STK25CA8
128K x 8
Nonvolatile Static RAM Module
FEATURES
• Nonvolatile Storage without Battery Problems
• Directly Replaces 128K x 8 Static RAM, BatteryBacked RAM or EEPROM
• 35ns and 45ns Access Times
•
STORE
on Power Down
•
RECALL
• 22mA I
• Unlimited READ, WRITE and
• 1,000,000
• 100-Year Data Retention Over Full Commercial
Temperature Range
• Commercial and Industrial Temperatures
• 32-Pin 600 mil Dual In-Line Module
to EEPROM Initiated by
to SRAM on Power Restore
at 200ns Cycle Time
CC
RECALL
STORE
Cycles to EEPROM
AutoStore
Cycles
™
AutoStore
QuantumTrap
™ nvSRAM
™ CMOS
DESCRIPTION
The Simtek STK25CA8 is a fast static RAM with a
nonvolatile, electrically erasable
incorporated in each static memory cell. The
can be read and written an unlimited number of
times, while independent nonvolatile data resides in
the
EEPROM. Data transfers from the SRAM to the
EEPROM (the
STORE
operation) can take place automatically on power down using charge stored in system capacitance. Transfers from the
SRAM (the
RECALL
operation) take place automati-
cally on restoration of power.
PROM element
SRAM
EEPROM to the
BLOCK DIAGRAM
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
A
15
A
16
A
5
A
6
A
7
A
8
A
9
A
11
A
12
A
13
A
14
0
1
2
3
4
5
6
7
MODULE
DECODER
STATIC RAM
ROW DECODER
COLUMN I/O
COLUMN DEC
A0A
INPUT BUFFERS
ARRAY
512 x 512
A
A
2
3
1
EEPROM ARRAY
512 x 512
512 x 512
STORE
RECALL
A
A
10
4
STORE/
RECALL
CONTROL
August 1999 6-1
V
CC
POWER
CONTROL
G
E
W
PIN CONFIGURATIONS
1
NC
2
A
16
3
A
14
4
A
12
5
A
7
6
A
6
7
A
5
8
A
4
9
A
3
10
A
2
11
A
1
12
A
0
13
DQ
0
14
DQ
1
15
DQ
2
16
V
SS
V
V
32
CC
CC
A
A
31
15
15
30
NC
NC
29
W
28
A
13
27
A
8
26
A
9
25
A
11
24
G
A
A
23
10
10
E
E
22
DQ
DQ
21
7
7
DQ
DQ
20
6
6
32 - 600 mil
19
DQ
DQ
5
5
18
DQ
DQ
Dual In-Line
4
4
DQ
DQ
17
3
3
Module
PIN NAMES
A0 - A
16
W Write Enable
DQ0 - DQ
E Chip Enable
G Output Enable
V
CC
V
SS
7
Address Inputs
Data In/Out
Power (+ 5V)
Ground
STK25CA8
ABSOLUTE MAXIMUM RATINGS
Voltage on Input Relative to VSS. . . . . . . . . . –0.6V to(VCC+ 0.5V)
Voltage on DQ
Temperature under Bias . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1W
DC Output Current (1 output at a time, 1s duration). . . . . . . .15mA
. . . . . . . . . . . . . . . . . . . . . . –0.5V to (VCC + 0.5V)
0-7
a
Note a: Stresses greater than those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device. This is a
stress rating only, and functional operation of the device at conditions above those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
DC CHARACTERISTICS (VCC = 5.0V ± 10%)
SYMBOL PARAMETER
b
I
CC
I
CC
I
CC
I
CC
I
SB
I
ILK
I
OLK
V
V
V
V
T
Note b: I
Note c: I
Note d:
Average VCCCurrent 140
1
c
Average VCCCurrent During
2
b
Average VCC Current at t
3
c
Average VCCCurrent During
4
Cycle
d
VCCStandby Current
(Standby, Stable CMOS Input Levels)
Input Leakage Current
Off-State Output Leakage Current
Input Logic “1” Voltage 2.2 VCC+ .5 2.2 VCC + .5 V All Inputs
IH
Input Logic “0” Voltage VSS – .5 0.8 VSS – .5 0.8 V All Inputs
IL
Output Logic “1” Voltage 2.4 2.4 V I
OH
Output Logic “0” Voltage 0.4 0.4 V I
OL
Operating Temperature 0 70 –40 85 °C
A
and I
CC
CC
E ≥ VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.
are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.
CC
1
3
and I
are the average currents required for the duration of the respective
CC
2
4
AVAV
STORE
= 200ns
AutoStore
COMMERCIAL INDUSTRIAL
MIN MAX MIN MAX
125
20 25 mA All Inputs Don’t Care, VCC = max
22 25 mA
™
18 20 mA
99mA
±2 ±2 µA
±10 ±10 µA
UNITS NOTES
150
133
STORE
mAmAt
cycles (t
AVAV
t
AVAV
W ≥ (VCC– 0.2V)
All Others Cycling, CMOS Levels
All Inputs Don’t Care
E ≥ (VCC – 0.2V)
All Others V
VCC= max
V
VCC= max
V
OUT
OUT
STORE
= 35ns
= 45ns
≤ 0.2V or ≥ (VCC – 0.2V)
IN
= VSS to V
IN
IN
CC
= VSSto VCC, E or G ≥ V
=– 4mA
= 8mA
).
IH
AC TEST CONDITIONS
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 3V
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤ 5ns
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V
Output Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .See Figure 1
CAPACITANCE
SYMBOL PARAMETER MAX UNITS CONDITIONS
C
IN
C
OUT
Input Capacitance
Output Capacitance
e
(TA = 25°C, f = 1.0MHz)
20 pF
28 pF
∆V = 0 to 3V
∆V = 0 to 3V
Note e: These parameters are guaranteed but not tested.
August 1999 6-2
OUTPUT
5.0V
480 Ohms
30 pF
255 Ohms
INCLUDING
SCOPE
AND FIXTURE
Figure 1: AC Output Loading
STK25CA8
SRAM READ CYCLES #1 & #2 (VCC = 5.0V ± 10%)
SYMBOLS
NO.
#1, #2 Alt. MIN MAX MIN MAX
1t
ELQV
2t
AVAV
3t
AVQV
4t
GLQV
5t
AXQX
6t
ELQX
7t
EHQZ
8t
GLQX
9t
GHQZ
10 t
ELICCH
11 t
EHICCL
t
f
ACS
t
RC
g
t
AA
t
OE
g
t
OH
t
LZ
h
t
HZ
t
OLZ
h
t
OHZ
e
t
PA
d, e
t
PS
Chip Enable Access Time 35 45 ns
Read Cycle Time 35 45 ns
Address Access Time 35 45 ns
Output Enable to Data Valid 15 20 ns
Output Hold after Address Change 5 5 ns
Chip Enable to Output Active 5 5 ns
Chip Disable to Output Inactive 13 15 ns
Output Enable to Output Active 0 0 ns
Output Disable to Output Inactive 13 15 ns
Chip Enable to Power Active 0 0 ns
Chip Disable to Power Standby 35 45 ns
PARAMETER
Note f: W must be high during SRAM READ cycles and low during SRAM WRITE cycles.
Note g: I/O state assumes
Note h: Measured
SRAM READ CYCLE #1: Address Controlled
E, G, < VIL and W > VIH; device is continuously selected.
+ 200mV from steady state output voltage.
t
AVAV
f, g
2
ADDRESS
3
t
t
AXQX
5
AVQV
DQ (DATA OUT)
DATA VALID
STK25CA8-35 STK25CA8-45
UNITS
SRAM READ CYCLE #2: E Controlled
ADDRESS
E
t
ELQX
6
f
t
AVAV
2
t
1
ELQV
G
4
t
GLQV
8
t
GLQX
DQ (DATA OUT)
10
t
ELICCH
I
CC
STANDBY
ACTIVE
August 1999 6-3
DATA VALID
t
GHQZ
11
t
EHICCL
7
t
EHQZ
9