SIMTEK STK12C68-P45, STK12C68-P25I, STK12C68-C45, STK12C68-C35I, STK12C68-C35 Datasheet

...
STK12C68
8K x 8 AutoStore™ nvSRAM
QuantumTrap™ CMOS
Nonvolatile Static RAM
FEATURES
20ns, 25ns, 35ns and 45ns Access Times
•“Hands-off” Automatic STORE with External
68µF Capacitor on Power Down
STORE to EEPROM Initiated by Hardware, Software or AutoStore on Power Down
RECALL to SRAM Initiated by Software or Power Restore
10mA Typical I
at 200ns Cycle Time
CC
Unlimited READ, WRITE and RECALL Cycles
1,000,000 STORE Cycles to EEPROM
100-Year Data Retention in EEPROM
Single 5V +
10% Operation
Not Sensitive to Power On/Off Ramp Rates
No Data Loss from Undershoot
Commercial and Industrial Temperatures
28-Pin SOIC and DIP Packages
BLOCK DIAGRAM
V
CCXVCAP
POWER
CONTROL
STORE/
RECALL
CONTROL
DQ DQ DQ DQ
DQ DQ
DQ DQ
EEPROM ARRAY
128 x 512
A
5
A
6
A
7
A
8
A
9
A
11
A
12
0 1 2 3
4 5
6 7
INPUT BUFFERS
ROW DECODER
STATIC RAM
ARRAY
128 x 512
COLUMN I/O
COLUMN DEC
A0A
2
1
A3A
STORE
RECALL
A
A
10
4
DESCRIPTION
The Simtek STK12C68 is a fast static RAM with a nonvolatile, electrically erasable
PROM element
incorporated in each static memory cell. The can be read and written an unlimited number of times, while independent, nonvolatile data resides in
EEPROM. Data transfers from the SRAM to the EEPROM (the STORE operation) can take place
automatically on power down. A 68µF or larger capacitor tied from V
STORE operation, regardless of power-down slew
to ground guarantees the
CAP
rate or loss of power from “hot swapping”. Transfers from the
EEPROM to the SRAM (the RECALL opera-
tion) take place automatically on restoration of power. Initiation of
STORE and RECALL cycles can
also be software controlled by entering specific read sequences. A hardware the HSB
pin.
STORE may be initiated with
PIN CONFIGUR ATIONS
28
V
CCX
27
W
26
HSB
25
A
8
A
24
9
A
23
11
22
G
21
A
10
20
E
19
DQ
7
18 17 16 15
Address Inputs
Chip Enable Write Enable Output Enable Hardware Store Busy (I/O) Power (+ 5V) Capacitor Ground
28 - 300 PDIP
DQ
6
DQ
28 - 600 PDIP
5
DQ
4
28 - 350 SOIC
DQ
3
28 - 300 CDIP
SOFTWARE
DETECT
V
1
CAP
A
2
12
3
A
7
A
4
6
A
5
5
A
6
4
A
7
3
A
8
2
A
9
DQ DQ DQ
V
1
A
10
0
11
0
12
1
13
2
14
HSB
A0 - A
12
PIN NAMES
A0 - A
12
-DQ7Data In/Out
DQ
0
E W
G
E W
G HSB V
CCX
V
CAP
V
SS
SRAM
July 1999 4-41
STK12C68
ABSOLUTE MAXIMUM RATINGS
Volt age on Input Rel ative to VSS . . . . . . . . . .– 0.6V to (VCC + 0.5V)
Volt age on DQ
Temperature under Bias. . . . . . . . . . . . . . . . . . . . . .–55°C to 125°C
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .–65°C to 150°C
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W
DC Output Current (1 output at a time, 1s duration) . . . . . . . 15mA
or HSB . . . . . . . . . . . . . . . .–0.5V to (VCC + 0.5V)
0-7
a
Note a: Stresses greater than those listed under Absolute Maximum
Ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at con­ditions above those indicated in the operational sec tions of this specification is not implied. Exposure to absolute maximum rat­ing conditions for extended periods may affect reliability.
DC CHARACTERISTICS (VCC = 5.0V ± 10%)
SYMBOL PARAMETER
c
I
I I
I
I
I
I
I
V V V V V T
CC
CC
CC
CC
SB
SB
ILK
OLK
IH
IL
OH
OL
BL
A
Average VCC Current 100
1
d
Average VCC Current during STORE 3 3 mA All Inputs Dont Care, VCC = max
2
c
Average V
3
5V, 25°C, Typical
d
Average V
4
AutoStore™ Cycle
e
Average V
1
(Standby, Cycling TTL Input Levels)
e
V
2
CC
(Standby, Stable CMOS Input Levels)
Current at t
CC
Current during
CAP
Current
CC
Standby Current
AVAV
= 200ns
Input Leakage Current
Off-State Output Leakage Current
Input Logic “1” Voltage 2.2 VCC + .5 2.2 VCC + .5 V All Inputs Input Logic “0” Voltage VSS – .5 0.8 VSS – .5 0.8 V All Inputs Output Logic “1” Voltage 2.4 2.4 V I Output Logic “0” Voltage 0.4 0.4 V I Logic “0” Voltage on HSB Output 0.4 0.4 V I Operating Temperature 0 70 –40 85 °C
Note b: The STK12C68-20 requires VCC = 5.0V ± 5% supply to operate at specified speed. Note c: I Note d: I Note e: E Note f: V
and I
CC
1
and I
CC
2
VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.
reference levels throughout this datasheet refer to V
CC
nected to ground.
are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.
CC
3
are the average currents required for the duration of the respective STORE cycles (t
CC
4
COMMERCIAL INDUSTRIAL
MIN MAX MIN MAX
N/A 90 75 65
90 75 65
10 10 mA
22mA
32 27 23 20
N/A
28 24 21
1.5 1.5 mA
±1 ±1 µA
±5 ±5 µA
if that is where the power supply connection is made, or V
CCX
UNITS NOTES
mA mA mA mA
t
= 20ns
AVAV
t
= 25ns
AVAV
t
= 35ns
AVAV
t
= 45ns
AVAV
W
(V
– 0.2V)
CC
All Others Cycling, CMOS Levels All Inputs Dont Care
STORE
t
= 20ns, E V
AVAV
t
= 25ns, E V
AVAV
t
= 35ns, E V
AVAV
t
= 45ns, E V
AVAV
E
(VCC – 0.2V)
All Others V V
= max
CC
V
= VSS to V
IN
V
= max
CC
V
= VSS to VCC, E or G ≥ VIH
IN
= – 4mA except HSB
OUT
= 8mA except HSB
OUT
= 3mA
OUT
IH IH IH IH
0.2V or (VCC – 0.2V)
IN
CC
).
CAP
mA mA mA mA
if V
CCX
is con-
b, f
AC TEST CONDITIONS
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0V to 3V
Input Rise and Fall Times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .≤ 5ns
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Figure 1
g
CAPACITANCE
(TA = 25°C, f = 1.0MHz)
SYMBOL PARAMETER MAX UNITS CONDITIONS
C
IN
C
OUT
Input Capacitance 8 pF V = 0 to 3V Output Capacitance 7 pF V = 0 to 3V
Note g: These parameters are guaranteed but not tested.
July 1999 4-42
OUTPUT
5.0V
480 Ohms
255 Ohms
30 pF
INCLUDING SCOPE AND FIXTURE
Figure 1: AC Output Loading
STK12C68
SRAM READ CYCLES #1 & #2 (VCC = 5.0V ± 10%)
NO.
1t 2t 3t 4t 5t 6t 7t 8t
9t 10 t 11 t
SYMBOLS
#1, #2 Alt. MIN MAX MIN MAX MIN MAX MIN MAX
ELQV
AVAV
AVQV
GLQV
AXQX
ELQX
EHQZ
GLQX
GHQZ
ELICCH
EHICCL
t
h
i
i
j
j
ACS
t
RC
t
AA
t
OE
t
OH
t
LZ
t
HZ
t
OLZ
t
OHZ
g
t
PA
g
t
PS
Chip Enable Access Time 20 25 35 45 ns Read Cycle Time 20 25 35 45 ns Address Access Time 22 25 35 45 ns Output Enable to Data Valid 8 10 15 20 n s Output Hold after Address Change 5 5 5 5 ns Chip Enable to Output Active 5 5 5 5 ns Chip Disable to Output Inactive 7 10 13 15 ns Output Enable to Output Active 0 0 0 0 ns Output Disable to Output Inactive 7 10 13 15 n s Chip Enable to Power Active 0 0 0 0 ns Chip Disable to Power Standby 25 25 35 45 ns
PARAMETER
Note h: W and HSB must be high during SRAM READ cycles. Note i: Device is continuously selected with E
and G both low.
Note j: Measured ± 200mV from steady state output voltage.
SRAM READ CYCLE #1: Address Controlledh,
ADDRESS
5
t
DQ (DATA OUT)
AXQX
STK12C68-20 STK12C68-25 STK12C68-35 STK12C68-45
i
2
t
AVAV
3
t
AVQV
DATA V A LID
UNITS
b, f
SRAM READ CYCLE #2: E Controlled
ADDRESS
t
ELQX
10
t
ELICCH
6
t
GLQX
4
t
GLQV
8
DQ (DATA OUT)
I
CC
E
G
STANDBY
h
t
AVAV
2
1
t
ELQV
ACTIVE
DATA VALID
9
t
GHQZ
t
EHQZ
t
7
11
EHICCL
July 1999 4-43
STK12C68
SRAM WRITE CYCLES #1 & #2 (VCC = 5.0V ± 10%)b,
NO.
12 t 13 t 14 t 15 t 16 t 17 t 18 t 19 t 20 t 21 t
WLWH
ELWH
DVWH
WHDX
AVWH
AVWL
WHAX
WLQZ
WHQX
Note k: If W is low when E goes low, the outputs remain in the high-impedance state. Note l: E
or W must be ≥ V
Note m: HSB
SRAM WRITE CYCLE #1: W Controlled
SYMBOLS
#1 #2 Alt. MIN MAX MIN MAX MIN MAX MIN MAX
AVAV
j, k
t
AVAV
t
WLEH
t
ELEH
t
DVEH
t
EHDX
t
AVEH
t
AVEL
t
EHAX
must be high during SRAM WRITE cycles.
t
Write Cycle Time 20 25 35 45 n s
WC
t
Write Pulse Width 15202530 ns
WP
t
Chip Enable to End of Write 15 20 25 30 ns
CW
t
Data Set-up to End of Write 8 10 12 15 ns
DW
t
Data Hold after End of Write 0 0 0 0 ns
DH
t
Address Set-up to End of Write 15 20 25 30 ns
AW
t
Address Se t-up to Start of Write 0 0 0 0 ns
AS
t
Address Ho l d after End of Write 0 0 0 0 ns
WR
t
Write Enable to Output Disable 7 10 13 15 ns
WZ
t
Output Active after End of Write 5 5 5 5 ns
OW
during address transitions.
IH
PARAMETER
l, m
t
ADDRESS
14
t
ELWH
E
STK12C68-20 STK12C68-25 STK12C68-35 STK12C68-45
12
AVAV
19
t
WHAX
UNITS
f
17
t
20
t
WLQZ
AVWH
13
t
WLWH
W
DATA IN
DA TA OUT
18
t
AVWL
PREVIOUS DATA
SRAM WRITE CYCLE #2: E Controlled
ADDRESS
18
t
E
W
DATA IN
AVEL
t
AVEH
17
l, m
12
t
AVAV
14
t
ELEH
t
13
WLEH
15
t
DVWH
DATA V A LID
HIGH IMPEDANCE
15
t
DVEH
DATA V A LID
16
t
WHDX
19
t
EHAX
16
t
EHDX
21
t
WHQX
DA TA OUT
HIGH IMPEDANCE
July 1999 4-44
Loading...
+ 8 hidden pages