INSTRUCTION: Z-Wave 700 Integration Guide
INTEGRATION GUIDE FOR SILICON LABS ZENGECKO Z-WAVE® DEVICES
The purpose of this document is to provide an implementation guide for integrating Z-Wave 700 devices into product designs.
It is intended for product design engineers who aim for a fast integration of Z-Wave 700 devices.
1 OVERVIEW
The Z-Wave 700 device portfolio is shown in Table 1.1. The EFR32ZG14 SoC exposes the Z-Wave serial API via UART and is dedicated
to gateway applications. The ZGM130S SiP module combines a general-purpose SoC, crystal, supply decoupling components, and
RF matching components into a single small-footprint module requiring only two decoupling capacitors. The ZGM130S is mainly
targeted at end device applications and, with its built-in ARM M4 core and ultra-low power consumption, it is perfect for making
single chip sensors and other end devices that require advanced processing and low power consumption. Alternatively, the
ZGM130S SiP module can be used in gateway applications as well.
Please refer to [1] for an overview of supported Z-Wave regions and frequency bands supported by the Z-Wave protocol.
Table 1.1: Z-Wave 700 device portfolio
Type
SoC
SiP
The applicable modules are clearly stated at the beginning of each of the following sections.
INS14487-6 | 3/2021 1
Instruction: Z-Wave Z-Wave 700 Integration Guide
2 CONTENT
1 OVERVIEW ........................................................................................................................................................................ 1
3 PROGRAMMING AND DEBUGGING INTERFACE .................................................................................................................. 3
3.1 PROGRAMMING INTERFACE OVERVIEW ......................................................................................................................................... 4
4 CALIBRATION .................................................................................................................................................................... 4
4.1 CRYSTAL ................................................................................................................................................................................. 4
5 RF VERIFICATION TOOL ...................................................................................................................................................... 4
6 COMPONENT SPECIFICATIONS ........................................................................................................................................... 5
6.1 SAW FILTER ........................................................................................................................................................................... 5
6.1.1 Recommended Components for GSM/LTE gateways .................................................................................................. 7
6.1.2 OPTIONAL Components for GSM/LTE gateways ......................................................................................................... 7
6.1.3 Z-Wave protocol support for optional SAW filter bank ............................................................................................... 7
6.2 CRYSTAL ................................................................................................................................................................................. 7
6.2.1 Recommended Components ....................................................................................................................................... 8
7 SUPPLY FILTER ................................................................................................................................................................... 8
8 MATCHING CIRCUIT ........................................................................................................................................................... 9
8.1 SUMMARY OF MATCHING + FILTERING NETWORKS .......................................................................................................................... 9
8.2 SOC TO RF LINE MATCHING ..................................................................................................................................................... 10
8.2.1 Mandatory Components for General Z-Wave ........................................................................................................... 12
8.2.2 Mandatory Components for Z-Wave Long Range ..................................................................................................... 12
8.3 ADDITIONAL FILTERING FOR Z-WAVE LONG RANGE ........................................................................................................................ 12
8.4 RF LINE TO ANTENNA MATCHING ............................................................................................................................................... 13
8.5 MEASUREMENT SETUP ............................................................................................................................................................ 14
9 PCB IMPLEMENTATION ................................................................................................................................................... 14
9.1 PLACEMENT .......................................................................................................................................................................... 14
9.2 STACK-UP ............................................................................................................................................................................. 15
9.3 POWER ROUTING ................................................................................................................................................................... 15
9.4 DECOUPLING ......................................................................................................................................................................... 15
9.4.1 For ZGM130S SiP MODULE ........................................................................................................................................ 15
9.4.2 For EFR32ZG14 SoC ................................................................................................................................................... 16
9.5 RF TRACE ............................................................................................................................................................................. 16
9.6 IC GROUNDING ..................................................................................................................................................................... 17
10 ANTENNA DESIGN........................................................................................................................................................ 17
11 ESD .............................................................................................................................................................................. 18
12 ABBREVIATIONS .......................................................................................................................................................... 19
13 REVISION HISTORY ...................................................................................................................................................... 22
14 REFERENCES ................................................................................................................................................................ 23
2 INS14487-6 | 3/2021
Instruction: Z-Wave 700 Integration Guide
Figure 3.1: Silicon Labs Mini Simplicity Header
Common ground between the programmer and Z-Wave 700
device
Target voltage on the debugged application. Supplied and
Driven low by the programmer to place the Z-Wave 700 device in
a reset state
Receive UART serial data from Z-Wave 700 device
Transmit UART serial data to Z-Wave 700 device
Packet Trace Frame Signal
3 PROGRAMMING AND DEBUGGING INTERFACE
A programming interface is mandatory if In-System Programming of a Z-Wave 700 device is required, i.e., programming while
soldered onto the product PCB. To design in a footprint for the Mini Simplicity header, Silicon Labs recommends using a small 10pin 1.27 mm SMD header for both programming and debugging of chips from the Silicon Labs Gecko family.
If a connector is used, the Samtec FTSH-105-01-F-DH surface mounted or Harwin M50-3500542 through-hole male connector is
recommended and can be directly used with the
programmer’s perspective is shown in Table 3.1. Refer to [2] and [6] for programming instructions and more about the Mini
Simplicity Header.
BRD8010A STK/WSTK Debug Adapter. The functionality of the pins from the
Table 3.1: Z-Wave 700 Mini Simplicity Header Pin Functionality
monitored by the AEM when power selection switch is in the
INS14487-6 | 3/2021 3
Instruction: Z-Wave Z-Wave 700 Integration Guide
Boot Loader UART programming
3.1 PROGRAMMING INTERFACE OVERVIEW
The table below shows which interfaces can be used to program the flash memory of the various Z-Wave 700 products:
Table 3.2: Available Programming Interfaces
ZGM130S
4 CALIBRATION
It is mandatory to calibrate the crystal in EFR32ZG14 Z-Wave 700 devices during product development to make sure that the mean
value of the crystal frequency is correct. Refer to [5] for calibration instructions. Furthermore, for best possible performance, it is
recommended that calibration be performed during production to minimize the spread in crystal frequency. All ZGM130S Z-Wave
700 devices are calibrated during production and therefore do not need any further crystal calibration.
EFR32ZG14
4.1 CRYSTAL
It is mandatory to calibrate the crystal frequency for the EFR32ZG14 devices to ensure minimum error of the radio carrier
frequency.
5 RF VERIFICATION TOOL
The RailTest tool can be used to verify the RF performance of a device without the overhead of the Z-Wave protocol. The RailTest
tool supports both ZGM130S and EFR32ZG14 devices. The same RF PHY present in the Z-Wave protocol is used. The tool is suitable
when investigating RF performance and performing RF regulatory tests. To use the tool, it is required that the chip is
programmable and the UART0 interface is connected to a terminal over RS-232 or through the WSTK. For a comprehensive user’s
manual for the RailTest tool, refer to [3] and [4].
As the RF PHY can be updated for new software releases, it is important to compile a RailTest version based on the same software
release that will be used in the final product.
4 INS14487-6 | 3/2021
Instruction: Z-Wave 700 Integration Guide
6 COMPONENT SPECIFICATIONS
6.1 SAW FILTER
EFR32ZG14 ZGM130S
Applicable Applicable
It is recommended that a SAW filter is used in Z-Wave 700 gateway designs also containing GSM or LTE transceivers operating in
the sub-GHz band. A SAW filter attenuates unwanted radio emissions and improves the receiver blocking performance. Three
regions are defined to cover the global Z-Wave frequency range. The SAW filter specifications described in Table 6.1, Table 6.2,
and Table 6.3 are recommended for new designs. An overview of supported Z-Wave regions and frequencies can be found in [1].
Please find a guideline on when to use a SAW filter in [15].
INS14487-6 | 3/2021 5
Instruction: Z-Wave 700 Integration Guide
ACTE A/S, www.acte.dk, salessupport@acte.dk
ACTE A/S, www.acte.dk, salessupport@acte.dk
ACTE A/S, www.acte.dk, salessupport@acte.dk
ACTE A/S, www.acte.dk, salessupport@acte.dk
6.1.1 RECOMMENDED COMPONENTS FOR GSM/LTE GATEWAYS
Table 6.4: SAW filters
6.1.2 OPTIONAL COMPONENTS FOR GSM/LTE GATEWAYS
Table 6.5: LTE improved SAW filters
6.1.3 Z-WAVE PROTOCOL SUPPORT FOR OPTIONAL SAW FILTER BANK
The Z-Wave Protocol offers support for usage of a SAW filter bank. Please refer to the BRD4200A and BRD4201A reference designs
for an example of such a SAW filter bank implementation.
Two GPIO pins on the Z-Wave 700 devices, GPIO PB14 and GPIO PB15 are assigned to control the selection of which SAW filter to
use in the SAW filter bank :
Table 6.6: SAW Filter Control Pins
6.2 CRYSTAL
The crystal is part of the oscillator that generates the reference frequency for the digital system clock and RF carrier. It is a critical
component of a Z-Wave 700 device. Further, it is mandatory to calibrate the crystal for EFR32ZG14-based designs. Refer to section
4 for more information.
The EFR32ZG14 has internal crystal capacitors and does not need any external circuitry apart from the crystal itself.
INS14487-6 | 3/2021 7
Instruction: Z-Wave Z-Wave 700 Integration Guide
Supported crystal equivalent series resistance
(ESR)
Supported range of crystal load capacitance 1
Initial frequency tolerance for the crystal
Temperature tolerance for the crystal
Combined tolerance for the crystal
C3
10U
R1
0R
GND
VBAT
C1
100N
C2
100N
VBAT_IN
The ZGM130S has an integrated crystal and is calibrated at the time of production.
For more information about the crystal oscillator, crystals and the EFR32ZG14 device, please refer to [7].
Table 6.7: Crystal specification for Z-Wave 700 devices
6.2.1 RECOMMENDED COMPONENTS
Table 6.8: Recommended crystals
7 SUPPLY FILTER
A good power supply filter is strongly recommended as part of the schematic. A filter with a ferrite and a capacitor can be used as
seen in Figure 8.1. The ferrite suppresses high frequency noise, while the capacitors decouple the power supply by acting as a
source for fast transient currents.
For Z-Wave 700 devices, the filter shown in Figure 7.1 is strongly recommended. For normal scenarios, this will provide adequate
filtering with a low BOM cost. In case of excessive supply noise, the 0 Ω resistor can be swapped for a ferrite bead to improve
filtering.
For more about supply decoupling, please refer to section 9.4. More in-depth information about decoupling strategies and the
Figure 7.1: Recommended Supply Filter for Z-Wave 700 Devices
power supply system of the Z-Wave devices can be found in [8] and [9].
8 INS14487-6 | 3/2021