
Open Source SPM Controller & PLL
Model Mk3-PLL
The Open Source SPM Controller & PLL can be used as:
a SPM controller
ü
a controller with an embedded PLL, or
ü
a stand alone PLL
ü
This MK3-PLL model is fully compatible with the SPM control software
developed by the GXSM Group. This model has more computational power and
memory than the MK2-A810 model for further developments and improvements
of the next generation of the GXSM control code.
One of the great innovation of this model is an embedded PLL function.
KEY FEATURES OF THE PLL MODULE
This highly optimized software PLL module is based on an innovative
phase/amplitude detector. This module is embedded in the SPM controller
firmware code.
“Schematic Diagram
of the PLL”
The analog I/O board of this SPM controller Mk3-PLL model also includes a TCXO (temperature compensated crystal
oscillator), which greatly improves the PLL’s thermal stability and reduces its noise at low frequencies.
“Ultrathin Bi(111) film on
a Si(111)-7x7 substrate
Images provided by, C.A. Bobisch,
M.C. Cottin, J. Schaffert and R. Möller”
“Si(111)-7x7 reconstruction
Image provided by, D.v.Vörden,
M.Lange and R. Möller”
1040, avenue Belvédère, bureau 215, Québec (Québec) G1S 3G3 Canada | contact@softdb.com | www.softdb.com

KEY FEATURES OF THE PLL MODULE
• The PLL module is based on an innovative (patent-pending) phase/amplitude measurement technique. This technique does
not rely on narrow-band filtering like traditional demodulation techniques. The result is signal capture and tracking capabilities
that encompass the whole frequency range, with better noise and precision/time-constant trade-offs that are independent
of frequency range.
• Allows the control of both the phase and amplitude of the resonator signal.
• Implemented as a module of the SPM controller’s firmware. This way, high resolution input and output signals are directly
accessible in digital form. No DAC/ADC conversions take place between the PLL and SPM controller, as is the case with
a stand-alone PLL. This provides greater precision and lower group-delay for a faster loop response.
• Includes a function to automatically measure the resonator-frequency response and characteristics:
Frequency and phase at resonance
ü
Q factor
ü
Gain at resonance
ü
• Includes a special auto-set feature to simplify the loop-gain set-up. With the auto-set feature, the user only needs to specify
the desired closed-loop response for both controllers. The module automatically sets the loop gains to achieve the desired
response.
• Includes a unique step-response function that allows the in-circuit measurement of the closed-loop response for both the
phase and amplitude loops.
• The PLL module generates the excitation frequency, the excitation amplitude, the resonator phase and amplitude signals.
• Both phase and amplitude loops have an additional output low-pass filter to reduce the noise on all PLL signals.
This filter is automatically adjusted to reduce noise without altering controller bandwidth.
• The PLL module includes a function for long-term analysis of PLL signals. This can be used to assess thermal drift
and low frequency noise.
STAND-ALONE PLL
The SPM controller Mk3 unit can also be used as a stand-alone PLL. Soft dB provides an open source
Windows/LabVIEW-based interface to run the SPM controller Mk3 unit as a stand-alone PLL with four output signals:
Excitation frequency ü Excitation amplitude ü Resonator phase ü Resonator amplitude
ü
“PLL stand-alone
user-interface”
1040, avenue Belvédère, bureau 215, Québec (Québec) G1S 3G3 Canada | contact@softdb.com | www.softdb.com

Open Source SPM Controller & PLL
PLL MODULE SPECIFICATIONS
Input Range
Output Range
Frequency Range
Resonator Test Board
PLL Output Signal Ranges
(Stand-Alone Operation)
±
10 V
±
10 V (external 1/100 and 1/1000 attenuators provided)
3.2 kHz to 75 kHz
An active resonator board is included with the SPM controller for easy testing and setup of the PLL module
Model Mk3-PLL
Excitation Frequency
Excitation Amplitude
Resonator Phase
Resonator Amplitude
±
2.85 mHz
± 1.19 μV
± 6.83 μ degree
± 1.19 μV
to ±
23.9 kHz
to ± 10 V
to ± 57.3 degree
to ± 10 V
Phase Controller
Bandwidth: 1 kHz
Excitation Frequency
PLL Signal Noise Levels*
Phase/Amplitude (PAC)
Detector Bandwidth
Software Features
Temperature Coefficient
* Note: Noise levels are measured using the resonator board included with the SPM controller (gain –13 dB at the resonance) and the auto-set
of loop gains for both controllers. The new PLL technique ensures that the noise levels are independent of measurement ranges.
100Hz to 10kHz. The bandwidth is automatically adjusted when the loop auto-set function is used
• Resonator frequency sweep for automatic measurement of resonator frequency characteristics
• Loop-gain auto-set for amplitude and phase controllers. Gains are set according to desired
closed-loop bandwidth
• In-circuit closed-loop step response measurement function validates the setup of both controllers
• Adjustable low-pass filter on PLL signals: Excitation amplitude/frequency and Resonator
phase /amplitude. These filters can be adjusted from 1.5 Hz to 16 kHz or bypassed.
• Real time monitoring of all PLL signals
• Long term monitoring of PLL signals to assess the low frequency stability and noise
• TCXO Stability 140 ppb over a temperature range from -20 °C to 70 °C
• TCXO Precision 2 ppm
Resonator Phase
Excitation Amplitude
Resonator Amplitude
60 mHz RMS 20 μHz RMS
4 m degree RMS 200 μ degree RMS
Amplitude Controller
Bandwidth: 7.5 Hz
400 μV RMS 50 μV RMS
5 μV RMS 2 μV RMS
Phase Controller
Bandwidth: 5 Hz
Amplitude Controller
Bandwidth: 1.5 Hz
1040, avenue Belvédère, bureau 215, Québec (Québec) G1S 3G3 Canada | contact@softdb.com | www.softdb.com