH High Logic Output Level I
OUT
= 100uA, 3.3MHz 0.9 x V
DDIO
- V
DDIO
V
VOL Low Logic Output Level I
OUT
= 100uA, 3.3MHz 0 - 0.1 x V
DDIO
V
VIH High Logic Input Level - 0.8 x V
DDIO
- V
DDIO
V
VIL Low Logic Input Level - 0 - 0.2 x V
DDIO
V
I
DD_SLEEP
Sleep mode VDD Current Display OFF, No panel attached - 0
10
uA
I
DDIO
SLEEP
Sleep mode V
DDIO
Current Display OFF, No panel attached - 0
10
uA
I
CC_SLEEP
Sleep mode VCC Current Display OFF, No panel attached - 0
10
uA
ICC VCC Supply Current
Display ON, All 1’s pattern, Contrast = FFh, No panel attached
- 790 1200 uA
IDD VDD Supply Current
Display ON, All 1’s pattern, Contrast = FFh, No panel attached
- 170 500
uA
Contrast = FFh 126 140 154 uA
Contrast = 7Fh - 68 - uA
I
SEG
Segment Output Current: V
DD
= V
DDIO
= 2.7V,
V
CC
= 8V, Display ON, All 1’s pattern.
(Segment pin under test is connected with a 20K resistive load to V
SS
)
Contrast = 3Fh - 33 - uA
Dev
Segment Output Current Uniformity: Dev = (I
SEG
– I
MID
) / I
MID
I
MID
= (I
MAX
+ I
MIN
) / 2
I
SEG
[0:287] = Segment
current at contrast settings V
CC
=12V
Contrast = FFh -3 - +3 %
Adj. Dev
Adjacent pin output current uniformity:
Adj Dev = (I[n] - I[n+1]) / (I[n]+I[n+1])
Contrast = FFh -2 - +2 %
R
COM_ON
COM pin output resistance COM[0:63], I = 20mA - 25 30
Ω
Solomon Systech
Nov 2007 P 54/68 Rev 1.2 SSD1331
12 AC CHARACTERISTICS
Table 18 - AC Characteristics
Conditions (Unless otherwise specified):
Voltage referenced to V
SS
V
DD
= V
DDIO
= 2.4V to 3.5V
V
CC
= 8.0V to 18.0V
T
A
= 25°C
Symbol Parameter Test Condition Min Typ Max Unit
F
OSC
Oscillation Frequency of Display Timing Generator
VDD = 2.7V, VCC = 11.0V 800 890 980 KHz
F
FRM
Frame Frequency
Display ON, Internal Oscillator Enabled
- F
OSC
x 1 / (D x K x N) - Hz
Reset low pulse width - 3 - - us
RES#
Reset completion time - - - 2 us
Note
(1)
Fosc stands for the frequency value of the internal oscillator and the value is measured when command
B3h A[7:4]=1101b [default value]
(2)
D stands for divide ratio
(3)
K stands for total number of display clocks per row. (RESET=136, i.e. phase1 DCLK+phase2 DCLK +
phase3 DCLK =4+7+125)
(4)
N stands for number of MUX selected by command A8h
SSD1331
Rev 1.2 P 55/68 Nov 2007 Solomon Systech
Table 19 - 6800-Series MPU Parallel Interface Timing Characteristics
(VDD - VSS = 2.4V to 3.5V, V
DDIO
= 2.4V to VDD, TA = 25°C)
Symbol Parameter Min Typ Max Unit
t
cycle
Clock Cycle Time (write cycle) 130 - - ns
PW
CSL
Control Pulse Low Width (write cycle) 60 - - ns
PW
CSH
Control Pulse High Width (write cycle) 60 - - ns
t
cycle
Clock Cycle Time (read cycle) 200 - - ns
PW
CSL
Control Pulse Low Width (read cycle) 100 - - ns
PW
CSH
Control Pulse High Width (read cycle) 100 - - ns tAS Address Setup Time 0 - - ns tAH Address Hold Time 10 - - ns
t
DSW
Data Setup Time 40 - - ns
t
DHW
Data Hold Time 10 - - ns
t
ACC
Data Access Time - - 140 ns
tOH Output Hold time - - 70 ns
tR Rise Time - - 15 ns
tF Fall Time - - 15 ns
Figure 36 - 6800-series parallel interface characteristics
t
cycle
D[15:0] (WRITE)
D[15:0] (READ)
E
PW
CSH
t
R
tF
t
DHW
tOH
t
ACC
t
DHR
Valid Data
t
DSW
Valid Data
PW
CSL
tAH
t
AS
D/C#
R/W#
CS#
Solomon Systech
Nov 2007 P 56/68 Rev 1.2 SSD1331
Table 20 - 8080-Series MPU Parallel Interface Timing Characteristics
(VDD - VSS = 2.4V to 3.5V, V
DDIO
= 2.4V to VDD, TA = 25°C)
Symbol Parameter Min Typ Max Unit
t
cycle
Clock Cycle Time 130 - - ns tAS Address Setup Time 10 - - ns tAH Address Hold Time 0 - - ns t
DSW
Write Data Setup Time 40 - - ns t
DHW
Write Data Hold Time 10 - - ns
t
DHR
Read Data Hold Time 20 - - ns tOH Output Disable Time - - 70 ns t
ACC
Access Time - - 140 ns t
PWLR
Read Low Time 150 - - ns
t
PWLW
Write Low Time 60 - - ns
t
PWHR
Read High Time 60 - - ns
t
PWHW
Write High Time 60 - - ns tR Rise Time - - 15 ns tF Fall Time - - 15 ns tCS Chip select setup time 0 - - ns t
CSH
Chip select hold time to read signal 0 - - ns
t
CSF
Chip select hold time 20 - - ns
WR#
D[7:0]
t
AS
D/C#
CS#
t
CS
t
AH
t
PWLW
t
cycle
t
DSWtDHW
t
PWHW
t
CSF
RD#
D[7:0]
t
AS
D/C#
CS#
t
CS
t
AH
t
PWLR
t
cycle
t
PWHR
t
CSH
t
ACC
t
DHR
t
OH
t
F
t
R
t
F
t
R
Write cycle (Form 1) Read cycle (Form 1)
Figure 37 - 8080-series parallel interface characteristics (Form 1)
WR#
D[7:0]
D/C#
CS#
t
cycle
t
PWLW
t
PWHW
t
F
t
R
t
CS
t
AS
t
AH
t
CSF
t
DSW
t
DHW
RD#
D[7:0]
D/C#
CS#
t
cycle
t
PWLR
t
PWHR
t
F
t
R
t
CS
t
AS
t
AH
t
ACC
t
DHR
t
OH
t
CSH
Write cycle (Form 2) Read cycle (Form 2)
Figure 38 - 8080-series parallel interface characteristics (Form 2)
SSD1331
Rev 1.2 P 57/68 Nov 2007 Solomon Systech
Table 21 - Serial Interface Timing Characteristics
(VDD - VSS = 2.4V to 3.5V, V
DDIO
= 2.4V to VDD, TA = 25°C)
Symbol Parameter Min Typ Max Unit
t
cycle
Clock Cycle Time 150 - - ns tAS Address Setup Time 40 - - ns tAH Address Hold Time 40 - - ns
t
CSS
Chip Select Setup Time 75 - - ns
t
CSH
Chip Select Hold Time 60 - - ns
t
DSW
Write Data Setup Time 40 - - ns
t
DHW
Write Data Hold Time 40 - - ns
t
CLKL
Clock Low Time 75 - - ns
t
CLKH
Clock High Time 75 - - ns
tR
Rise Time - - 15 ns
tF Fall Time - - 15 ns
tAH tAS
D/C#
Valid Data
t
DHW
t
CLKL
t
DSW
t
CLKH
t
cycle
t
CSS
t
CSH
t
F
t
R
SDIN(D
1
)
CS#
SCLK(D
0
)
D7
SDIN
(
D
1
)
CS#
SCLK
(
D
0
)
D6 D5 D4 D3 D2 D1 D0
Figure 39 - Serial interface characteristics
Solomon Systech
Nov 2007 P 58/68 Rev 1.2 SSD1331
13 APPLICATION EXAMPLE
Figure 40 - Application Example for SSD1331U1R1
Color OLED Panel
96RGB x 64
SSD1331U1
COM62 . .
COM0 SA0
SB0
SC0 . . . . . . . . . .
SA95
SB95
SC95 COM1 . .
COM63
NC VCC V
COMH
NC D7~D0 E R/W# D/C# RES# CS# I
REF
BS2 BS1 VDD VB
REF
FB V
DDB
GDR VSS NC
D7~D0 E R/W# D/C# RES# CS# V
SS
[GND]
Pin connected to MCU interface: D0~D7, E, R/W#, D/C#, RES#, CS# Pin internally connected to V
DDIO
: CLS,
Pin internally connected to V
SS
: V
SSB
, B00, BS3
Pin internally connected to V
DD
: AVDD
C1: 4.7uF
(1)
C2: 4.7uF
(1)
C3: 4.7uF
(1)
Voltage at I
REF
= VCC – 3V
R1 = (Voltage at I
REF
- VSS) / I
REF
= 910KΩ for 12V VCC
Note
(1)
The capacitor value is recommended value. Select appropriate value against module application.
R1
C1
C3
C2
The configuration for 6800-parallel interface mode, externally V
CC
is shown in the following diagram:
(V
DD
= 3.0V, external V
CC
= 12V, I
REF
= 10uA)
SSD1331
Rev 1.2 P 59/68 Nov 2007 Solomon Systech
14 PACKAGE OPTIONS
14.1 SSD1331Z Die Tray Information
Figure 41 - Die Tray Information
Spec
mm (mil)
W1
76.00 ± 0.10 (2992)
W2
68.00 ± 0.10 (2677)
H
4.20± 0.10 (165)
Dx
13.66±0.10 (538)
TPx
48.78±0.10 (1920)
Dy
7.55±0.10 (297)
TPy
61.00±0.10 (2402)
Px
16.26 ± 0.05 (640)
Py
3.05 ± 0.05 (120)
X
13.25 ± 0.01 (522)
Y
1.73 ± 0.01 (68)
Z
0.62 ± 0.05 (24)
N
84 (Pocket number)
Solomon Systech
Nov 2007 P 60/68 Rev 1.2 SSD1331
14.2 SSD1331U1 R1 COF PACKAGE DIMENSIONS
Figure 42 - SSD1331U1R1 outline drawing
SSD1331
Rev 1.2 P 61/68 Nov 2007 Solomon Systech
Solomon Systech
Nov 2007 P 62/68 Rev 1.2 SSD1331
14.3 SSD1331U1 R1 COF PACKAGE PIN ASSIGNMENT
Figure 43 - SSD1331U1R1 pin assignment drawing
SSD1331
Rev 1.2 P 63/68 Nov 2007 Solomon Systech
Table 22 - SSD1331U1R1 pin assignment
Pin no. Pin name Pin no. Pin name Pin no. Pin name Pin no. Pin name Pin no. Pin name Pin no. Pin name
1 NC 81 SA93 161 SB66 241 SC39 321 SA13 401 NC 2 VCC 82 SC92 162 SA66 242 SB39 322 SC12 3 VCOMH 83 SB92 163 SC65 243 SA39 323 SB12 4 NC 84 SA92 164 SB65 244 SC38 324 SA12 5 D7 85 SC91 165 SA65 245 SB38 325 SC11 6 D6 86 SB91 166 SC64 246 SA38 326 SB11 7 D5 87 SA91 167 SB64 247 SC37 327 SA11 8 D4 88 SC90 168 SA64 248 SB37 328 SC10
9 D3 89 SB90 169 SC63 249 SA37 329 SB10 10 D2 90 SA90 170 SB63 250 SC36 330 SA10 11 D1 91 SC89 171 SA63 251 SB36 331 SC9 12 D0 92 SB89 172 SC62 252 SA36 332 SB9 13 E 93 SA89 173 SB62 253 SC35 333 SA9 14 R/W # 94 SC88 174 SA62 254 SB35 334 SC8 15 D/C# 95 SB88 175 SC61 255 SA35 335 SB8 16 RES# 96 SA88 176 SB61 256 SC34 336 SA8 17 CS# 97 SC87 177 SA61 257 SB34 337 SC7 18 IREF 98 SB87 178 SC60 258 SA34 338 SB7 19 BS2 99 SA87 179 SB60 259 SC33 339 SA7 20 BS1 100 SC86 180 SA60 260 SB33 340 SC6 21 VDD 101 SB86 181 SC59 261 SA33 341 SB6 22 NC 102 SA86 182 SB59 262 SC32 342 SA6 23 NC 103 SC85 183 SA59 263 SB32 343 SC5 24 NC 104 SB85 184 SC58 264 SA32 344 SB5 25 VBREF 105 SA85 185 SB58 265 SC31 345 SA5 26 NC 106 SC84 186 SA58 266 SB31 346 SC4 27 FB 107 SB84 187 SC57 267 SA31 347 SB4 28 VDDB 108 SA84 188 SB57 268 SC30 348 SA4 29 GDR 109 SC83 189 SA57 269 SB30 349 SC3 30 VSS 110 SB83 190 SC56 270 SA30 350 SB3 31 NC 111 SA83 191 SB56 271 SC29 351 SA3 32 NC 112 SC82 192 SA56 272 SB29 352 SC2 33 NC 113 SB82 193 SC55 273 SA29 353 SB2 34 NC 114 SA82 194 SB55 274 SC28 354 SA2 35 COM63 115 SC81 195 SA55 275 SB28 355 SC1 36 COM61 116 SB81 196 SC54 276 SA28 356 SB1 37 COM59 117 SA81 197 SB54 277 SC27 357 SA1 38 COM57 118 SC80 198 SA54 278 SB27 358 SC0 39 COM55 119 SB80 199 SC53 279 SA27 359 SB0 40 COM53 120 SA80 200 SB53 280 SC26 360 SA0 41 COM51 121 SC79 201 SA53 281 SB26 361 NC 42 COM49 122 SB79 202 SC52 282 SA26 362 NC 43 COM47 123 SA79 203 SB52 283 SC25 363 NC 44 COM45 124 SC78 204 SA52 284 SB25 364 NC 45 COM43 125 SB78 205 SC51 285 SA25 365 NC 46 COM41 126 SA78 206 SB51 286 SC24 366 NC 47 COM39 127 SC77 207 SA51 287 SB24 367 COM0 48 COM37 128 SB77 208 SC50 288 SA24 368 COM2 49 COM35 129 SA77 209 SB50 289 S C23 369 COM4 50 COM33 130 SC76 210 SA50 290 SB23 370 COM6 51 COM31 131 SB76 211 SC49 291 SA23 371 COM8 52 COM29 132 SA76 212 SB49 292 S C22 372 COM10 53 COM27 133 SC75 213 SA49 293 SB22 373 COM12 54 COM25 134 SB75 214 SC48 294 SA22 374 COM14 55 COM23 135 SA75 215 SB48 295 S C21 375 COM16 56 COM21 136 SC74 216 SA48 296 SB21 376 COM18 57 COM19 137 SB74 217 SC47 297 SA21 377 COM20 58 COM17 138 SA74 218 SB47 298 S C20 378 COM22 59 COM15 139 SC73 219 SA47 299 SB20 379 COM24 60 COM13 140 SB73 220 SC46 300 SA20 380 COM26 61 COM11 141 SA73 221 SB46 301 S C19 381 COM28 62 COM9 142 SC72 222 SA46 302 SB19 382 COM30 63 COM7 143 S B72 223 SC45 303 SA19 383 COM32 64 COM5 144 S A72 224 S B45 304 SC18 384 COM34 65 COM3 145 SC71 225 SA45 305 SB18 385 COM36 66 COM1 146 S B71 226 SC44 306 SA18 386 COM38 67 NC 147 SA71 227 SB44 307 SC17 387 COM40 68 NC 148 SC70 228 SA44 308 SB17 388 COM42 69 NC 149 SB70 229 SC 43 309 SA17 389 COM44 70 NC 150 SA70 230 SB43 310 SC16 390 COM46 71 NC 151 SC69 231 SA43 311 SB16 391 COM48 72 NC 152 SB69 232 SC 42 312 SA16 392 COM50 73 SC95 153 SA 69 233 SB 42 313 SC15 393 COM52 74 SB95 154 SC68 234 SA42 314 SB15 394 COM54 75 SA95 155 SB68 235 SC41 315 SA15 395 COM56 76 SC94 156 SA 68 236 SB 41 316 SC14 396 COM58 77 SB94 157 SC67 237 SA41 317 SB14 397 COM60 78 SA94 158 SB67 238 SC40 318 SA14 398 COM62 79 SC93 159 SA67 239 SB40 319 S C13 399 NC 80 SB93 160 SC66 240 SA40 320 SB13 400 NC
Solomon Systech
Nov 2007 P 64/68 Rev 1.2 SSD1331
14.4 SSD1331U3 R1 COF PACKAGE DIMENSIONS
Figure 44 - SSD1331U3R1 outline drawing
S
S
D
1
3
3
1
U
3
SSD1331
Rev 1.2 P 65/68 Nov 2007 Solomon Systech
Solomon Systech
Nov 2007 P 66/68 Rev 1.2 SSD1331
14.5 SSD1331U3 R1 COF PACKAGE PIN ASSIGNMENT
Figure 45 - SSD1331U3R1 pin assignment drawing
SSD1331
Rev 1.2 P 67/68 Nov 2007 Solomon Systech
Table 23 - SSD1331U3R1 pin assignment
Pin no. Pin name Pin no. Pin name Pin no. Pin name Pin no. Pin name Pin no. Pin name Pin no. Pin name
1 NC 81 SA93 161 SB66 241 SC39 321 SA13 401 NC 2 VCC 82 SC92 162 SA66 242 SB39 322 SC12 3 VCOMH 83 S B92 163 SC65 243 SA39 323 SB12 4 NC 84 SA92 164 SB65 244 SC38 324 S A12 5 D7 85 SC91 165 SA65 245 SB38 325 SC11 6 D6 86 SB91 166 SC64 246 SA38 326 SB11 7 D5 87 SA91 167 SB64 247 SC37 327 SA11 8 D4 88 SC90 168 SA64 248 SB37 328 SC10
9 D3 89 SB90 169 SC63 249 SA37 329 SB10 10 D2 90 SA 90 170 SB63 250 SC36 330 SA10 11 D1 91 SC89 171 SA63 251 SB36 331 SC9 12 D0 92 SB 89 172 SC62 252 SA36 332 SB9 13 E/RD# 93 SA89 173 SB62 253 SC35 333 SA9 14 R/W# 94 SC88 174 SA62 254 SB35 334 SC8 15 D/C# 95 SB88 175 SC61 255 SA35 335 SB8 16 RES# 96 SA88 176 SB61 256 SC34 336 SA8 17 CS# 97 SC87 177 SA61 257 SB34 337 SC7 18 FR 98 SB87 178 SC60 258 SA34 338 SB7 19 IREF 99 SA87 179 SB60 259 SC33 339 SA7 20 BS2 100 SC86 180 SA 60 260 SB33 340 SC6 21 BS1 101 SB86 181 SC59 261 SA33 341 SB6 22 VDDIO 102 SA86 182 SB59 262 SC32 342 SA6 23 VDD 103 SC85 183 SA59 263 SB32 343 SC5 24 VCIR 104 SB 85 184 SC58 264 SA32 344 SB5 25 VBREF 105 SA85 185 SB58 265 SC31 345 SA5 26 NC 106 SC84 186 SA58 266 SB31 346 SC4 27 FB 107 SB84 187 SC57 267 SA31 347 SB4 28 VDDB 108 SA84 188 SB57 268 SC30 348 SA4 29 GDR 109 SC83 189 SA57 269 SB30 349 SC3 30 VSS 110 SB83 190 SC56 270 SA30 350 SB3 31 NC 111 SA83 191 SB56 271 SC29 351 SA3 32 NC 112 SC82 192 SA56 272 SB29 352 SC2 33 NC 113 SB82 193 S C55 273 SA29 353 SB2 34 NC 114 SA82 194 SB55 274 SC28 354 SA2 35 COM63 115 SC81 195 SA55 275 SB28 355 SC1 36 COM61 116 SB 81 196 SC54 276 SA28 356 SB1 37 COM59 117 SA 81 197 SB54 277 SC27 357 SA1 38 COM57 118 SC80 198 SA54 278 SB27 358 SC0 39 COM55 119 SB 80 199 SC53 279 SA27 359 SB0 40 COM53 120 SA 80 200 SB53 280 SC26 360 SA0 41 COM51 121 SC79 201 SA53 281 SB26 361 NC 42 COM49 122 SB79 202 SC52 282 SA26 362 NC 43 COM47 123 SA79 203 SB52 283 SC25 363 NC 44 COM45 124 SC78 204 SA52 284 SB25 364 NC 45 COM43 125 SB78 205 SC51 285 SA25 365 NC 46 COM41 126 SA78 206 SB51 286 SC24 366 NC 47 COM39 127 SC77 207 SA51 287 SB24 367 COM0 48 COM37 128 SB77 208 SC50 288 SA24 368 COM2 49 COM35 129 SA77 209 SB50 289 SC23 369 COM4 50 COM33 130 SC76 210 SA50 290 SB23 370 COM6 51 COM31 131 SB76 211 SC49 291 SA23 371 COM8 52 COM29 132 SA 76 212 SB49 292 SC22 372 COM10 53 COM27 133 SC75 213 SA49 293 SB22 373 COM12 54 COM25 134 SB 75 214 SC48 294 SA22 374 COM14 55 COM23 135 SA 75 215 SB48 295 SC21 375 COM16 56 COM21 136 SC74 216 SA48 296 SB21 376 COM18 57 COM19 137 SB 74 217 SC47 297 SA21 377 COM20 58 COM17 138 SA 74 218 SB47 298 SC20 378 COM22 59 COM15 139 SC73 219 SA47 299 SB20 379 COM24 60 COM13 140 SB 73 220 SC46 300 SA20 380 COM26 61 COM11 141 SA 73 221 SB46 301 SC19 381 COM28 62 COM9 142 SC72 222 SA 46 302 SB19 382 COM30 63 COM7 143 SB72 223 SC45 303 SA19 383 COM32 64 COM5 144 SA72 224 SB45 304 SC18 384 COM34 65 COM3 145 SC71 225 SA 45 305 SB18 385 COM36 66 COM1 146 SB71 226 SC44 306 SA18 386 COM38 67 NC 147 SA71 227 SB44 307 SC17 387 COM40 68 NC 148 SC70 228 SA44 308 SB17 388 COM42 69 NC 149 SB70 229 S C43 309 SA17 389 COM44 70 NC 150 SA70 230 SB43 310 SC16 390 COM46 71 NC 151 SC69 231 SA43 311 SB16 391 COM48 72 NC 152 SB69 232 S C42 312 SA16 392 COM50 73 SC95 153 SA69 233 SB42 313 SC15 393 COM52 74 SB95 154 SC68 234 SA42 314 SB15 394 COM54 75 SA95 155 SB68 235 SC41 315 SA15 395 COM56 76 SC94 156 SA68 236 SB41 316 SC14 396 COM58 77 SB94 157 SC67 237 SA41 317 SB14 397 COM60 78 SA94 158 SB67 238 SC40 318 SA14 398 COM62 79 SC93 159 S A67 239 SB40 319 SC13 399 NC 80 SB93 160 SC66 240 SA40 320 SB13 400 NC
Solomon Systech
Nov 2007 P 68/68 Rev 1.2 SSD1331
Solomon Systech reserves the right to make changes without further notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part
All Solomon Systech Products complied with six (6) hazardous substances limitation requirement per European Union (EU)
“Restriction of Hazardous Substance (RoHS) Directive (2002/95/EC)” and China standard “
󳵄󳡩󳯍󴃹
(SJ/T11364-2006)” with control Marking Symbol . Hazardous Substances test report is available upon requested.
http://www.solomon-systech.com
Loading...