SIMTEK STK25CA8-D45I, STK25CA8-D45, STK25CA8-D35I, STK25CA8-D35 Datasheet

STK25CA8

128K x 8
Nonvolatile Static RAM Module
FEATURES
• Nonvolatile Storage without Battery Problems
• Directly Replaces 128K x 8 Static RAM, Battery­Backed RAM or EEPROM
• 35ns and 45ns Access Times
STORE
on Power Down
RECALL
• 22mA I
• Unlimited READ, WRITE and
• 1,000,000
• 100-Year Data Retention Over Full Commercial Temperature Range
• Commercial and Industrial Temperatures
• 32-Pin 600 mil Dual In-Line Module
to EEPROM Initiated by
to SRAM on Power Restore
at 200ns Cycle Time
CC
RECALL
STORE
Cycles to EEPROM
AutoStore
Cycles
AutoStore
QuantumTrap
™ nvSRAM
™ CMOS
DESCRIPTION
The Simtek STK25CA8 is a fast static RAM with a nonvolatile, electrically erasable incorporated in each static memory cell. The can be read and written an unlimited number of times, while independent nonvolatile data resides in the
EEPROM. Data transfers from the SRAM to the
EEPROM (the
STORE
operation) can take place auto­matically on power down using charge stored in sys­tem capacitance. Transfers from the
SRAM (the
RECALL
operation) take place automati-
cally on restoration of power.
PROM element
SRAM
EEPROM to the
BLOCK DIAGRAM
DQ DQ DQ DQ
DQ DQ
DQ DQ
A
15
A
16
A
5
A
6
A
7
A
8
A
9
A
11
A
12
A
13
A
14
0 1 2 3
4 5
6 7
MODULE
DECODER
STATIC RAM
ROW DECODER
COLUMN I/O
COLUMN DEC
A0A
INPUT BUFFERS
ARRAY
512 x 512
A
A
2
3
1
EEPROM ARRAY
512 x 512
512 x 512
STORE
RECALL
A
A
10
4
STORE/
RECALL
CONTROL
August 1999 6-1
V
CC
POWER
CONTROL
G
E W
PIN CONFIGURATIONS
1
NC
2
A
16
3
A
14
4
A
12
5
A
7
6
A
6
7
A
5
8
A
4
9
A
3
10
A
2
11
A
1
12
A
0
13
DQ
0
14
DQ
1
15
DQ
2
16
V
SS
V
V
32
CC
CC
A
A
31
15
15
30
NC
NC
29
W
28
A
13
27
A
8
26
A
9
25
A
11
24
G A
A
23
10
10
E
E
22
DQ
DQ
21
7
7
DQ
DQ
20
6
6
32 - 600 mil
19
DQ
DQ
5
5
18
DQ
DQ
Dual In-Line
4
4
DQ
DQ
17
3
3
Module
PIN NAMES
A0 - A
16
CC
V
SS
7
Address Inputs
Data In/Out
Power (+ 5V) Ground
STK25CA8
ABSOLUTE MAXIMUM RATINGS
Voltage on Input Relative to VSS. . . . . . . . . . –0.6V to(VCC+ 0.5V)
Voltage on DQ
Temperature under Bias . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1W
DC Output Current (1 output at a time, 1s duration). . . . . . . .15mA
. . . . . . . . . . . . . . . . . . . . . . –0.5V to (VCC + 0.5V)
0-7
a
Note a: Stresses greater than those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at condi­tions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rat­ing conditions for extended periods may affect reliability.
DC CHARACTERISTICS (VCC = 5.0V ± 10%)
SYMBOL PARAMETER
b
I
CC
I
CC
I
CC
I
CC
I
SB
I
ILK
I
OLK
V V V V T
Note b: I Note c: I Note d:
Average VCCCurrent 140
1
c
Average VCCCurrent During
2
b
Average VCC Current at t
3
c
Average VCCCurrent During
4
Cycle
d
VCCStandby Current (Standby, Stable CMOS Input Levels)
Input Leakage Current
Off-State Output Leakage Current
Input Logic “1” Voltage 2.2 VCC+ .5 2.2 VCC + .5 V All Inputs
IH
Input Logic “0” Voltage VSS – .5 0.8 VSS – .5 0.8 V All Inputs
IL
Output Logic “1” Voltage 2.4 2.4 V I
OH
Output Logic “0” Voltage 0.4 0.4 V I
OL
Operating Temperature 0 70 –40 85 °C
A
and I
CC CC
EVIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.
are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.
CC
1
3
and I
are the average currents required for the duration of the respective
CC
2
4
AVAV
STORE
= 200ns
AutoStore
COMMERCIAL INDUSTRIAL MIN MAX MIN MAX
125
20 25 mA All Inputs Don’t Care, VCC = max
22 25 mA
18 20 mA
99mA
±2 ±2 µA
±10 ±10 µA
UNITS NOTES
150 133
STORE
mAmAt
cycles (t
AVAV
t
AVAV
W (VCC– 0.2V) All Others Cycling, CMOS Levels
All Inputs Don’t Care
E (VCC – 0.2V) All Others V
VCC= max V
VCC= max V
OUT OUT
STORE
= 35ns
= 45ns
0.2V or (VCC – 0.2V)
IN
= VSS to V
IN
IN
CC
= VSSto VCC, E or G V
=– 4mA = 8mA
).
IH
AC TEST CONDITIONS
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 3V
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤ 5ns
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V
Output Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .See Figure 1
CAPACITANCE
SYMBOL PARAMETER MAX UNITS CONDITIONS
C
IN
C
OUT
Input Capacitance Output Capacitance
e
(TA = 25°C, f = 1.0MHz)
20 pF 28 pF
V = 0 to 3VV = 0 to 3V

Note e: These parameters are guaranteed but not tested.

August 1999 6-2
OUTPUT
5.0V
480 Ohms
30 pF
255 Ohms
INCLUDING SCOPE AND FIXTURE

Figure 1: AC Output Loading

STK25CA8

SRAM READ CYCLES #1 & #2 (VCC = 5.0V ± 10%)

SYMBOLS
NO.
#1, #2 Alt. MIN MAX MIN MAX
1t
ELQV
2t
AVAV
3t
AVQV
4t
GLQV
5t
AXQX
6t
ELQX
7t
EHQZ
8t
GLQX
9t
GHQZ
10 t
ELICCH
11 t
EHICCL
t
f
ACS
t
RC
g
t
AA
t
OE
g
t
OH
t
LZ
h
t
HZ
t
OLZ
h
t
OHZ
e
t
PA
d, e
t
PS
Chip Enable Access Time 35 45 ns Read Cycle Time 35 45 ns Address Access Time 35 45 ns Output Enable to Data Valid 15 20 ns Output Hold after Address Change 5 5 ns Chip Enable to Output Active 5 5 ns Chip Disable to Output Inactive 13 15 ns Output Enable to Output Active 0 0 ns Output Disable to Output Inactive 13 15 ns Chip Enable to Power Active 0 0 ns Chip Disable to Power Standby 35 45 ns
PARAMETER
Note f: W must be high during SRAM READ cycles and low during SRAM WRITE cycles. Note g: I/O state assumes Note h: Measured
SRAM READ CYCLE #1: Address Controlled
E, G, < VIL and W > VIH; device is continuously selected.
+ 200mV from steady state output voltage.
t
AVAV
f, g
2
ADDRESS
3
t
t
AXQX
5
AVQV
DQ (DATA OUT)

DATA VALID

STK25CA8-35 STK25CA8-45
UNITS
SRAM READ CYCLE #2: E Controlled
ADDRESS
E
t
ELQX
6
f
t
AVAV
2
t
1
ELQV
G
4
t
GLQV
8
t
GLQX
DQ (DATA OUT)
10
t
ELICCH
I
CC
STANDBY
ACTIVE
August 1999 6-3
DATA VALID
t
GHQZ
11
t
EHICCL
7
t
EHQZ
9
Loading...
+ 5 hidden pages