Silicon Labs Z-Wave 700 User Manual

INSTRUCTION: Z-Wave 700 Integration Guide
QFN32
5mm x 5mm
LGA64
9mm x 9mm
Chip
EFR32ZG14
Module
ZGM130S
INTEGRATION GUIDE FOR SILICON LABS ZENGECKO Z-WAVE® DEVICES
The purpose of this document is to provide an implementation guide for integrating Z-Wave 700 devices into product designs. It is intended for product design engineers who aim for a fast integration of Z-Wave 700 devices.

1 OVERVIEW

The Z-Wave 700 device portfolio is shown in Table 1.1. The EFR32ZG14 SoC exposes the Z-Wave serial API via UART and is dedicated to gateway applications. The ZGM130S SiP module combines a general-purpose SoC, crystal, supply decoupling components, and RF matching components into a single small-footprint module requiring only two decoupling capacitors. The ZGM130S is mainly targeted at end device applications and, with its built-in ARM M4 core and ultra-low power consumption, it is perfect for making single chip sensors and other end devices that require advanced processing and low power consumption. Alternatively, the ZGM130S SiP module can be used in gateway applications as well.
Please refer to [1] for an overview of supported Z-Wave regions and frequency bands supported by the Z-Wave protocol.
Table 1.1: Z-Wave 700 device portfolio
Type
SoC
SiP
The applicable modules are clearly stated at the beginning of each of the following sections.
INS14487-6 | 3/2021 1
Instruction: Z-Wave Z-Wave 700 Integration Guide
2 CONTENT
1 OVERVIEW ........................................................................................................................................................................ 1
3 PROGRAMMING AND DEBUGGING INTERFACE .................................................................................................................. 3
3.1 PROGRAMMING INTERFACE OVERVIEW ......................................................................................................................................... 4
4 CALIBRATION .................................................................................................................................................................... 4
4.1 CRYSTAL ................................................................................................................................................................................. 4
5 RF VERIFICATION TOOL ...................................................................................................................................................... 4
6 COMPONENT SPECIFICATIONS ........................................................................................................................................... 5
6.1 SAW FILTER ........................................................................................................................................................................... 5
6.1.1 Recommended Components for GSM/LTE gateways .................................................................................................. 7
6.1.2 OPTIONAL Components for GSM/LTE gateways ......................................................................................................... 7
6.1.3 Z-Wave protocol support for optional SAW filter bank ............................................................................................... 7
6.2 CRYSTAL ................................................................................................................................................................................. 7
6.2.1 Recommended Components ....................................................................................................................................... 8
7 SUPPLY FILTER ................................................................................................................................................................... 8
8 MATCHING CIRCUIT ........................................................................................................................................................... 9
8.1 SUMMARY OF MATCHING + FILTERING NETWORKS .......................................................................................................................... 9
8.2 SOC TO RF LINE MATCHING ..................................................................................................................................................... 10
8.2.1 Mandatory Components for General Z-Wave ........................................................................................................... 12
8.2.2 Mandatory Components for Z-Wave Long Range ..................................................................................................... 12
8.3 ADDITIONAL FILTERING FOR Z-WAVE LONG RANGE ........................................................................................................................ 12
8.4 RF LINE TO ANTENNA MATCHING ............................................................................................................................................... 13
8.5 MEASUREMENT SETUP ............................................................................................................................................................ 14
9 PCB IMPLEMENTATION ................................................................................................................................................... 14
9.1 PLACEMENT .......................................................................................................................................................................... 14
9.2 STACK-UP ............................................................................................................................................................................. 15
9.3 POWER ROUTING ................................................................................................................................................................... 15
9.4 DECOUPLING ......................................................................................................................................................................... 15
9.4.1 For ZGM130S SiP MODULE ........................................................................................................................................ 15
9.4.2 For EFR32ZG14 SoC ................................................................................................................................................... 16
9.5 RF TRACE ............................................................................................................................................................................. 16
9.6 IC GROUNDING ..................................................................................................................................................................... 17
10 ANTENNA DESIGN........................................................................................................................................................ 17
11 ESD .............................................................................................................................................................................. 18
12 ABBREVIATIONS .......................................................................................................................................................... 19
13 REVISION HISTORY ...................................................................................................................................................... 22
14 REFERENCES ................................................................................................................................................................ 23
2 INS14487-6 | 3/2021
Instruction: Z-Wave 700 Integration Guide
EFR32ZG14
ZGM130S
Applicable
Applicable
Figure 3.1: Silicon Labs Mini Simplicity Header
Pin Name
Pin Location
Type
Function
GND 2 S
Common ground between the programmer and Z-Wave 700 device
VAEM
1
S
Target voltage on the debugged application. Supplied and
"AEM" position.
RST 3 O
Driven low by the programmer to place the Z-Wave 700 device in a reset state
VCOM_TX
5
I
Receive UART serial data from Z-Wave 700 device
VCOM_RX
4
O
Transmit UART serial data to Z-Wave 700 device
SWO
6
I
Serial Wire Output
SWDIO
7
I/O
Serial Wire Data
SWCLK
8
O
Serial Wire Clock
PTI_FRAME
9
I
Packet Trace Frame Signal
PTI_DATA
10
I
Packet Trace Data Signal

3 PROGRAMMING AND DEBUGGING INTERFACE

A programming interface is mandatory if In-System Programming of a Z-Wave 700 device is required, i.e., programming while soldered onto the product PCB. To design in a footprint for the Mini Simplicity header, Silicon Labs recommends using a small 10­pin 1.27 mm SMD header for both programming and debugging of chips from the Silicon Labs Gecko family.
If a connector is used, the Samtec FTSH-105-01-F-DH surface mounted or Harwin M50-3500542 through-hole male connector is recommended and can be directly used with the programmer’s perspective is shown in Table 3.1. Refer to [2] and [6] for programming instructions and more about the Mini Simplicity Header.
BRD8010A STK/WSTK Debug Adapter. The functionality of the pins from the
Table 3.1: Z-Wave 700 Mini Simplicity Header Pin Functionality
monitored by the AEM when power selection switch is in the
INS14487-6 | 3/2021 3
Instruction: Z-Wave Z-Wave 700 Integration Guide
SWD programming
X
X
Boot Loader UART programming
X
X
EFR32ZG14
ZGM130S
Applicable
N/A
EFR32ZG14
ZGM130S
Applicable
Applicable

3.1 PROGRAMMING INTERFACE OVERVIEW

The table below shows which interfaces can be used to program the flash memory of the various Z-Wave 700 products:
Table 3.2: Available Programming Interfaces
ZGM130S

4 CALIBRATION

It is mandatory to calibrate the crystal in EFR32ZG14 Z-Wave 700 devices during product development to make sure that the mean value of the crystal frequency is correct. Refer to [5] for calibration instructions. Furthermore, for best possible performance, it is recommended that calibration be performed during production to minimize the spread in crystal frequency. All ZGM130S Z-Wave 700 devices are calibrated during production and therefore do not need any further crystal calibration.
EFR32ZG14

4.1 CRYSTAL

It is mandatory to calibrate the crystal frequency for the EFR32ZG14 devices to ensure minimum error of the radio carrier frequency.

5 RF VERIFICATION TOOL

The RailTest tool can be used to verify the RF performance of a device without the overhead of the Z-Wave protocol. The RailTest tool supports both ZGM130S and EFR32ZG14 devices. The same RF PHY present in the Z-Wave protocol is used. The tool is suitable when investigating RF performance and performing RF regulatory tests. To use the tool, it is required that the chip is programmable and the UART0 interface is connected to a terminal over RS-232 or through the WSTK. For a comprehensive user’s manual for the RailTest tool, refer to [3] and [4].
As the RF PHY can be updated for new software releases, it is important to compile a RailTest version based on the same software release that will be used in the final product.
4 INS14487-6 | 3/2021
Instruction: Z-Wave 700 Integration Guide

6 COMPONENT SPECIFICATIONS

6.1 SAW FILTER

EFR32ZG14 ZGM130S
Applicable Applicable
It is recommended that a SAW filter is used in Z-Wave 700 gateway designs also containing GSM or LTE transceivers operating in the sub-GHz band. A SAW filter attenuates unwanted radio emissions and improves the receiver blocking performance. Three regions are defined to cover the global Z-Wave frequency range. The SAW filter specifications described in Table 6.1, Table 6.2, and Table 6.3 are recommended for new designs. An overview of supported Z-Wave regions and frequencies can be found in [1].
Please find a guideline on when to use a SAW filter in [15].
INS14487-6 | 3/2021 5
Instruction: Z-Wave Z-Wave 700 Integration Guide
Frequency Range
Unit
Minimum
Typical
Maximum
Operating temperature
-
C
-30 - +85
Insertion loss
865.0 to 870.1MHz
dB - -
3.5
Amplitude ripple
865.0 to 870.1MHz
dB - -
2.0
Relative attenuation
0.1 to 800.0MHz
dB
40 - -
805 to 830MHz
dB
35 - -
835 to 855MHz
dB - - - 860 to 862MHz
dB - -
-
890 to 1000MHz
dB
40 - -
1005 to 2000MHz
dB
30 - -
2005 to 3000MHz
dB
30 - -
3005 to 4000MHz
dB
30 - -
4005 to 6000MHz
dB - -
-
In / out impedance
-
Ω
-
50
-
Frequency Range
Unit
Minimum
Typical
Maximum
Operating temperature
-
C
-30 - +85
Insertion loss
908.2 to 916.3MHz
dB - -
2.5
Amplitude ripple
908.2 to 916.3MHz
dB - -
1.5
Relative attenuation
720 to 800MHz
dB
45 - -
805 to 840MHz
dB - - - 845 to 870MHz
dB
40 - -
870 to 895MHz
dB - - - 940 to 1000MHz
dB 9 - - 1005 to 2000MHz
dB 9 - - 2005 to 3000MHz
dB
17 - -
3005 to 4000MHz
dB - - - 4005 to 6000MHz
dB - -
-
In / out impedance
-
Ω
-
50
-
Frequency Range
Unit
Minimum
Typical
Maximum
Operating temperature
-
C
-30 - +85
Insertion loss
919.5 to 926.5MHz
dB - -
3.2
Amplitude ripple
919.5 to 926.5MHz
dB - -
1.0
Relative attenuation
40 to 870MHz
dB
40 - -
875 to 885MHz
dB
35 - -
890 to 905MHz
dB
20 - -
945 to 955MHz
dB
20 - -
960 to 1000MHz
dB
20 - -
1005 to 1500MHz
dB
40 - -
1505 to 3000MHz
dB
20 - -
3005 to 4000MHz
dB - - - 4005 to 6000MHz
dB - -
-
In / out impedance
-
Ω
-
50
-
Table 6.1: Region E
Table 6.2: Region U
6 INS14487-6 | 3/2021
Table 6.3: Region H
Instruction: Z-Wave 700 Integration Guide
Region
Distributor
Component Number
Note
E
ACTE A/S, www.acte.dk, salessupport@acte.dk
SF4000-868-07-SX
Preferred
U
ACTE A/S, www.acte.dk, salessupport@acte.dk
SF4000-914-06-SX
Preferred
H
ACTE A/S, www.acte.dk, salessupport@acte.dk
SF1256-923-02
Preferred
Region
Distributor
Component Number
Note
E
ACTE A/S, www.acte.dk, salessupport@acte.dk
SF4000-869-14-SX
Improved LTE rejection
Region
State of PB14
State of PB15
E
High
Low U Low
High
H
Low
Low
EFR32ZG14
ZGM130S
Applicable
NA

6.1.1 RECOMMENDED COMPONENTS FOR GSM/LTE GATEWAYS

Table 6.4: SAW filters

6.1.2 OPTIONAL COMPONENTS FOR GSM/LTE GATEWAYS

Table 6.5: LTE improved SAW filters

6.1.3 Z-WAVE PROTOCOL SUPPORT FOR OPTIONAL SAW FILTER BANK

The Z-Wave Protocol offers support for usage of a SAW filter bank. Please refer to the BRD4200A and BRD4201A reference designs for an example of such a SAW filter bank implementation.
Two GPIO pins on the Z-Wave 700 devices, GPIO PB14 and GPIO PB15 are assigned to control the selection of which SAW filter to use in the SAW filter bank :
Table 6.6: SAW Filter Control Pins

6.2 CRYSTAL

The crystal is part of the oscillator that generates the reference frequency for the digital system clock and RF carrier. It is a critical component of a Z-Wave 700 device. Further, it is mandatory to calibrate the crystal for EFR32ZG14-based designs. Refer to section 4 for more information.
The EFR32ZG14 has internal crystal capacitors and does not need any external circuitry apart from the crystal itself.
INS14487-6 | 3/2021 7
Instruction: Z-Wave Z-Wave 700 Integration Guide
Parameter
Symbol
Min
Typ
Max
Unit
Crystal frequency
fHFXO
39 — MHz
Supported crystal equivalent series resistance
(ESR)
ESRHFXO_39M
— — 60
Supported range of crystal load capacitance 1
CHFXO_CL
6 — 12
pF
Initial frequency tolerance for the crystal
FTHFXO
-10 10
ppm
Temperature tolerance for the crystal
FTempHFXO
-40°C - 85°C
-12 12
ppm
Aging
FAge
-3 3
ppm/5yr
Combined tolerance for the crystal
FTtotalHFXO
-25 — 25
ppm/5yr
Manufacturer
Component Number
EOL issued
TXC
8Y39072002
C3
10U
R1 0R
GND
VBAT
C1
100N
C2
100N
VBAT_IN
EFR32ZG14
ZGM130S
Applicable
Applicable
The ZGM130S has an integrated crystal and is calibrated at the time of production.
For more information about the crystal oscillator, crystals and the EFR32ZG14 device, please refer to [7].
Table 6.7: Crystal specification for Z-Wave 700 devices

6.2.1 RECOMMENDED COMPONENTS

Table 6.8: Recommended crystals

7 SUPPLY FILTER

A good power supply filter is strongly recommended as part of the schematic. A filter with a ferrite and a capacitor can be used as seen in Figure 8.1. The ferrite suppresses high frequency noise, while the capacitors decouple the power supply by acting as a source for fast transient currents.
For Z-Wave 700 devices, the filter shown in Figure 7.1 is strongly recommended. For normal scenarios, this will provide adequate filtering with a low BOM cost. In case of excessive supply noise, the 0 Ω resistor can be swapped for a ferrite bead to improve filtering.
For more about supply decoupling, please refer to section 9.4. More in-depth information about decoupling strategies and the
Figure 7.1: Recommended Supply Filter for Z-Wave 700 Devices
power supply system of the Z-Wave devices can be found in [8] and [9].
8 INS14487-6 | 3/2021
Loading...
+ 16 hidden pages