The ST7715 is a single-chip controller/driver for 262K-color, graphic type TFT-LCD. It consists of 396 source line and 132
gate line driving circuits. This chip is capable of connecting directly to an external microprocessor, and accepts Serial
Peripheral Interface (SPI), 8-bit/9-bit/16-bit/18-bit parallel interface. Display data can be stored in the on-chip display data
RAM of 132 x 132 x 18 bits. It can perform display data RAM read/write operation with no external operation clock to
minimize power consumption. In addition, because of the integrated power supply circuits necessary to drive liquid crystal,
it is possible to make a display system with fewer components.
2 Features
Single chip TFT-LCD Controller/Driver with RAM
On-chip Display Data RAM (i.e. Frame Memory)
- 132 (H) x RGB x 132 (V) bits
LCD Driver Output Circuits:
- Source Outputs: 132 RGB channels
- Gate Outputs: 132 channels
Display Resolution
- 132 (RGB) x 132
(GM[2:0]= ”001”, DDRAM: 132 x 18-bits x 132)
Display Colors (Color Mode)
- Full Color: 262K, RGB=(666) max., Idle Mode OFF
- Color Reduce: 8-color, RGB=(111), Idle Mode ON
Programmable Pixel Color Format (Color Depth) for
Various Display Data input Format
- 12-bit/pixel: RGB=(444) using the 384k-bit frame
memory and LUT
- 16-bit/pixel: RGB=(565) using the 384k-bit frame
memory and LUT
- 18-bit/pixel: RGB=(666) using the 384k-bit frame
- Non-volatile (NV) memory to store initial register setting
- Oscillator for display clock generation
- Factory default value (module ID, module version, etc)
are stored in NV memory
- Timing controller
Built-in NV Memory for LCD Initial Register Setting
- 7-bits for ID2
- 8-bits for ID3
- 7-bits for VCOM adjustment
Wide Supply Voltage Range
- I/O Voltage (VDDI to DGND): 1.65V~VDD
(VDDI ≤ VDD)
- Analog Voltage (VDD to AGND): 2.6V~3.3V
On-Chip Power System
- Source Voltage (GVDD to AGND): 3.0V~5.0V
- VCOM HIGH level (VCOMH to AGND): 2.5V to 5.0V
- VCOM LOW level (VCOML to AGND): -2.4V to 0.0V
- Gate driver HIGH level (VGH to AGND):
+10.0V to 15V
- Gate driver LOW level (VGL to AGND):
-12.4V to –7.5V
Operating Temperature: -30°C to +85°C
ST7715
Parallel Interface: 8-bit/9-bit/16-bit/18-bit
Serial Interface: 3-line/4-line
Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice.
V1.2 1 2009-3-10
ST7715
3 Pad arrangement
3.1 Output Bump Dimension
Boundary (Include scribe Lane)
CK
H
J
Item Symbol Size
Bump pitch A 16 um
Bump width C 16 um
Bump height H 98 um
Bump gap1 (Vertical) J 19 um
Bump gap2 (Horizontal) K 16 um
L
A
Bump area C x H 1568 um2
Chip Boundary (include scribe Lane) L 59 um
V1.2 2 2009-03-10
ST7715
3.2 Input Bump Dimension
C2
H
Bump pitch 1 A1 67 um
Bump pitch 2 A2 50 um
Bump width 1 C1 35 um
Bump width 2 C2 40 um
Bump height H 90 um
Bump gap K 20 um
Bump gap1 K1 15 um
C2
K
Item Symbol Size
A1
K2
L
A2
K1K1
Boundary (Include scribe Lane)
C1
Bump gap2 K2 32 um
Bump area 1 C1 X H 3150 um2
Bump area 2 C2 X H 3690 um2
Chip Boundary(include scribe Lane) L 59 um
V1.2 3 2009-03-10
ST7715
3.3 Alignment Mark Dimension
10 5
2015151515
3.4 Chip Information
Chip size (um x um): 9900 x 670
PAD coordinate: pad center
Coordinate origin: chip center
Chip thickness (um): 300 (TYP)
Bump height (um): 15 (TYP)
Bump hardness (HV): 75 (TYP)
2015151515
80
105
80
2015151515
80
2015151515
80
V1.2 4 2009-03-10
ST7715
1 DUMMY
-4750 -231 51 VDD -
2250 -
231 101 DGND
550 -
231
2 VDDIO
-4700 -
231 52 VDD -
2200 -
231 102 DGND
600 -
231
3 EXTC
-4650 -
231 53 VDD -
2150 -
231 103 VDDI 650 -
231
4 DGNDO
-4600 -
231 54 VDD -
2100 -
231 104 VDDI 700 -
231
5 IM0 -
4550 -
231 55 VDD -
2050 -
231 105 VDDI 750 -
231
6 VDDIO
-4500 -
231 56 VDD -
2000 -
231 106 VDDI 800 -
231
7 IM1 -
4450 -
231 57 AGND
-1950 -
231 107 VDDI 850 -
231
8 DGNDO
-4400 -
231 58 AGND
-1900 -
231 108 VDDI 900 -
231
9 DUMMY
-4350 -
231 59 AGND
-1850 -
231 109 VCC 950 -
231
10 VDDIO
-4300 -
231 60 AGND
-1800 -
231 110 VCC 1000 -
231
11 TPI[1]
-4250 -
231 61 AGND
-1750 -
231 111 VCCO
1050 -
231
12 DGNDO
-4200 -
231 62 AGND
-1700 -
231 112 VCI1 1100 -
231
13 TPI[2]
-4150 -
231 63 RDX -
1630 -
231 113 VCI1 1150 -
231
14 VDDIO
-4100 -
231 64 D/CX -
1570 -
231 114 VCI1 1200 -
231
15 SRGB
-4050 -
231 65 TESEL
-1510 -
231 115 VREF
1250 -
231
16 DGNDO
-4000 -
231 66
DGNDO
-1450 -
231 116 VREF
1300 -
231
17 SMX -
3950 -
231 67 D17 -
1390 -
231 117 VREF
1350 -
231
18 VDDIO
-3900 -
231 68 D16 -
1330 -
231 118 DUMMY
1400 -
231
19 SMY -
3850 -
231 69 D15 -
1270 -
231 119 DUMMY
1450 -
231
20 DGNDO
-3800 -
231 70 D14 -
1210 -
231 120 AVDD
1500 -
231
21 DUMMY
-3750 -
231 71 D13 -
1150 -
231 121 AVDD
1550 -
231
22 VDDIO
-3700 -
231 72 D12 -
1090 -
231 122 AVDD
1600 -
231
23 DUMMY
-3650 -
231 73 D11 -
1030 -
231 123 AVDD
O 1650 -
231
24 DGNDO
-3600 -
231 74 D10 -
970 -
231 124 AVDD
O 1700 -
231
25 DUMMY
-3550 -
231 75 D9 -
910 -
231 125 GVDD
1750 -
231
26 VDDIO
-3500 -
231 76 D8 -
850 -
231 126 GVDD
1800 -
231
27 DUMMY
-3450 -
231 77 D1 -
790 -
231 127 GVDD
1850 -
231
28 DGNDO
-3400 -
231 78 D3 -
730 -
231 128 DUMMY
1900 -
231
29 DUMMY
-3350 -
231 79 D5 -
670 -
231 129 DUMMY
1950 -
231
30 VDDIO
-3300 -
231 80 D7 -
610 -
231 130 C11P
2000 -
231
31 LCM -
3250 -
231 81 TE -
550 -231 131 C11P
2050 -
231
32 DGNDO
-3200 -
231 82 RESX
-490 -
231 132 C11P
2100 -
231
33 DUMMY
-3150 -
231 83 CSX -
430 -
231 133 C11P
2150 -
231
34 VDDIO
-3100 -
231 84 D6 -
370 -
231 134 C11N
2200 -
231
35 GM2 -
3050 -
231 85 D4 -
310 -
231 135 C11N
2250 -
231
36 DGNDO
-3000 -
231 86 D2 -
250 -
231 136 C11N
2300 -
231
37 GM1 -
2950 -
231 87 IM2 -
190 -
231 137 C11N
2350 -
231
38 VDDIO
-2900 -
231 88 D0 -
130 -
231 138 C12P
2400 -
231
39 GM0 -
2850 -
231 89 WRX -70 -231 139 C12P
2450 -
231
40 DGNDO
-2800 -
231 90 DU
MMY 0 -
231 140 C12P
2500 -
231
41 DUMMY
-2750 -
231 91
DUMMY
50 -231 141 C12P
2550 -
231
42 CS -
2700 -
231 92
DUMMY
100 -
231 142 C12N
2600 -
231
43 SPI4W
-2650 -
231 93
DUMMY
150 -
231 143 C12N
2650 -
231
44 VDDIO
-2600 -
231 94
TPO[3]
200 -
231 144 C12N
2700 -
231
45 TPO[8]
-2550 -
231 95
TPO[2]
250 -
231 145 C12N
2750 -
231
46 TPO[7]
-2500 -
231 96
TPO[1]
300 -
231 146 AGND
2800 -
231
47 TPO[6]
-2450 -
231 97
DGND
350 -
231 147 AGND
2850 -
231
48 TPO[5]
-2400 -
231 98
DGND
400 -
231 148 AGND
2900 -
231
49 TPO[4]
-2350 -
231 99
DGND
450 -
231 149 VCL 2950 -
231
50 OSC -
2300 -
231
100 DGND
500 -
231 150 VCL 3000 -
231
4 Pad Center Coordinates
No. PAD Name
X Y No. PAD Name
X Y
No. PAD Name
X Y
V1.2 5 2009-03-10
ST7715
151
VCL 3050 -
231
201 DUMMYG
4532 227
251 G36 3732 227
152
C41P
3100 -
231 202 DUMMYG
4516 110
252 G34 3716 110
153
C41P
3150 -
231
203 G132 4500 227
253 G32 3700 227
154
C41P
3200 -
231
204 G130 4484 110
254 G30 3684 110
155
C41N
3250 -
231
205 G128 4468 227
255 G28 3668 227
156
C41N
3300 -
231
206 G126 4452 110
256 G26 3
652 110
157
C41N
3350 -
231
207 G124 4436 227
257 G24 3636 227
158
C22P
3400 -
231
208 G122 4420 110
258 G22 3620 110
159
C22P
3450 -
231
209 G120 4404 227
259 G20 3604 227
160 C22P
3500 -
231
210 G118 4388 110
260 G18 3588 110
161 C22N
3550 -
231
211 G116 4372 227
261 G16 3572 227
162 C22N
3600 -
231
212 G114 4356 110
262 G14 3556 110
163
C22N
3650 -
231
213 G112 4340 227
263 G12 3540 227
164
C23P
3700 -
231
214 G110 4324 110
264 G10 3524 110
165 C23P
3750 -
231
215 G108 4308 227
265 G8 3
508 227
166 C23P
3800 -
231
216 G106 4292 110
266 G6 3492 110
167 C23N
3850 -
231
217 G104 4276 227
267 G4 3476 227
168 C23N
3900 -
231
218 G102 4260 110
268 G2 3460 110
169 C23N
3950 -
231
219 G100 4244 227
269 DUMMY
3444 227
170
VGL 4000 -
231 220 G98 4228 110
270 DUMMY
3428 110
171
VGL 4050 -
231
221 G96 4212 227
271 DUMMY
3412 227
172 VGL 4100 -
231
222 G94 4196 110
272 DUMMY
3396 110
173 VGH 4150 -
231
223 G92 4180 227
273 S396 3380 227
174 VGH 4200 -
231
224 G90 4164 110
274 S395 3364
110
175 VGHO
4250 -
231
225 G88 4148 227
275 S394 3348 227
176 VCOMH
4300 -
231
226 G86 4132 110
276 S393 3332 110
177 VCOMH
4350 -
231
227 G84 4116 227
277 S392 3316 227
178 VCOMH
4400 -
231
228 G82 4100 110
278 S391 3300 110
179 VCOML
4450 -231
229 G80 4084 227
279 S390 3284 227
180 VCOML
4500 -
231
230 G78 4068 110
280 S389 3268 110
181 VCOML
4550 -
231
231 G76 4052 227
281 S388 3252 227
182 VCOM
4600 -
231
232 G74 4036 110
282 S387 3236 110
183 VCOM
4650 -
231
233 G72 4020 227
283 S
386 3220 227
184 VCOM
4700 -
231
234 G70 4004 110
284 S385 3204 110
185 DUMMY2
4750 -
231
235 G68 3988 227
285 S384 3188 227
186 DUMMY3
4772 110
236 G66 3972 110
286 S383 3172 110
187 DUMMY4
4756 227
237 G64 3956 227
287 S382 3156 227
188 DUMMYG
4740 110
238 G62 3940 110
288 S381 3140 110
189 DUMMYG
4724 227
239 G60 3924 227
289 S380 3124 227
190 DUMMYG
4708 110
240 G58 3908 110
290 S379 3108 110
191 DUMMYG
4692 227
241 G56 3892 227
291 S378 3092 227
192 DUMMYG
4676 110
242 G54 3876 110
292 S377 3076 110
193 DUMMYG
4660 227
243 G52 3860 227
293 S376 3060 227
194 DUMMYG
4644 110
244 G50 3844 110
294 S375 3044 110
195 DUMMYG
4628 227
245 G48 3828 227
295 S374 3028 227
196 DUMMYG
4612 110
246 G46 3812 110
296 S373 3012 110
197 DUMMYG
4596 227
247 G44 3796 227
297 S372 2996 227
198 DUMMYG
4580 110
248 G42 3780 110
298 S371 2980 110
199 DUMMYG
4564 227
249 G40 3764 227
299 S370 2964 227
200 DUMMYG
4548 110
250 G38 3748 110
300 S369 2948 110
No. PAD Name
X Y
No. PAD Name
X Y
No. PAD Name
X Y
V1.2 6 2009-03-10
ST7715
301
S368 2932 227 351 S318 2132 227
401 S268 1332 227
302
S367 2916 110 352 S317 2116 110
402 S267 1316 110
303
S366 2900 227 353 S316 2100 227
403 S266 1300 227
304
S365 2884 110 354 S315 2084 110
404 S265 1284 110
305
S364 2868 227 355 S314 2068 227
405 S264 1268 227
306
S363 2852 110 356 S313 2052 110
406 S263 1252 110
307
S362 2836 227 357 S312 2036 227
407 S262 1236 227
308
S361 2820 110 358 S311 2020 110
408 S261 1220 110
309
S360 2804 227 359 S310 2004 227
409 S260 1204 227
310
S359 2788 110 360 S309 1988 110
410 S259 1188 110
311
S358 2772 227 361 S308 1972 227
411 S258 1172 227
312
S357 2756 110 362 S307 1956 110
412 S257 1156 110
313
S356 2740 227 363 S306 1940 227
413 S256 1140 227
314
S355 2724 110 364 S305 1924 110
414 S255 1124 110
315
S354 2708 227 365 S304 1908 227
415 S254 1108 227
316
S353 2692 110
366 S303 1892 110
416 S253 1092 110
317
S352 2676 227 367 S302 1876 227
417 S252 1076 227
318
S351 2660 110 368 S301 1860 110
418 S251 1060 110
319
S350 2644 227 369 S300 1844 227
419 S250 1044 227
320
S349 2628 110 370 S299 1828 110
420 S249 1028 110
321
S348 2612 227 371 S298 1812 227
421 S248 1012 227
322
S347 2596 110 372 S297 1796 110
422 S247 996 110
323
S346 2580 227 373 S296 1780 227
423 S246 980 227
324
S345 2564 110 374 S295 1764 110
424 S245 964 110
325
S344 2548 227 375 S294 1748 227
425 S244 948 227
326
S343 2532 110 376 S293 1732 110
426 S243 932 110
327
S342 2516 227 377 S292
1716 227
427 S242 916 227
328
S341 2500 110 378 S291 1700 110
428 S241 900 110
329
S340 2484 227 379 S290 1684 227
429 S240 884 227
330
S339 2468 110 380 S289 1668 110
430 S239 868 110
331
S338 2452 227 381 S288 1652 227
431 S238 852 227
332 S337 2436 110 382 S287 1636 110
432 S237 836 110
333
S336 2420 227 383 S286 1620 227
433 S236 820 227
334
S335 2404 110 384 S285 1604 110
434 S235 804 110
335
S334 2388 227 385 S284 1588 227
435 S234 788 227
336
S333 2372 110 386 S283 1572 110 436 S233 772 110
337
S332 2356 227 387 S282 1556 227
437 S232 756 227
338
S331 2340 110 388 S281 1540 110
438 S231 740 110
339
S330 2324 227 389 S280 1524 227
439 S230 724 227
340
S329 2308 110 390 S279 1508 110
440 S229 708 110
341
S328 2
292 227
391 S278 1492 227
441 S228 692 227
342
S327 2276 110
392 S277 1476 110
442 S227 676 110
343
S326 2260 227
393 S276 1460 227
443 S226 660 227
344
S325 2244 110
394 S275 1444 110
444 S225 644 110
345
S324 2228 227
395 S274 1428 227
445 S224 628 227
346
S323 2212 110
396 S273 1412 110
446 S223 612 110
347
S322 2196 227
397 S272 1396 227
447 S222 596 227
348
S321 2180 110
398 S271 1380 110
448 S221 580 110
349
S320 2164 227
399 S270 1364 227
449 S220 564 227
350
S319 2148 110
400 S269 1348 110
450 S219 548 110
No. PAD Name
X Y No. PAD Name
X Y
No. PAD Name
X Y
V1.2 7 2009-03-10
ST7715
451 S218 532 227
501 S172 -
644 110
551 S122 -
1444 110
452 S217 516 110
502 S171 -
660 227
552 S121 -
1460 227
453 S216 500 227
503 S170 -
676 110
553 S120 -
1476 110
454 S215 484 110
504 S169 -
692 227
554 S119 -
1492 227
455 S214 468 227
505 S168 -
708 110
555 S118 -
1508 110
456 S213 452 110
506 S167 -
724 227
556 S117 -
1524 227
457 S212 436 227
507 S166 -
740 110
557 S116 -
1540 110
458 S211 420 110
508 S165 -
756 227
558 S115 -
1556 227
459 S210 404 227
509 S164 -
772 110
559 S114 -
1572 110
460 S209 388 110
510 S163 -
788 227
560 S113 -
1588 227
461 S208 372 227
511 S162 -
804 110
561 S112 -
1604 110
462 S207 356 110
512 S161 -
820 227
562 S111 -
1620 227
463 S206 340 227
513 S160 -
836 110
563 S110 -
1636 110
464 S205 324 110
514 S159 -
852 227
564 S109 -
1652 227
465 S204 308 227
515 S158 -
868 110
565 S108 -
1668 110
466 S203 292 110
516 S157 -
884 227
566 S107 -
1684 227
467 S202 276 227
517 S156 -
900 110
567 S106 -
1700 110
468 S201 260 110
518 S155 -
916 227
568 S105 -
1716 227
469 S200 244 227
519 S154 -
932 110
569 S104 -
1732 110
470 S199 228 110
520 S153 -
948 227
570 S103 -
1748 227
471 DUMMY
212 227
521 S152 -
964 110
571 S102 -1764 110
472 DUMMY
196 110
522 S151 -
980 227
572 S101 -
1780 227
473 DUMMY
-196 110
523 S150 -
996 110
573 S100 -
1796 110
474 DUMMY
-212 227
524 S149 -
1012 227
574 S99 -
1812 227
475 S198 -
228 110
525 S148 -
1028 110
575 S98 -
1828 110
476 S197 -
244 227
526 S147 -
1044 227
576 S97 -
1844 227
477 S196 -
260 110
527 S146 -
1060 110
577 S96 -
1860 110
478 S195 -
276 227
528 S145 -
1076 227
578 S95 -
1876 227
479 S194 -
292 110
529 S144 -
1092 110
579 S94 -
1892 110
480 S193 -
308 227
530 S143 -
1108 227
580 S93 -
1908 227
481 S192 -
324 110
531 S142 -
1124 110
581 S92 -
1924 110
482 S191 -
340 227
532 S141 -
1140 227
582 S91 -
1940 227
483 S190 -
356 110
533 S140 -
1156 110
583 S90 -
1956 110
484 S189 -
372 227
534 S139 -
1172 227
584 S89 -
1972 227
485 S188 -
388 110
535 S138 -
1188 110
585 S88 -
1988 110
486 S187 -
404 227
536 S137 -
1204 227
586 S87 -
2004 227
487 S186 -
420 110
537 S136 -
1220 110
587 S86 -
2020 110
488 S185 -
436 227
538 S135 -
1236 227
588 S85 -
2036 227
489 S184 -
452 110
539 S134 -
1252 110
589 S84 -
2052 110
490 S183 -
468 227
540 S133 -
1268 227
590 S83 -
2068 227
491 S182 -
484 110
541 S132 -
1284 110
591 S82 -
2084 110
492 S181 -
500 227
542 S131 -
1300 227
592 S81 -
2100 227
493 S180 -
516 110
543 S130 -
1316 110
593 S80 -
2116 110
494 S179 -
532 227
544 S129 -
1332 227
594 S79 -
2132 227
495 S178 -
548 110
545 S128 -
1348 110
595 S78 -
2148 110
496 S177 -
564 227
546 S127 -
1364 227
596 S77 -
2164 227
497 S176 -
580 110
547 S126 -
1380 110
597 S76 -
2180 110
498 S175 -
596 227
548 S125 -
1396 227
598 S75 -
2196 227
499 S174 -
612 110
549 S124 -
1412 110
599 S74 -
2212 110
500 S173 -
628 227
550 S123 -
1428 227
600 S73 -
2228 227
No. PAD Name
X Y No. PAD Name
X Y
No. PAD Name
X Y
V1.2 8 2009-03-10
ST7715
601 S72 -
2244 110
651 S22 -
3044 110
701 G49 -
3844 110
602 S71 -
2260 227
652 S21 -
3060 227
702 G51 -
3860 227
603 S70 -
2276 110
653 S20 -
3076 110
703 G53 -
3876 110
604 S69 -
2292 227
654 S19 -
3092 227
704 G55 -
3892 227
605 S68 -
2308 110
655 S18 -
3108 110
705 G57 -
3908 110
606 S67 -
2324 227
656 S17 -
3124 227
706 G59 -
3924 227
607 S66 -
2340 110
657 S16 -
3140 110
707 G61 -
3940 110
608 S65 -
2356 227
658 S15 -
3156 227
708 G63 -
3956 227
609 S64 -
2372 110
659 S14 -
3172 110
709 G65 -
3972 110
610 S63 -
2388 227
660 S13 -
3188 227
710 G67 -
3988 227
611 S62 -
2404 110
661 S12 -
3204 110
711 G69 -
4004 110
612 S61 -
2420 227
662 S11 -
3220 227
712 G71 -
4020 227
613 S60 -
2436 110
663 S10 -
3236 110
713 G73 -
4036 110
614 S59 -
2452 227
664 S9 -
3252 227
714 G75 -
4052 227
615 S58 -
2468 110
665 S8 -
3268 110
715 G77 -
4068 110
616 S57 -
2484 227
666 S7 -
3284 227
716 G79 -
4084 227
617 S56 -
2500 110
667 S6 -
3300 110
717 G81 -
4100 110
618 S55 -
2516 227
668 S5 -
3316 227
718 G83 -
4116 227
619 S54 -
2532 110
669 S4 -
3332 110
719 G85 -
4132 110
620 S53 -
2548 227
670 S3 -
3348 227
720 G87 -
4148 227
621 S52 -
2564 110
671 S2 -
3364 110
721 G89 -
4164 110
622 S51 -
2580 227
672 S1 -
3380 227
722 G91 -
4180 227
623 S50 -
2596 110
673 DUMMY
-3396 110
723 G93 -
4196 110
624 S49 -
2612 227
674 DUMMY
-3412 227
724 G95 -
4212 227
625 S48 -
2628 110
675 DUMMY
-3428 110
725 G97 -
4228 110
626 S47 -
2644 227
676 DUMMY
-3444 227
726 G99 -
4244 227
627 S46 -
2660 110
677 G1 -
3460 110
727 G101 -
4260 110
628 S45 -
2676 227
678 G3 -
3476 227
728 G103 -
4276 227
629 S44 -
2692 110
679 G5 -
3492 110
729 G105 -
4292 110
630 S43 -
2708 227
680 G7 -
3508 227
730 G107 -
4308 227
631 S42 -
2724 110
681 G9 -
3524 110
731 G109 -
4324 110
632 S41 -
2740 227
682 G11 -
3540 227
732 G111 -
4340 227
633 S40 -2756 110
683 G13 -
3556 110
733 G113 -
4356 110
634 S39 -
2772 227
684 G15 -
3572 227
734 G115 -
4372 227
635 S38 -
2788 110
685 G17 -
3588 110
735 G117 -
4388 110
636 S37 -
2804 227
686 G19 -
3604 227
736 G119 -
4404 227
637 S36 -
2820 110
687 G21 -3620 110
737 G121 -
4420 110
638 S35 -
2836 227
688 G23 -
3636 227
738 G123 -
4436 227
639 S34 -
2852 110
689 G25 -
3652 110
739 G125 -
4452 110
640 S33 -
2868 227
690 G27 -
3668 227
740 G127 -
4468 227
641 S32 -
2884 110
691 G29 -
3684 110
741 G129 -
4484 110
642 S31 -
2900 227
692 G31 -
3700 227
742 G131 -
4500 227
643 S30 -
2916 110
693 G33 -
3716 110
743 DUMMY
G -
4516 110
644 S29 -
2932 227
694 G35 -
3732 227
744 DUMMY
G -
4532 227
645 S28 -
2948 110
695 G37 -
3748 110
745 DUMMY
G -
4548 110
646 S27 -
2964 227
696 G39 -
3764 227
746 DUMMY
G -
4564 227
647 S26 -
2980 110
697 G41 -
3780 110
747 DUMMY
G -
4580 110
648 S25 -
2996 227
698 G43 -
3796 227
748 DUMMY
G -
4596 227
649 S24 -
3012 110
699 G45 -
3812 110
749 DUMMY
G -
4612 110
650 S23 -
3028 227
700 G47 -3828 227
750 DUMMY
G -
4628 227
No. PAD Name
X Y No. PAD Name
X Y
No. PAD Name
X Y
V1.2 9 2009-03-10
ST7715
751
DummyG
-4644 110
752
DummyG
-4660 227
753
DummyG
-4676 110
754
DummyG
-4692 227
755
DummyG
-4708 110
756
DummyG
-4724 227
757
DummyG
-4740 110
758
DUMMY
-4756 227
759
DUMMY
-4772 110
ALK-R 4841 -
220
ALK-L -
4841 -
220
No. PAD Name
X Y
V1.2 10 2009-03-10
ST7715
5 Block diagram
V1.2 11 2009-03-10
ST7715
6 Driver IC Pin Description
6.1 Power Supply Pin
Name
VDD I Power supply for analog, digital system and booster circuit. VDD
VDDI I Power supply for I/O system. VDDI
AGND
DGND
6.2 Interface logic pin
Name I/O Description Connect pin
IM2 I
IM1,IM0
I/O Description Connect pin
I System ground for analog system and booster circuit. GND
I System ground for I/O system and digital system. GND
MCU Parallel interface bus and Serial interface select
IM2=’1’, Parallel interface
IM2=’0’, Serial interface
- MCU parallel interface type selection
-If not used, please fix this pin at VDDI or DGND level.
IM1 IM0 Parallel interface
I
0 0 MCU 8-bit parallel
0 1 MCU 16-bit parallel
DGND/VDDI
DGND/VDDI
SPI4W
RESX I
CSX I
D/CX
(SCL)
RDX I
1 0 MCU 9-bit parallel
1 1 MCU 18-bit parallel
- SPI4W=’0’, 3-line SPI enable.
I
- SPI4W=’1’, 4-line SPI enable.
-If not used, please fix this pin at DGND level.
-This signal will reset the device and it must be applied to properly
initialize the chip.
-Signal is active low.
-Chip selection pin
-Low enable.
-Display data/command selection pin in MCU interface.
-D/CX=’1’: display data or parameter.
I
-D/CX=’0’: command data.
-In serial interface, this is used as SCL.
-If not used, please fix this pin at VDDI or DGND level.
-Read enable in 8080 MCU parallel interface.
-If not used, please fix this pin at VDDI or DGND level.
DGND/VDDI
MCU
MCU
MCU
MCU
WRX
(D/CX)
D[17:0] I/O -D[17:0] are used as MCU parallel interface data bus. MCU
V1.2 12 2009-03-10
-Write enable in MCU parallel interface.
I
-In 4-line SPI, this pin is used as D/CX (data/ command selection).
-If not used, please fix this pin at VDDI or DGND level.
MCU
ST7715
-D0 is the serial input/output signal in serial interface mode.
-In serial interface, D[17:1] are not used and should be fixed at VDDI or
DGND level.
-Tearing effect output pin to synchronies MCU to frame rate, activated
TE O
OSC O
Note1. When in parallel mode, no use data pin must be connected to “1” or “0”.
Note2. When CSX=”1”, there is no influence to the parallel and serial interface.
by S/W command.
-If not used, please open this pin.
-Monitoring pin of internal oscillator clock and is turned ON/OFF by
S/W command.
-When this pin is inactive (function OFF), this pin is DGND level.
-If not used, please open this pin.
MCU
-
V1.2 13 2009-03-10
ST7715
6.3 Mode selection pin
Name
EXTC
GM2,
GM1,
GM0
I/O Description Connect pin
-To use extended command set, please connect this pin to VDDI.
-During normal operation, please open this pin (internal
Rpull-down=2MΩ).
I
EXTC Enable/disable modification of extend command
Open
0 Only use default command set
1 Use EEPROM program set
-Panel resolution selection pins.
G
G
G
Selection of panel resolution
M
M
M
I
2
1
0
VDDI/DGND
0 0 1 132RGB x 132 (S1~S396 & G1~G132 output)
-RGB direction select H/W pin for color filter setting.
SRGB
SMX I
SMY I
SRGB RGB arrangement
I
0
1
S1, S2, S3 filter order = ’R’, ’G’, ’B’
S1, S2, S3 filter order = ‘B’, ‘G’, ‘R’
-Module source output direction H/W selection pin.
SMX Scanning direction of source output GM= ‘001’
0 S1 -> S396
1 S396 -> S1
-Module Gate output direction H/W selection pin.
SMY Scanning direction of gate output GM= ‘001’
0 G1 -> G132
1 G132 -> G1
-Power input pin for internal digital reference voltage.
-In normal usage, connect it to VCCO.
-Monitoring pin of internal digital reference voltage.
-Connect a capacitor for stabilization.
Description Connect pin
-These test pins for Driver vender test used.
I
-Please connect these pins to DGND.
-These test pins for Driver vender test used.
O
-Please open these pins.
VCCO
Capacitor
DGND
Open
Dummy -
DummyG - Vendor function Open
-These pins are dummy (have no function inside).
Open
-Can allow signal traces pass through these pads on TFT glass.
V1.2 17 2009-03-10
ST7715
7 Driver electrical characteristics
7.1 Absolute operation range
Item Symbol Rating Unit
Supply voltage VDD -0.3 ~ +4.6 V
Supply voltage (Logic) VDDI -0.3 ~ +4.6 V
Supply voltage (Digital) VCC -0.3 ~ +1.95 V
Driver supply voltage VGH-VGL -0.3 ~ +30.0 V
Logic input voltage range VIN 0.3 ~ VDDI +0.3 V
Logic output voltage range VO 0.3 ~ VDDI +0.3 V
Operating temperature range TOPR -30 ~ +85
Storage temperature range TSTG -40 ~ +125
Note: If one of the above items is exceeded its maximum limitation momentarily, the quality of the product may be degraded. Absolute
maximum limitation, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the
product within the recommend range.
7.2 DC characteristic
Parameter Symbol Condition
Power & operation voltage
System voltage VDD Operating voltage
Interface operation
VDDI I/O supply voltage
voltage
Gate driver high
VGH 10 15 V
voltage
Gate driver low
VGL -12.4 -7.5 V
voltage
Specification
Unit
Min Typ Max
2.6 2.75 3.3 V
1.65 1.9 3.3 V
℃
℃
Related
Pins
Gate driver supply
voltage
Input / Output
Logic-high input
voltage
Logic-low input
voltage
Logic-high output
voltage
Logic-low output
voltage
Logic-high input
current
V1.2 18 2009-03-10
| VGH-VGL | 17.5 27.5 V
VIH 0.7VDDI
VIL VSS 0.3VDDI
VOH IOH = -1.0mA 0.8VDDI
VOL IOL = +1.0mA VSS 0.2VDDI
IIH VIN = VDDI 1 uA
VDDI V Note 1
V Note 1
VDDI V Note 1
V Note 1
Note 1
ST7715
Logic-low input
current
Input leakage
current
VCOM voltage
VCOM high voltage VCOMH Ccom=12nF 2.5 5.0 V
VCOM low voltage VCOML Ccom=12nF -2.4 0.0 V
VCOM amplitude VCOMAC |VCOMH-VCOML|
Source driver
Source output range
Gamma reference
voltage
Source output
settling time
Output offset voltage
Notes:
IIL VIN = VSS -1 uA
IIL IOH = -1.0mA -0.1 +0.1 uA
4.0 6.0 V
Vsout 0.1 AVDD-0.1 V
GVDD 3.0 5.0 V
Tr
Voffset 35 mV
Below with 99%
20 us Note 2
precision
Note 1
Note 1
Note 3
1. VDDI=1.65 to 3.3V, VDD=2.6 to 3.3V, AGND=DGND=0V, TA= -30 to 85℃
TSCYCR Serial clock cycle (Read) 150 ns
TSHR SCL “H” pulse width (Read) 60 ns
TSLR SCL “L” pulse width (Read) 60 ns
TSDS Data setup time 10 ns
SDA
TSDH Data hold time 10 ns
For maximum CL=30pF
(DIN)
(DOUT)
TACC Access time 10 50 ns
For minimum CL=8pF
TOH Output disable time 50 ns
Table 8.2.1 3-line Serial Interface Characteristics
Note 1: VDDI=1.65 to 3.3V, VDD=2.6 to 3.3V, AGND=DGND=0V, Ta=25 ℃
Note 2: The rising time and falling time (Tr, Tf) of input signal are specified at 15 ns or less. Logic high and low levels are specified as 30%
and 70% of VDDI for Input signals.
V1.2 23 2009-03-10
ST7715
8.3 Serial interface characteristics (4-line serial)
Fig. 8.3.1 4-line serial interface timing
Signal Symbol Parameter MIN MAX Unit Description
TCSS Chip select setup time (write) 15 ns
TCSH Chip select hold time (write) 15 ns
CSX
TCSS Chip select setup time (read) 60 ns
TSCC Chip select hold time (read) 65 ns
TCHW Chip select “H” pulse width 40 ns
TSCYCW Serial clock cycle (Write) 66 ns
TDCH D/CX hold time 10 ns
TSDS Data setup time 10 ns
SDA
TSDH Data hold time 10 ns
(DIN)
TACC Access time 10 50 ns
For maximum CL=30pF
(DOUT)
TOH Output disable time 50 ns
For minimum CL=8pF
Table 8.3.1 4-line Serial Interface Characteristics
Note 1: VDDI=1.65 to 3.3V, VDD=2.6 to 3.3V, AGND=DGND=0V, Ta=25 ℃
Note 2: The rising time and falling time (Tr, Tf) of input signal are specified at 15 ns or less. Logic high and low levels are specified as 30%
and 70% of VDDI for Input signals.
V1.2 24 2009-03-10
ST7715
9 Function description
9.1 Interface type selection
The selection of given interfaces are done by setting IM2, IM1, and IM0 pins as shown in following table.
IM2 IM1 IM0 Interface Read back selection
0 - - 3-line serial interface Via the read instruction
1 0 0 8080 MCU 8-bit parallel RDX strobe (8-bit read data and 8-bit read parameter)
1 0 1 8080 MCU 16-bit parallel RDX strobe (16-bit read data and 8-bit read parameter)
1 1 0 8080 MCU 9-bit parallel RDX strobe (9-bit read data and 8-bit read parameter)
1 1 1 8080 MCU 18-bit parallel RDX strobe (18-bit read data and 8-bit read parameter)
Table 9.1.2 Pin connection according to various MCU interface
Note1 Unused pins can be open, or connected to DGND or VDDI.
V1.2 25 2009-03-10
ST7715
9.2 8080-series MCU parallel interface
The MCU can use one of following interfaces: 11-lines with 8-data parallel interface, 12-lines with 9-data parallel interface,
19-line with 16-data parallel interface or 21-lines with 18-data parallel interface. The chip-select CSX (active low)
enables/disables the parallel interface. RESX (active low) is an external reset signal. WRX is the parallel data write enable,
RDX is the parallel data read enable and D[17:0] is parallel data bus.
The LCD driver reads the data at the rising edge of WRX signal. The D/CX is the data/command flag. When D/CX=’1’,
D[17:0] bits is either display data or command parameter. When D/C=’0’, D[17:0] bits is command.
The interface functions of 8080-series parallel interface are given in following table.
IM2 IM1 IM0 Interface D/CX RDX WRX
0 1 ↑Write 8-bit command (D7 to D0)
1 0 0
1 0 1
1 1 0
1 1 1
8-bit
parallel
16-bit
parallel
9-bit
parallel
18-bit
parallel
1 1 ↑Write 8-bit display data or 8-bit parameter (D7 to D0)
1 ↑1 Read 8-bit display data (D7 to D0)
1 ↑1 Read 8-bit parameter or status (D7 to D0)
0 1 ↑Write 8-bit command (D7 to D0)
1 1 ↑Write 16-bit display data or 8-bit parameter (D15 to D0)
1 ↑1 Read 16-bit display data (D15 to D0)
1 ↑1 Read 8-bit parameter or status (D7 to D0)
0 1 ↑Write 8-bit command (D7 to D0)
1 1 ↑Write 9-bit display data or 8-bit parameter (D8 to D0)
1 ↑1 Read 9-bit display data (D8 to D0)
1 ↑1 Read 8-bit parameter or status (D7 to D0)
0 1 ↑Write 8-bit command (D7 to D0)
1 1 ↑Write 18-bit display data or 8-bit parameter (D17 to D0)
1 ↑1 Read 18-bit display data (D17 to D0)
1 ↑1 Read 8-bit parameter or status (D7 to D0)
Read back selection
Table 9.2.1 the function of 8080-series parallel interface
The write cycle means that the host writes information (command or/and data) to the display via the interface. Each write
cycle (WRX high-low-high sequence) consists of 3 control signals (D/CX, RDX, WRX) and data signals (D[17:0]). D/CX bit
is a control signal, which tells if the data is a command or a data. The data signals are the command if the control signal is
low (=’0’) and vice versa it is data (=’1’).
WRX
D[17:0]
The host starts to control D[17:0]
lines when there is a falling edge
of the WRX.
Fig. 9.2.1 8080-series WRX protocol
Note: WRX is an unsynchronized signal (It can be stopped).
D[17:0]
RESX
CSX
D/CX
RDX
WRX
1-byte
command
CMDCMDPA1CMDPA
SP
“1”
“1”
2-byte
command
The display writes D[17:0] lines
when there is a rising edge of
WRX.
N-byte
command
1
The host stops to
control D[17:0] lines.
PA
PA
N-2
N-1
D[17:0]
Host D[17:0]
Host to LCD
Driver D[17:0]
CMDCMDPA1CMDPA
SP
CMDCMDPA1CMDPA
SP
Hi-Z
1
1
PA
PA
PA
N-2
N-2
PA
N-1
N-1
LCD to Host
CMD: write command code
PA: parameter or display data
Signals on D[17:0], D/CX, R/WX, E
pins during CSX=1 are ignored.
Fig. 9.2.2 8080-series parallel bus protocol, write to register or display RAM
9.2.2 Read cycle sequence
The read cycle (RDX high-low-high sequence) means that the host reads information from LCD driver via interface. The
driver sends data (D[17:0]) to the host when there is a falling edge of RDX and the host reads data when there is a rising
edge of RDX.
V1.2 27 2009-03-10
ST7715
Fig. 9.2.3 8080-series RDX protocol
Note: RDX is an unsynchronized signal (It can be stopped).
Read parameterRead display data
D[17:0]
RESX
CSX
D/CX
RDX
WRX
D[17:0]
Host D[17:0]
Host to LCD
Driver D[17:0]
LCD to Host
CMDDMPACMDDM & dataDataDataSP
“1”
CMDDMPACMDDM & dataDataDataSP
CMDCMDSP
Hi-Z
CMD: write command code
PA: parameter or display data
Hi-ZHi-Z
DMPA1DM & dataPA
Hi-Z
Signals on D[17:0], D/CX, R/WX, E
pins during CSX=1 are ignored.
PA
N-2
PS
N-1
Fig. 9.2.4 8080-series parallel bus protocol, read data from register or display RAM
V1.2 28 2009-03-10
ST7715
9.3 Serial interface
The selection of this interface is done by IM2. See the Table 9.3.1.
IM2 SPI4W Interface Read back selection
0 0 3-line serial interface Via the read instruction (8-bit, 24-bit and 32-bit read parameter)
0 1 4-line serial interface Via the read instruction (8-bit, 24-bit and 32-bit read parameter)
Table 9.3.1 Selection of serial interface
The serial interface is either 3-line/9-bit or 4-line/8-bit bi-directional interface for communication between the micro
controller and the LCD driver. The 3-line serial interface use: CSX (chip enable), SCL (serial clock) and SDA (serial data
input/output), and the 4-line serial interface use: CSX (chip enable), D/CX (data/ command flag), SCL (serial clock) and
SDA (serial data input/output). Serial clock (SCL) is used for interface with MCU only, so it can be stopped when no
communication is necessary.
9.3.1 Command Write Mode
The write mode of the interface means the micro controller writes commands and data to the LCD driver. 3-line serial data
packet contains a control bit D/CX and a transmission byte. In 4-line serial interface, data packet contains just transmission
byte and control bit D/CX is transferred by the D/CX pin. If D/CX is “low”, the transmission byte is interpreted as a
command byte. If D/CX is “high”, the transmission byte is stored in the display data RAM (memory write command), or
command register as parameter.
Any instruction can be sent in any order to the driver. The MSB is transmitted first. The serial interface is initialized when
CSX is high. In this state, SCL clock pulse or SDA data have no effect.
A falling edge on CSX enables the serial interface and indicates the start of data transmission.
Fig. 9.3.1 Serial interface data stream format
When CSX is “high”, SCL clock is ignored. During the high period of CSX the serial interface is initialized. At the falling
edge of CSX, SCL can be high or low (see Fig 9.3.2). SDA is sampled at the rising edge of SCL. D/CX indicates whether
the byte is command (D/CX=’0’) or parameter/RAM data (D/CX=’1’). D/CX is sampled when first rising edge of SCL (3-line
serial interface) or 8th rising edge of SCL (4-line serial interface). If CSX stays low after the last bit of command/data byte,
the serial interface expects the D/CX bit (3-line serial interface) or D7 (4-line serial interface) of the next byte at the next
rising edge of SCL.
V1.2 29 2009-03-10
ST7715
Fig. 9.3.2 3-line serial interface write protocol (write to register with control bit in transmission)
Fig. 9.3.3 4-line serial interface write protocol (write to register with control bit in transmission)
V1.2 30 2009-03-10
ST7715
9.3.2 Read Functions
The read mode of the interface means that the micro controller reads register value from the driver. To achieve read
function, the micro controller first has to send a command (read ID or register command) and then the following byte is
transmitted in the opposite direction. After that CSX is required to go to high before a new command is send (see the below
figure). The driver samples the SDA (input data) at rising edge of SCL, but shifts SDA (output data) at the falling edge of
SCL. Thus the micro controller is supported to read at the rising edge of SCL.
After the read status command has been sent, the SDA line must be set to tri-state no later than at the falling edge of SCL
of the last bit.
9.3.3 3-line serial protocol
3-line serial protocol (for RDID1/RDID2/RDID3/0Ah/0Bh/0Ch/0Dh/0Eh/0Fh command: 8-bit read):
3-line serial protocol (for RDDID command: 24-bit read)
3-line Serial Protocol (for RDDST command: 32-bit read)
Fig. 9.3.4 3-line serial interface read protocol
V1.2 31 2009-03-10
ST7715
9.3.4 4-line serial protocol
4-line serial protocol (for RDID1/RDID2/RDID3/0Ah/0Bh/0Ch/0Dh/0Eh/0Fh command: 8-bit read):
4-line serial protocol (for RDDID command: 24-bit read)
4-line Serial Protocol (for RDDST command: 32-bit read)
HostDriver
Fig. 9.3.5 4-line serial interface read protocol
V1.2 32 2009-03-10
ST7715
9.4 Data Transfer Break and Recovery
If there is a break in data transmission by RESX pulse, while transferring a command or frame memory data or multiple
parameter command data, before Bit D0 of the byte has been completed, then driver will reject the previous bits and have
reset the interface such that it will be ready to receive command data again when the chip select line (CSX) is next
activated after RESX have been HIGH state. See the following example
(MCU to driver)
Host
Fig. 9.4.1 Serial bus protocol, write mode – interrupted by RESX
If there is a break in data transmission by CSX pulse, while transferring a command or frame memory data or multiple
parameter command data, before Bit D0 of the byte has been completed, then driver will reject the previous bits and have
reset the interface such that it will be ready to receive the same byte re-transmitted when the chip select line (CSX) is next
activated. See the following example
Fig. 9.4.2 Serial bus protocol, write mode – interrupted by CSX
If 1, 2 or more parameter commands are being sent and a break occurs while sending any parameter before the last one
and if the host then sends a new command rather than re-transmitting the parameter that was interrupted, then the
parameters that were successfully sent are stored and the parameter where the break occurred is rejected. The interface is
ready to receive next byte as shown below.
If a 2 or more parameter commands are being sent and a break occurs by the other command before the last one is sent,
then the parameters that were successfully sent are stored and the other parameter of that command remains previous
value.
Fig. 9.4.4 Write interrupts recovery (both serial and parallel Interface)
V1.2 34 2009-03-10
ST7715
9.5 Data transfer pause
It will be possible when transferring a command, frame memory data or multiple parameter data to invoke a pause in the
data transmission. If the chip select line is released after a whole byte of a frame memory data or multiple parameter data
has been completed, then driver will wait and continue the frame memory data or parameter data transmission from the
point where it was paused. If the chip select Line is released after a whole byte of a command has been completed, then
the display module will receive either the command‘s parameters (if appropriate) or a new command when the chip select
line is next enabled as shown below.
This applies to the following 4 conditions:
1) Command-Pause-Command
2) Command-Pause-Parameter
3) Parameter-Pause-Command
4) Parameter-Pause-Parameter
9.5.1 Serial interface pause
Fig. 9.5.1 Serial interface pause protocol (pause by CSX)
9.5.2 Parallel interface pause
Fig. 9.5.2 Parallel bus pause protocol (paused by CSX)
V1.2 35 2009-03-10
ST7715
9.6 Data Transfer Modes
The module has three kinds color modes for transferring data to the display RAM. These are 12-bit color per pixel, 16-bit
color per pixel and 18-bit color per pixel. The data format is described for each interface. Data can be downloaded to the
frame memory by 2 methods.
9.6.1 Method 1
The image data is sent to the frame memory in successive frame writes, each time the frame memory is filled, the frame
memory pointer is reset to the start point and the next frame is written.
9.6.2 Method 2
The image data is sent and at the end of each frame memory download, a command is sent to stop frame memory write.
Then start memory write command is sent, and a new frame is downloaded.
Note 1: These apply to all data transfer Color modes on both serial and parallel interfaces.
Note 2: The frame memory can contain both odd and even number of pixels for both methods. Only complete pixel data will be stored in
Different display data formats are available for three Colors depth supported by listed below.
- 4k colors, RGB 4,4,4-bit input.
- 65k colors, RGB 5,6,5-bit input.
- 262k colors, RGB 6,6,6-bit input.
9.7.2 8-bit data bus for 12-bit/pixel (RGB 4-4-4-bit input), 4K-Colors, 3AH= “03h”
“1 ”
“1 ”
“1 ”“1 ”
RESX
“
“100”
”
““
“
“1”
”
““
””
””
8080-series control pins
R1, Bit 3B1, Bit 3G2, Bit 3R3, Bit 30
IM[2:0]
CSX
D/CX
WRX
RDX
D7
D6
D5
D4
D3
D2
D1
D0
Look-up table for 4096 color data mapping (12 bits to 18 bits)
Frame memory
R1, Bit 2B1, Bit 2G2, Bit 2R3, Bit 20
R1, Bit 1B1, Bit 1G2, Bit 1R3, Bit 11
R1, Bit 0B1, Bit 0G2, Bit 0R3, Bit 00
G1, Bit 3R2, Bit 3B2, Bit 3G3, Bit 31
G1, Bit 2R2, Bit 2B2, Bit 2G3, Bit 21
G1, Bit 1R2, Bit 1B2, Bit 1G3, Bit 10
G1, Bit 0R2, Bit 0B2, Bit 0G3, Bit 00
Pixel nPixel n+1
12 bits12 bits
18 bits
R1 G1 B1 R2 G2 B2 R3 G3 B3
Note1. The data order is as follows, MSB=D7, LSB=D0 and picture data is MSB=Bit 3, LSB=Bit 0 for Red, Green and Blue data.
Note 2: 3-time transfer is used to transmit 1 pixel data with the 12-bit color depth information.
Note 3: ‘-‘ = Don't care - Can be set to '0' or '1'
V1.2 37 2009-03-10
ST7715
9.7.3 8-bit data bus for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors, 3AH= “05h”
There is 1 pixel (3 sub-pixels) per 2-byte
“
“1”
”
““
RESX
IM[2:0]
CSX
D/CX
WRX
RDX
””
“
“100”
““
“
“1”
”
““
””
”
””
8080-series control pins
D7
D6
D5
D4
D3
D2
D1
D0
Look-up table for 65k color data mapping (16 bits to 18 bits)
Frame memory
R1, Bit 4G1, Bit 20
R1, Bit 3G1, Bit 10
R1, Bit 2G1, Bit 01
R1, Bit 1B1, Bit 40
R1, Bit 0B1, Bit 31
G1, Bit 5B1, Bit 21
G1, Bit 4B1, Bit 10
G1, Bit 3B1, Bit 00
Pixel nPixel n+1
16 bits16 bits
18 bits
R1 G1 B1 R2 G2 B2 R3 G3 B3
R2, Bit 4G2, Bit 2
R2, Bit 3G2, Bit 1
R2, Bit 2G2, Bit 0
R2, Bit 1B2, Bit 4
R2, Bit 0B2, Bit 3
G2, Bit 5B2, Bit 2
G2, Bit 4B2, Bit 1
G2, Bit 3B2, Bit 0
Note1. The data order is as follows, MSB=D7, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Green and MSB=Bit 4, LSB=Bit 0 for
Red and Blue data.
Note 2:2-times transfer is used to transmit 1 pixel data with the 16-bit color depth information.
Note 3: ‘-‘ = Don't care - Can be set to '0' or '1'
V1.2 38 2009-03-10
ST7715
9.7.4 8-bit data bus for 18-bit/pixel (RGB 6-6-6-bit input), 262K-Colors, 3AH= “06h”
There is 1 pixel (3 sub-pixels) per 3-bytes.
“
“1”
”
““
RESX
IM[2:0]
CSX
D/CX
WRX
RDX
””
“
“100”
““
“
“1”
”
““
””
”
””
8080-series control pins
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
0
1
1
R1, Bit 5
R1, Bit 4
R1, Bit 3
R1, Bit 2
R1, Bit 1
R1, Bit 0
--0
--0
G1, Bit 5
G1, Bit 4
G1, Bit 3
G1, Bit 2
G1, Bit 1
G1, Bit 0
Pixel nPixel n+1
18 bits18 bits
B1, Bit 5
B1, Bit 4
B1, Bit 3
B1, Bit 2
B1, Bit 1
B1, Bit 0
--
--
R2, Bit 5
R2, Bit 4
R2, Bit 3
R2, Bit 2
R2, Bit 1
R2, Bit 0
Frame memory
R1 G1 B1 R2 G2 B2 R3 G3 B3
Note1. The data order is as follows, MSB=D7, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Red, Green and Blue data.
Note 2:3-times transfer is used to transmit 1 pixel data with the 18-bit color depth information.
Note 3: ‘-‘ = Don't care - Can be set to '0' or '1'
Different display data formats are available for three colors depth supported by listed below.
- 4k colors, RGB 4,4,4-bit input
- 65k colors, RGB 5,6,5-bit input
- 262k colors, RGB 6,6,6-bit input
9.7.6 16-bit data bus for 12-bit/pixel (RGB 4-4-4-bit input), 4K-Colors, 3AH= “03h”
There is 1 pixel (3 sub-pixels) per 1 byte
“
“1”
”
““
RESX
IM[2:0]
CSX
D/CX
WRX
RDX
””
“
“101”
““
“
“1”
”
““
””
”
””
8080-series control pins
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
-
-
-
-
-
-
-
-
0
0
1
0
1
1
0
0
-
-
-
-
R1, Bit 3
R1, Bit 2
R1, Bit 1
R1, Bit 0
G1, Bit 3
G1, Bit 2
G1, Bit 1
G1, Bit 0
B1, Bit 3
B1, Bit 2
B1, Bit 1
B1, Bit 0
Pixel nPixel n+1
-
-
-
-
R2, Bit 3
R2, Bit 2
R2, Bit 1
R2, Bit 0
G2, Bit 3
G2, Bit 2
G2, Bit 1
G2, Bit 0
B2, Bit 3
B2, Bit 2
B2, Bit 1
B2, Bit 0
-
-
-
-
R3, Bit 3
R3, Bit 2
R3, Bit 1
R3, Bit 0
G3, Bit 3
G3, Bit 2
G3, Bit 1
G3, Bit 0
B3, Bit 3
B3, Bit 2
B3, Bit 1
B3, Bit 0
Pixel n+2Pixel n+3
-
-
-
-
R4, Bit 3
R4, Bit 2
R4, Bit 1
R4, Bit 0
G4, Bit 3
G4, Bit 2
G4, Bit 1
G4, Bit 0
B4, Bit 3
B4, Bit 2
B4, Bit 1
B4, Bit 0
12 bits12 bits
Look-up table for 4096 color data mapping (12 bits to 18 bits)
18 bits
Frame memory
R1 G1 B1 R2 G2 B2 R3 G3 B3
Note1. The data order is as follows, MSB=D11, LSB=D0 and picture data is MSB=Bit 3, LSB=Bit 0 for Red, Green and Blue data.
Note 2:1-times transfer (D11 to D0) is used to transmit 1 pixel data with the 12-bit color depth information.
V1.2 40 2009-03-10
ST7715
9.7.7 16-bit data bus for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors, 3AH= “05h”
There is 1 pixel (3 sub-pixels) per 1 byte
“
“1”
”
““
RESX
IM[2:0]
CSX
D/CX
WRX
RDX
””
“
“101”
““
“
“1”
”
““
””
”
””
8080-series control pins
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
R1, Bit 4R2, Bit 4R3, Bit 4R4, Bit 4
-
-
-
-
-
-
-
0
0
1
0
1
1
0
0
R1, Bit 3
R1, Bit 2
R1, Bit 1
R1, Bit 0
G1, Bit 5
G1, Bit 4
G1, Bit 3
G1, Bit 2
G1, Bit 1
G1, Bit 0
B1, Bit 4B2, Bit 4B3, Bit 4B4, Bit 4
B1, Bit 3
B1, Bit 2
B1, Bit 1
B1, Bit 0
R2, Bit 3
R2, Bit 2
R2, Bit 1
R2, Bit 0
G2, Bit 5
G2, Bit 4
G2, Bit 3
G2, Bit 2
G2, Bit 1
G2, Bit 0
B2, Bit 3
B2, Bit 2
B2, Bit 1
B2, Bit 0
R3, Bit 3
R3, Bit 2
R3, Bit 1
R3, Bit 0
G3, Bit 5
G3, Bit 4
G3, Bit 3
G3, Bit 2
G3, Bit 1
G3, Bit 0
B3, Bit 3
B3, Bit 2
B3, Bit 1
B3, Bit 0
R4, Bit 3
R4, Bit 2
R4, Bit 1
R4, Bit 0
G4, Bit 5
G4, Bit 4
G4, Bit 3
G4, Bit 2
G4, Bit 1
G4, Bit 0
B4, Bit 3
B4, Bit 2
B4, Bit 1
B4, Bit 0
Pixel nPixel n+1
16 bits16 bits
Pixel n+2Pixel n+3
Look-up table for 65k color data mapping (16 bits to 18 bits)
18 bits
Frame memory
R1 G1 B1 R2 G2 B2 R3 G3 B3
Note1. The data order is as follows, MSB=D15, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Green, and MSB=Bit 4, LSB=Bit 0
for Red and Blue data.
Note 2:1-times transfer (D15 to D0) is used to transmit 1 pixel data with the 16-bit color depth information.
Note 3: ‘-‘ = Don't care - Can be set to '0' or '1'
V1.2 41 2009-03-10
ST7715
9.7.8 16-bit data bus for 18-bit/pixel (RGB 6-6-6-bit input), 262K-Colors, 3AH= “06h”
There are 2 pixels (6 sub-pixels) per 3 bytes
“
“1”
”
““
RESX
IM[2:0]
CSX
D/CX
WRX
RDX
””
“
“101”
““
“
“1”
”
““
””
”
””
8080-series control pins
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
-
-
-
-
-
-
-
-
0
0
1
0
1
1
0
0
R1, Bit 5
R1, Bit 4
R1, Bit 3
R1, Bit 2
R1, Bit 1
R1, Bit 0
----
----
G1, Bit 5
G1, Bit 4
G1, Bit 3
G1, Bit 2
G1, Bit 1
G1, Bit 0
----
----
B1, Bit 5
B1, Bit 4
B1, Bit 3
B1, Bit 2
B1, Bit 1
B1, Bit 0
R2, Bit 5
R2, Bit 4
R2, Bit 3
R2, Bit 2
R2, Bit 1
R2, Bit 0
G2, Bit 5
G2, Bit 4
G2, Bit 3
G2, Bit 2
G2, Bit 1
G2, Bit 0
B2, Bit 5
B2, Bit 4
B2, Bit 3
B2, Bit 2
B2, Bit 1
B2, Bit 0
R3, Bit 5
R3, Bit 4
R3, Bit 3
R3, Bit 2
R3, Bit 1
R3, Bit 0
G3, Bit 5
G3, Bit 4
G3, Bit 3
G3, Bit 2
G3, Bit 1
G3, Bit 0
Pixel nPixel n+1
18 bits
18 bits
Frame memory
R1 G1 B1 R2 G2 B2 R3 G3 B3
Note1. The data order is as follows, MSB=D15, LSB=D0 and picture data is MSB=Bits 5, LSB=Bit 0 for Red, Green and Blue data.
Note 2:3-times transfer is used to transmit 1 pixel data with the 18-bit color depth information.
Note 3: ‘-‘ = Don't care - Can be set to '0' or '1'
Different display data formats are available for three colors depth supported by listed below.
-262k colors, RGB 6,6,6-bit input
9.7.10 Write 9-bit data for RGB 6-6-6-bit input (262k-color)
There is 1 pixel (6 sub-pixels) per 3 bytes
“
“1”
”
““
RESX
IM[2:0]
CSX
D/CX
WRX
RDX
””
“
“110”
““
“
“1”
”
““
””
”
””
8080-series control
pins
D8
D7
D6
D5
D4
D3
D2
D1
D0
1
0
0
R1, Bit 5
R1, Bit 40
R1, Bit 30
R1, Bit 21
R1, Bit 10
R1, Bit 01
G1, Bit 5
G1, Bit 4
G1, Bit 3
G1, Bit 2
G1, Bit 1
G1, Bit 0
B1, Bit 5
B1, Bit 4
B1, Bit 3
B1, Bit 2
B1, Bit 1
B1, Bit 0
Pixel nPixel n+1
18 bits18 bits
R2, Bit 5-
R2, Bit 4
R2, Bit 3
R2, Bit 2
R2, Bit 1
R2, Bit 0
G2, Bit 5
G2, Bit 4
G2, Bit 3
G2, Bit 2
G2, Bit 1
G2, Bit 0
B2, Bit 5
B2, Bit 4
B2, Bit 3
B2, Bit 2
B2, Bit 1
B2, Bit 0
Frame memory
R1 G1 B1 R2 G2 B2 R3 G3 B3
Note1. The data order is as follows, MSB=D8, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Red, Green and Blue data.
Note 2:3-times transfer is used to transmit 1 pixel data with the 18-bit color depth information.
Note 3: ‘-‘ = Don't care - Can be set to '0' or '1'
Different display data formats are available for three colors depth supported by listed below.
- 4k colors, RGB 4,4,4-bit input
- 65k colors, RGB 5,6,5-bit input
- 262k colors, RGB 6,6,6-bit input.
9.7.12 18-bit data bus for 12-bit/pixel (RGB 4-4-4-bit input), 4K-Colors, 3AH=“03h”
There is 1 pixel (3 sub-pixels) per 1 byte
““““ 1””””
RESX
““““ 111””””
IM[2:0]
CSX
D/CX
WRX
““““ 1””””
RDX
8080-series control pins
D17
D16
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
-
-
-
-
-
-
-
-
-
-
0
0
1
0
1
1
0
0
-
-
-
-
-
-
R1, Bit 3
R1, Bit 2
R1, Bit 1
R1, Bit 0
G1, Bit 3
G1, Bit 2
G1, Bit 1
G1, Bit 0
B1, Bit 3
B1, Bit 2
B1, Bit 1
B1, Bit 0
Pixel nPixel n+1
-
-
-
-
-
-
R2, Bit 3
R2, Bit 2
R2, Bit 1
R2, Bit 0
G2, Bit 3
G2, Bit 2
G2, Bit 1
G2, Bit 0
B2, Bit 3
B2, Bit 2
B2, Bit 1
B2, Bit 0
-
-
-
-
-
-
R3, Bit 3
R3, Bit 2
R3, Bit 1
R3, Bit 0
G3, Bit 3
G3, Bit 2
G3, Bit 1
G3, Bit 0
B3, Bit 3
B3, Bit 2
B3, Bit 1
B3, Bit 0
Pixel n+2Pixel n+3
-
-
-
-
-
-
R4, Bit 3
R4, Bit 2
R4, Bit 1
R4, Bit 0
G4, Bit 3
G4, Bit 2
G4, Bit 1
G4, Bit 0
B4, Bit 3
B4, Bit 2
B4, Bit 1
B4, Bit 0
12 bits12 bits
Look-Up Table for 4096 Color data mapping (12 bits to 18 bits)
18 bits
Frame memory
R1 G1 B1 R2 G2 B2 R3 G3 B3
Note1. The data order is as follows, MSB=D11, LSB=D0 and picture data is MSB=Bit 3, LSB=Bit 0 for Red, Green and Blue data.
Note 2:1-times transfer is used to transmit 1 pixel data with the 12-bit color depth information.
V1.2 44 2009-03-10
ST7715
9.7.13 18-bit data bus for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors, 3AH=“05h”
There is 1 pixel (3 sub-pixels) per 1 byte
“
“1”
”
““
RESX
IM[2:0]
CSX
D/CX
WRX
RDX
””
“
“111”
““
“
“1”
”
““
””
”
””
8080-series control pins
D17
D16
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
-
-
-
-
-
-
-
-
-
-
0
0
1
0
1
1
0
-
-
R1, Bit 4R2, Bit 4R3, Bit 4R4, Bit 4
R1, Bit 3
R1, Bit 2
R1, Bit 1
R1, Bit 0
G1, Bit 5
G1, Bit 4
G1, Bit 3
G1, Bit 2
G1, Bit 1
G1, Bit 0
B1, Bit 4B2, Bit 4B3, Bit 4B4, Bit 4
B1, Bit 3
B1, Bit 2
B1, Bit 1
-
-
R2, Bit 3
R2, Bit 2
R2, Bit 1
R2, Bit 0
G2, Bit 5
G2, Bit 4
G2, Bit 3
G2, Bit 2
G2, Bit 1
G2, Bit 0
B2, Bit 3
B2, Bit 2
B2, Bit 1
-
-
R3, Bit 3
R3, Bit 2
R3, Bit 1
R3, Bit 0
G3, Bit 5
G3, Bit 4
G3, Bit 3
G3, Bit 2
G3, Bit 1
G3, Bit 0
B3, Bit 3
B3, Bit 2
B3, Bit 1
-
-
R4, Bit 3
R4, Bit 2
R4, Bit 1
R4, Bit 0
G4, Bit 5
G4, Bit 4
G4, Bit 3
G4, Bit 2
G4, Bit 1
G4, Bit 0
B4, Bit 3
B4, Bit 2
B4, Bit 1
D0
0
B1, Bit 0
Pixel nPixel n+1
16 bits16 bits
B2, Bit 0
B3, Bit 0
Pixel n+2Pixel n+3
B4, Bit 0
Look-up table for 65k color data mapping (16 bits to 18 bits)
18 bits
Frame memory
R1 G1 B1 R2 G2 B2 R3 G3 B3
Note1. The data order is as follows, MSB=D15, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Green, and MSB=Bit 4, LSB=Bit 0
for Red and Blue data.
Note 2:1-time transfer is used to transmit 1 pixel data with the 16-bit color depth information.
V1.2 45 2009-03-10
ST7715
9.7.14 18-bit data bus for 18-bit/pixel (RGB 6-6-6-bit input), 262K-Colors, 3AH=“06h”
There is 1 pixel (3 sub-pixels) per 1 byte
“
“1”
”
““
RESX
IM[2:0]
CSX
D/CX
WRX
RDX
””
“
“111”
““
“
“1”
”
““
””
”
””
8080-series control pins
D17
D16
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
-
-
-
-
-
-
-
-
-
-
0
0
1
0
1
1
R1, Bit 5R2, Bit 5R3, Bit 5R4, Bit 5
R1, Bit 4R2, Bit 4R3, Bit 4R4, Bit 4
R1, Bit 3
R1, Bit 2
R1, Bit 1
R1, Bit 0
G1, Bit 5
G1, Bit 4
G1, Bit 3
G1, Bit 2
G1, Bit 1
G1, Bit 0
B1, Bit 5B2, Bit 5B3, Bit 5B4, Bit 5
B1, Bit 4B2, Bit 4B3, Bit 4B4, Bit 4
B1, Bit 3
B1, Bit 2
R2, Bit 3
R2, Bit 2
R2, Bit 1
R2, Bit 0
G2, Bit 5
G2, Bit 4
G2, Bit 3
G2, Bit 2
G2, Bit 1
G2, Bit 0
B2, Bit 3
B2, Bit 2
R3, Bit 3
R3, Bit 2
R3, Bit 1
R3, Bit 0
G3, Bit 5
G3, Bit 4
G3, Bit 3
G3, Bit 2
G3, Bit 1
G3, Bit 0
B3, Bit 3
B3, Bit 2
R4, Bit 3
R4, Bit 2
R4, Bit 1
R4, Bit 0
G4, Bit 5
G4, Bit 4
G4, Bit 3
G4, Bit 2
G4, Bit 1
G4, Bit 0
B4, Bit 3
B4, Bit 2
D1
D0
0
0
B1, Bit 1
B1, Bit 0
Pixel nPixel n+1
18 bits18 bits
B2, Bit 1
B2, Bit 0
B3, Bit 1
B3, Bit 0
Pixel n+2Pixel n+3
B4, Bit 1
B4, Bit 0
Frame memory
R1 G1 B1 R2 G2 B2 R3 G3 B3
Note1. The data order is as follows, MSB=D17, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Read, Green and Blue data.
Note 2:1-times transfer (D17o D0) is used to transmit 1 pixel data with the 18-bit color depth information.
V1.2 46 2009-03-10
ST7715
9.7.15 3-line serial Interface
Different display data formats are available for three colors depth supported by the LCM listed below.
4k colors, RGB 4-4-4-bit input
65k colors, RGB 5-6-5-bit input
262k colors, RGB 6-6-6-bit input
9.7.16 Write data for 12-bit/pixel (RGB 4-4-4-bit input), 4K-Colors, 3AH=“03h”
Note 1: pixel data with the 12-bit color depth information
Note 2: The most significant bits are: Rx3, Gx3 and Bx3
Note 3: The least significant bits are: Rx0, Gx0 and Bx0
V1.2 47 2009-03-10
ST7715
9.7.17 Write data for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors, 3AH=“05h”
Note 1: pixel data with the 16-bit color depth information
Note 2: The most significant bits are: Rx4, Gx5 and Bx4
Note 3: The least significant bits are: Rx0, Gx0 and Bx0
V1.2 48 2009-03-10
ST7715
9.7.18 Write data for 18-bit/pixel (RGB 6-6-6-bit input), 262K-Colors, 3AH=“06h”
Note 1: pixel data with the 18-bit color depth information
Note 2: The most significant bits are: Rx5, Gx5 and Bx5
Note 3: The least significant bits are: Rx0, Gx0 and Bx0
V1.2 49 2009-03-10
ST7715
9.7.19 4-line serial Interface
Different display data formats are available for three colors depth supported by the LCM listed below.
4k colors, RGB 4-4-4-bit input
65k colors, RGB 5-6-5-bit input
262k colors, RGB 6-6-6-bit input
9.7.20 Write data for 12-bit/pixel (RGB 4-4-4-bit input), 4K-Colors, 3AH=“03h”
Note 1: pixel data with the 12-bit color depth information
Note 2: The most significant bits are: Rx3, Gx3 and Bx3
Note 3: The least significant bits are: Rx0, Gx0 and Bx0
V1.2 50 2009-03-10
ST7715
9.7.21 Write data for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors, 3AH=“05h”
Note 1: pixel data with the 16-bit color depth information
Note 2: The most significant bits are: Rx4, Gx5 and Bx4
Note 3: The least significant bits are: Rx0, Gx0 and Bx0
V1.2 51 2009-03-10
ST7715
9.7.22 Write data for 18-bit/pixel (RGB 6-6-6-bit input), 262K-Colors, 3AH=“06h”
Note 1: pixel data with the 18-bit color depth information
Note 2: The most significant bits are: Rx5, Gx5 and Bx5
Note 3: The least significant bits are: Rx0, Gx0 and Bx0
V1.2 52 2009-03-10
ST7715
9.8 Display Data RAM
9.8.1 Configuration (GM[2:0] = “001”)
The display module has an integrated 132x132x18-bit graphic type static RAM. This 313,632-bit memory allows storing
on-chip a 132xRGBx132 image with an 18-bpp resolution (262K-color). There will be no abnormal visible effect on the
display when there is a simultaneous Panel Read and Interface Read or Write to the same location of the Frame Memory.
Fig. 9.8.1 Display data RAM organization
V1.2 53 2009-03-10
ST7715
Gate Out
10131R0G0B0R1G1B1
--------
R130
G130
B130
R131
G131
B1310131
21130
--------
1
130
32129
--------
2
129
43128
--------
3
128
54127
--------
4
127
65126
--------
5
126
76125
--------
6
125
87124
--------
7
124
125
1247--------
124
7
126
1256--------
125
6
127
1265--------
126
5
128
1274--------
127
4
129
1283--------
128
3
130
1292--------
129
2
131
1301--------
130
1
MX='0'
--------
9.8.2 Memory to Display Address Mapping
9.8.3 When using 132RGB x 132 resolution (GM[2:0] = “001”, SMX=SMY=SRGB= ‘0’)
Note
RA = Row Address,
CA = Column Address
SA = Scan Address
MX = Mirror X-axis (Column address direction parameter), D6 parameter of MADCTL command
MY = Mirror Y-axis (Row address direction parameter), D7 parameter of MADCTL command
ML =Scan direction parameter, D4 parameter of MADCTL command
RGB = Red, Green and Blue pixel position change, D3 parameter of MADCTL command
131
V1.2 54 2009-03-10
ST7715
G130
G131
G132
9.8.4 Normal Display On or Partial Mode On
9.8.5 When using 132RGB x 132 resolution (GM[2:0] = “001”)
In this mode, contents of the frame memory within an area where column pointer is 00h to 83h and page pointer is 00h to
83h is displayed.
To display a dot on leftmost top corner, store the dot data at (column pointer, row pointer) = (0, 0)
1). Example for Normal Display On (MX=MY=ML=’0’, SMX=SMY=’0’)
2). Example for Partial Display On (PSL[7:0]=04h,PEL[7:0]=7Ch, MX=MV=ML=’0’ ,SMX=SMY=’0’)
132 Columns 132 Columns
Scan
Order
Display area =132 lines
00h 01h ------------ -------- 82h 83h
00 01 02 030W 0X 0Y 0Z G1
00h
10 11 12 131W 1X 1Y 1Z G2
01h
20 21 222X 2Y 2Z G3
02h
30 31 323X 3Y 3Z|
|
40 41 424X 4Y 4Z|
|
50 515Y 5Z|
|
606Z|
|
132 Lines
|
|
|
|
S0SZ|
|
U0 U1UY UZ|
|
V0 V1 V2VX VY VZ|
|
W0 W1 W2WX WY WZ |
|
X0 X1 X2XX XY XZ G130
81h
Y0 Y1 Y2 Y3YW YX YY YZ G131
82h
Z0 Z1 Z2 Z3ZW ZX ZY ZZ G132
83h
132RGB x 132
LCD Panel
|
|
|
|
00h 01h ---------------- ---- 82h 83h
00 01 02 030W 0X 0Y 0Z G1
00h
10 11 12 131W 1X 1Y 1Z G2
01h
20 21 222X 2Y 2Z G3
02h
30 31 323X 3Y 3Z|
|
40 41 424X 4Y 4Z|
|
50 515Y 5Z|
|
606Z|
|
|
|
|
|
S0SZ|
|
U0 U1UY UZ|
|
V0 V1 V2VX VY VZ|
|
W0 W1 W2WX WY WZ|
|
X0 X1 X2XX XY XZ G130
81h
Y0 Y1 Y2 Y3YW YX YY YZ G131
82h
Z0 Z1 Z2 Z3ZW ZX ZY ZZ G132
83h
132RGB x 132
LCD Panel
|
|
|
|
Non-Displa
y area =4
lines
Display
area
=124
lines
Non-Displa
y area
=4lines
V1.2 55 2009-03-10
ST7715
9.9 Address Counter
The address counter sets the addresses of the display data RAM for writing and reading.
Data is written pixel-wise into the RAM matrix of DRIVER. The data for one pixel or two pixels is collected (RGB 6-6-6-bit),
according to the data formats. As soon as this pixel-data information is complete the “Write access” is activated on the RAM.
The locations of RAM are addressed by the address pointers. The address ranges are X=0 to X=131 (83h) and Y=0 to
Y=131 (83h). Addresses outside these ranges are not allowed. Before writing to the RAM, a window must be defined that
will be written. The window is programmable via the command registers XS, YS designating the start address and XE, YE
designating the end address.
For example the whole display contents will be written, the window is defined by the following values: XS=0 (0h) YS=0 (0h)
and XE=127 (83h), YE=131 (83h).
In vertical addressing mode (MV=1), the Y-address increments after each byte, after the last Y-address (Y=YE), Y wraps
around to YS and X increments to address the next column. In horizontal addressing mode (V=0), the X-address
increments after each byte, after the last X-address (X=XE), X wraps around to XS and Y increments to address the next
row. After the every last address (X=XE and Y=YE) the address pointers wrap around to address (X=XS and Y=YS).
For flexibility in handling a wide variety of display architectures, the commands “CASET, RASET and MADCTL” (see
section 10 command list), define flags MX and MY, which allows mirroring of the X-address and Y-address. All
combinations of flags are allowed. Section 9.10 show the available combinations of writing to the display RAM. When MX,
MY and MV will be changed the data bust be rewritten to the display RAM.
For each image condition, the controls for the column and row counters apply as section 9.10 below
Condition Column Counter Row Counter
When RAMWR/RAMRD command is accepted
Complete Pixel Read / Write action Increment by 1 No change
The Column counter value is larger than “End Column (XE)”
The Column counter value is larger than “End Column (XE)” and the Row
counter value is larger than “End Row (YE)”
Return to
“Start Column (XS)”
Return to
“Start Column (XS)”
Return to
“Start Column (XS)”
Return to
“Start Row (YS)”
Increment by 1
Return to
“Start Row (YS)”
V1.2 56 2009-03-10
ST7715
9.10 Memory Data Write/ Read Direction
The data is written in the order illustrated above. The Counter which dictates where in the physical memory the data is to be
written is controlled by “Memory Data Access Control” Command, bits B5 (MV), B6 (MX), B7 (MY) as described below.
Panel
Fig. 9.10.1 Data streaming order
9.10.1 When 132RGBx132 (GM= “001”)
MV MX MY
0 0 0 Direct to Physical Column Pointer Direct to Physical Row Pointer
0 0 1 Direct to Physical Column Pointer Direct to (131-Physical Row Pointer)
0 1 0 Direct to (131-Physical Column Pointer) Direct to Physical Row Pointer
0 1 1 Direct to (131-Physical Column Pointer) Direct to (131-Physical Row Pointer)
1 0 0 Direct to Physical Row Pointer Direct to Physical Column Pointer
1 0 1 Direct to (131-Physical Row Pointer) Direct to Physical Column Pointer
1 1 0 Direct to Physical Row Pointer Direct to (131-Physical Column Pointer)
1 1 1 Direct to (131-Physical Row Pointer) Direct to (131-Physical Column Pointer)
Note: Data is always written to the Frame Memory in the same order, regardless of the Memory Write Direction set by MADCTL bits B7
(MY), B6 (MX), B5 (MV). The write order for each pixel unit is
CASET RASET
One pixel unit represents 1 column and 1page counter value on the Frame Memory.
V1.2 57 2009-03-10
ST7715
9.10.2 Frame Data Write Direction According to the MADCTL parameters (MV, MX and MY)
Display Data
Direction
Normal 0 0 0
Y-Mirror 0 0 1
X-Mirror 0 1 0
MADCTL
Parameter
MV MX MY
Image in the Host
(MPU)
Image in the Driver
(DDRAM)
X-Mirror
Y-Mirror
X-Y Exchange 1 0 0
X-Y Exchange
Y-Mirror
X-Y Exchange
X-Mirror
0 1 1
1 0 1
1 1 0
X-Y Exchange
X-Mirror
Y-Mirror
1 1 1
V1.2 58 2009-03-10
ST7715
9.11 Tearing Effect Output Line
The Tearing Effect output line supplies to the MPU a Panel synchronization signal. This signal can be enabled or disabled
by the Tearing Effect Line Off & On commands. The mode of the Tearing Effect signal is defined by the parameter of the
Tearing Effect Line On command. The signal can be used by the MPU to synchronize Frame Memory Writing when
displaying video images.
9.11.1 Tearing Effect Line Modes
Mode 1, the Tearing Effect Output signal consists of V-Blanking Information only:
tvdh= The LCD display is not updated from the Frame Memory
tvdl= The LCD display is updated from the Frame Memory (except Invisible Line – see above)
Mode 2, the Tearing Effect Output signal consists of V-Blanking and H-Blanking Information, there is one V-sync and 132
H-sync pulses per field.
thdh= The LCD display is not updated from the Frame Memory
thdl= The LCD display is updated from the Frame Memory (except Invisible Line – see above)
Note: During Sleep In Mode, the Tearing Output Pin is active Low.
V1.2 59 2009-03-10
ST7715
9.11.2 Tearing Effect Line Timings
The Tearing Effect signal is described below:
Table 9.11.1 AC characteristics of Tearing Effect Signal Idle Mode Off (Frame Rate = 60 Hz, Ta=25°C)
Symbol Parameter min max unit description
tvdl Vertical Timing Low Duration 13 - ms
tvdh Vertical Timing High Duration 1000 - µs
thdl Horizontal Timing Low Duration 33 - µs
thdh Horizontal Timing Low Duration 25 500 µs
NOTE: The timings in Table 9.11.1 apply when MADCTL ML=0 and ML=1
The signal’s rise and fall times (tf, tr) are stipulated to be equal to or less than 15ns.
The Tearing Effect Output Line is fed back to the MPU and should be used as shown below to avoid Tearing Effect:
V1.2 60 2009-03-10
ST7715
9.11.3 Example 1: MPU Write is faster than panel read
MCU to memory
st
TE output signal
Memory to LCD
Image on LCD
Data write to Frame Memory is now synchronized to the Panel Scan. It should be written during the vertical sync pulse of
the Tearing Effect Output Line. This ensures that data is always written ahead of the panel scan and each Panel Frame
refresh has a complete new image:
132
nd
time1
time
st
1
132
nd
time
V1.2 61 2009-03-10
ST7715
9.11.4 Example 2: MPU write is slower than panel read
MCU to memory
st
TE output signal
Memory to LCD
st
1
132
nd
Image on LCD
The MPU to Frame Memory write begins just after Panel Read has commenced i.e. after one horizontal sync pulse of the
Tearing Effect Output Line. This allows time for the image to download behind the Panel Read pointer and finishing
download during the subsequent Frame before the Read Pointer “catches” the MPU to Frame memory write position.
132
nd
time1
time
time
V1.2 62 2009-03-10
ST7715
9.12 Power ON/OFF Sequence
VDDI and VDD can be applied in any order.
VDDI and VDD can be powered down in any order.
During power off, if LCD is in the Sleep Out mode, VDD and VDDI must be powered down minimum 120msec after RESX
has been released.
During power off, if LCD is in the Sleep In mode, VDDI or VDD can be powered down minimum 0msec after RESX has
been released.
CSX can be applied at any timing or can be permanently grounded. RESX has priority over CSX.
Note 1: There will be no damage to the display module if the power sequences are not met.
Note 2: There will be no abnormal visible effects on the display panel during the Power On/Off Sequences.
Note 3: There will be no abnormal visible effects on the display between end of Power On Sequence and before receiving Sleep Out
command. Also between receiving Sleep In command and Power Off Sequence.
Note 4: If RESX line is not held stable by host during Power On Sequence as defined in the sequence below, then it will be necessary to
apply a Hardware Reset (RESX) after Host Power On Sequence is complete to ensure correct operation. Otherwise function is not
guaranteed.
The power on/off sequence is illustrated below
TrPW≧ 0ns TfPW≧ 0ns
VDD
VDDI
CSX
RESX
(Power down in
sleep-out mode)
RESX
(Power down in
sleep-in mode)
H or L
Timing when the latter signal rises up to 90% of its typical value.
e.g. When VDD comes later, this timing is defined at the cross point of
90% of 2.75V, not 90% of 2.6V.
Timing when the latter signal falls up to 90% of its typical value.
e.g. When VDD comes later, this timing is defined at the cross point of
90% of 2.75V, not 90% of 2.6V.
Tf
Tr
30%
PW-CSX
= +/- no limit
Tr
Tr
PW-RESX
PW-RESX
= + no limit
Tf
PW-RESX1
= + no limit
PW-CSX
= min 120ms
30%
Tf
Tf
is applied to RESX falling in the Sleep Out Mode.
PW-RESx1
is applied to RESX falling in the Sleep In Mode.
PW-RESx2
= +/- no limit
Tf
PW-RESX2
= min 0ms
V1.2 63 2009-03-10
ST7715
9.12.1 Uncontrolled Power Off
The uncontrolled power-off means a situation which removed a battery without the controlled power off sequence. It will
neither damage the module or the host interface.
If uncontrolled power-off happened, the display will go blank and there will not any visible effect on the display (blank
display) and remains blank until “Power On Sequence” powers it up.
9.13 Power Level Definition
9.13.1 Power Level
6 level modes are defined they are in order of Maximum Power consumption to Minimum Power Consumption
1. Normal Mode On (full display), Idle Mode Off, Sleep Out.
In this mode, the display is able to show maximum 262,144 colors.
2. Partial Mode On, Idle Mode Off, Sleep Out.
In this mode part of the display is used with maximum 262,144 colors.
3. Normal Mode On (full display), Idle Mode On, Sleep Out.
In this mode, the full display area is used but with 8 colors.
4. Partial Mode On, Idle Mode On, Sleep Out.
In this mode, part of the display is used but with 8 colors.
5. Sleep In Mode
In this mode, the DC: DC converter, internal oscillator and panel driver circuit are stopped. Only the MCU interface and
memory works with VDDI power supply. Contents of the memory are safe.
6. Power Off Mode
In this mode, both VDD and VDDI are removed.
Note: Transition between modes 1-5 is controllable by MCU commands. Mode 6 is entered only when both Power supplies are removed.
V1.2 64 2009-03-10
ST7715
9.13.2 Power Flow Chart
Normal display mode on = NOR ON
Partial display mode on = PTL ON
Idle mode off = IDM OFF
Idle mode on = IDM ON
Sleep out = SLP OUT
Sleep in = SLP IN
NOR ON
PTL ON
IDM ONIDM OFF
IDM ONIDM OFF
Sleep out
Normal display mode on
Idle mode off
Sleep out
Normal display mode on
Idle mode on
Sleep out
Partial display mode on
Idle mode off
SLP IN
SLP OUT
SLP IN
SLP OUT
SLP IN
SLP OUT
Power on sequence
HW reset
SW reset
Sleep in
Normal display mode on
Idle mode off
IDM ONIDM OFF
Sleep in
Normal display mode on
Idle mode on
Sleep in
Partial display mode on
Idle mode off
IDM ONIDM OFF
NOR ON
PTL ON
PTL ON
NOR ON
Sleep out
Partial display mode on
Idle mode on
SLP IN
SLP OUT
Sleep in
Partial display mode on
Idle mode on
PTL ON
NOR ON
V1.2 65 2009-03-10
ST7715
9.14 Reset Table
9.14.1 Reset Table (GM[2:0]= “001”, 132RGB x 132)
Item After Power On After H/W Reset After S/W Reset
Frame memory Random No Change No Change
Sleep In/Out In In In
Display On/Off Off Off Off
Display mode (normal/partial) Normal Normal Normal
Display Inversion On/Off Off Off Off
Display Idle Mode On/Off Off Off Off
Column: Start Address (XS) 0000h 0000h 0000h
0083h (131d) (when
Column: End Address (XE) 0083h 0083h
Row: Start Address (YS) 0000h 0000h 0000h
Row: End Address (YE) 0083h 0083h
Gamma setting GC0 GC0 GC0
RGB for 4k and 65k Color Mode See Section 9.17 See Section 9.17 No Change
Partial: Start Address (PSL) 0000h 0000h 0000h
Partial: End Address (PEL) 0083h 0083h 0083h
Tearing: On/Off Off Off Off
Tearing Effect Mode (*1) 0 (Mode1) 0 (Mode1) 0 (Mode1)
Memory Data Access Control
(MY/MX/MV/ML/RGB)
Interface Pixel Color Format 6 (18-Bit/Pixel) 6 (18-Bit/Pixel) No Change
RDDPM 08h 08h 08h
RDDMADCTL 00h 00h No Change
RDDCOLMOD 6 (18-Bit/Pixel) 6 (18-Bit/Pixel) No Change
RDDIM 00h 00h 00h
RDDSM 00h 00h 00h
ID2 NV value NV value NV value
ID3 NV value NV value NV value
Note 1: TE Mode 1 means Tearing Effect Output Line consists of V-Blanking Information only.
0/0/0/0/0 0/0/0/0/0 No Change
MV=0)
0083h (131d) (when
MV=1)
0083h (131d) (when
MV=0)
0083h (131d) (when
MV=1)
V1.2 66 2009-03-10
ST7715
9.15 Module Input/Output Pins
9.15.1 Output or Bi-directional (I/O) Pins
Output or Bi-directional pins After Power On After Hardware Reset After Software Reset
TE Low Low Low
D7 to D0 (Output driver) High-Z (Inactive) High-Z (Inactive) High-Z (Inactive)
Input pins
RESX See 9.15 Input valid Input valid Input valid See 9.15
Note: There will be no output from D7-D0 during Power On/Off sequence, Hardware Reset and Software Reset.
During Power
On Process
After Power On
After Hardware
Reset
After Software
Reset
During Power
Off Process
V1.2 67 2009-03-10
ST7715
9.16 Reset Timing
Table 9.16.1 Reset timing
Related
Pins
RESX
Notes:
1. The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from EEPROM (or
similar device) to registers. This loading is done every time when there is HW reset cancel time (tRT) within 5 ms after a
rising edge of RESX.
2. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below:
-
3. During the Resetting period, the display will be blanked (The display is entering blanking sequence, which maximum
time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In -mode.) and then
return to Default condition for Hardware Reset.
4. Spike Rejection also applies during a valid reset pulse as shown below:
Symbol Parameter MIN MAX
tRESW Reset pulse duration 10 - us
tREST Reset cancel
RESX Pulse Action
Shorter than 5us Reset Rejected
Longer than 9us Reset
Between 5us and 9us Reset starts
- 5 ms
120 ms
Unit
5. When Reset applied during Sleep In Mode.
6. When Reset applied during Sleep Out Mode.
7. It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent
for 120msec.
Note 1: After the H/W reset by RESX pin or S/W reset by SWRESET command, each internal register becomes default state (Refer
“RESET TABLE” section)
Note 2: Undefined commands are treated as NOP (00 h) command.
Note 3: B0 to D9 and DA to F are for factory use of driver supplier.
Note 4: Commands 10h, 12h, 13h, 20h, 21h, 26h, 28h, 29h, 30h, 36h (ML parameter only), 38h and 39h are updated during V-sync when
Module is in Sleep Out Mode to avoid abnormal visual effects. During Sleep In mode, these commands are updated immediately.
Read status (09h), Read Display Power Mode (0Ah), Read Display MADCTL (0Bh), Read Display Pixel Format (0Ch), Read
Display Image Mode (0Dh), Read Display Signal Mode (0Eh) and Read Display Self Diagnostic Result (0Fh) of these commands
are updated immediately both in Sleep In mode and Sleep Out mode.
‘0’ =RGB, (When MADCTL (36h) D3=’0’)
ST24 For Future Use ‘0’
ST23 For Future Use ‘0’
IFPF2
Interface Color Pixel Format
IFPF1
Definition
IFPF0
IDMON Idle Mode On/Off ‘1’ = On, “0” = Off
PTLON Partial Mode On/Off ‘1’ = On, “0” = Off
SLPOUT Sleep In/Out ‘1’ = Out, “0” = In
“011” = 12-bit / pixel,
“101” = 16-bit / pixel,
“110” = 18-bit / pixel, others are no define
NORON
Display Normal Mode On/Off
VSSON Reversed “0”
ST14 Reversed ‘0’
INVON Inversion Status ‘1’ = On, “0” = Off
ST12 All Pixels On (Not Used) ‘0’
ST11 All Pixels Off (Not Used) ‘0’
DISON Display On/Off ‘1’ = On, “0” = Off
‘1’ = Normal Display,
‘0’ = Partial Display
V1.2 79 2009-03-10
ST7715
TEON Tearing effect line on/off ‘1’ = On, “0” = Off
Default
GCSEL2
GCSEL1
Gamma Curve Selection
GCSEL0
TELOM Tearing effect line mode ‘0’ = mode1, ‘1’ = mode2
ST4 For Future Use ‘0’
ST3 For Future Use ‘0’
ST2 For Future Use ‘0’
ST1 For Future Use ‘0’
ST0 For Future Use ‘0’
“-“ Don’t care
Status Default Value (ST31 to ST0)
ST[31-24] ST[23-16] ST[15-8] ST[7-0]
Power On Sequence 0000-0000 0110-0001 0000-0000 0000-0000
S/W Reset 0xxx0xx00 0xxx-0001 0000-0000 0000-0000
“000” = GC0
“001” = GC1
“010” = GC2
“011” = GC3
”100” to “111” = Not defined
H/W Reset 0000-0000 0110-0001 0000-0000 0000-0000
V1.2 80 2009-03-10
ST7715
Serial I/F ModeParallel I/F Mode
Flow Chart
RDDST 09hRDDST 09h
Dummy
Clock
Send 2nd
parameter
Send 3rd
parameter
Send 4th
parameter
Dummy
Read
Send 2nd
parameter
Send 3rd
parameter
Send 4th
parameter
Legend
Command
Parameter
Display
Action
Mode
Sequential
transter
Send 5th
parameter
Sendth
parameter
V1.2 81 2009-03-10
ST7715
BSTON
IDMON
PTLON
SLPOUT
NORON
DISON
10.1.5 RDDPM (0Ah): Read Display Power Mode
0AH RDDPM (Read Display Power Mode)
Inst / Para D/CX WRX RDX D17-8 D7
RDDPM 0 ↑1 - 0 0 0 0 1 0 1 0 (0Ah)
1st parameter 1 1 ↑- - - - - - - - - -
2nd parameter 1 1 ↑
This command indicates the current status of the display as described in the table below:
“-“ Don’t care
Bit Description Value
D6
D5
D4
D3
D2 D1
D1
D0 HEX
D0
Description
Default
BSTON Booster Voltage Status
IDMON Idle Mode On/Off
PTLON Partial Mode On/Off
SLPON Sleep In/Out
NORON Display Normal ModemOn/Off
DISON Display On/Off
D1 Not Used ‘0’
D0 Not Used ‘0’
Status Default Value (D7 to D0)
Power On Sequence 0000_1000(08h)
S/W Reset 0000_1000(08h)
‘1’ =Booster on,
‘0’ =Booster off
‘1’ = Idle Mode On,
‘0’ = Idle Mode Off
‘1’ = Partial Mode On,
‘0’ = Partial Mode Off
‘1’ = Sleep Out,
‘0’ = Sleep In
‘1’ = Normal Display,
‘0’ = Partial Display
‘1’ = Display On,
‘0’ = Display Off
This command indicates the current status of the display as described in the table below:
“-“ Don’t care
Bit Description Value
Description
Default
MX Column Address Order
MY Row Address Order
MV Row/Column Order (MV)
ML Vertical Refresh Order
RGB RGB/BGR Order ‘1’ =BGR, “0”=RGB
D1 Not Used ‘0’
D0 Not Used ‘0’
Status Default Value (D7 to D0)
Power On Sequence 0000_0000 (00h)
S/W Reset No change
H/W Reset 0000_0000 (00h)
‘1’ = Right to Left (When MADCTL B6=’1’)
‘0’ = Left to Right (When MADCTL B6=’0’)
‘1’ = Bottom to Top (When MADCTL B7=’1’)
‘0’ = Top to Bottom (When MADCTL B7=’0’)
‘1’ = Row/column exchange (MV=1)
‘0’ = Normal (MV=0)
‘1’ =LCD Refresh Bottom to Top
‘0’ =LCD Refresh Top to Bottom
-In this mode the DC/DC converter is enabled, Internal display oscillator is started, and panel scanning is started.
-This command has no ef
Command (10h).
timing for the supply voltages and clock circuits.
-When IC is in Sleep Out or Display On mode, it is necessary to wait 120msec before sending next command due to the
download of default value of registers and the execution of self-diagnostic function.
Status Default Value
Power On Sequence Sleep in mode
S/W Reset Sleep in mode
H/W Reset Sleep in mode
-This command is used to select the desired Gamma curve for the current display. A maximum of 4 curves can be
selected. The curve is selected by setting the appropriate bit in the parameter as described in the Table.
- This command is used to enter into DISPLAY OFF mode. In this mode, the output from Frame Memory is
disabled and blank page inserted.
- This command makes no change of contents of frame memory.
- This command does not change any other status.
- There will be no abnormal visible effect on the display.
- Exit from this command by Display On (29h)
- The delay time between DISPON and DISPOFF needs 120ms at least.
Description
Default
(Example)
MemoryDisplay
Note1: Complete 1 frame display (ex: continue 2-falling edges of VS)
Note2: Please use command 28h (display off) combined with command 10h (sleep in) to make module into display
off status. Please check the application note of ST7715 when using display off function.
Status Default Value
Power On Sequence Display off
S/W Reset Display off
H/W Reset Display off
Legend
Command
Flow Chart
Display On
Mode
DISPOFF
Display Off
Mode
Parameter
Display
Action
Mode
Sequential
transter
V1.2 96 2009-03-10
ST7715
10.1.18 DISPON (29h): Display On
29H DISPON (Display On)
DISPON 0 ↑1 - 0 0 1 0 1 0 0 1 (29h)
Parameter No Parameter -
- This command is used to recover from DISPLAY OFF mode. Output from the Frame Memory is enabled.
- This command makes no change of contents of frame memory.
- This command does not change any other status.
- The delay time between DISPON and DISPOFF needs 120ms at least.
-The value of XS [7:0] and XE [7:0] are referred when RAMWR command comes.
-Each value represents one column line in the Frame Memory.
XS[7:0]XE[7:0]
Restriction
Default
XS [15:0] always must be equal to or less than XE [15:0]
When XS [15:0] or XE [15:0] is greater than maximum address like below, data of out of range will be ignored.
The value of YS [7:0] and YE [7:0] are referred when RAMWR command comes.
Each value represents one column line in the Frame Memory.
YS[7:0]
Restriction
Default
YE[7:0]
YS [15:0] always must be equal to or less than YE [15:0]
When YS [15:0] or YE [15:0] are greater than maximum row address like below, data of out of range will be ignored.