Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual.
Furthermore, Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications
detailed here at any time without notice and does not make any commitment to update the information
contained here. Bluegiga’s products are not authorized for use as critical components in life support devices
or systems.
The WRAP is a registered trademark of Bluegiga Technologies
The Bluetooth trademark is owned by the Bluetooth SIG Inc., USA and is licensed to Bluegiga Technologies.
All other trademarks listed herein are owned by their respective owners.
6.2.1 USB Linear Regulator ................................................................................................................... 14
6.2.2 High-voltage Linear Regulator ...................................................................................................... 15
6.2.3 Digital ............................................................................................................................................ 15
6.3 Current Consumption ......................................................................................................................... 16
12.1 Memory Management Unit ................................................................................................................. 24
12.2 System RAM ...................................................................................................................................... 24
12.3 Internal ROM Memory (5Mb) ............................................................................................................. 24
13 Serial Interfaces ...................................................................................................................................... 25
13.1 USB Interface ..................................................................................................................................... 25
13.2 Programming and Debug Interface .................................................................................................... 25
16 Example Schematic ................................................................................................................................ 42
19.1 Bluetooth ............................................................................................................................................ 46
19.2.1 FCC et IC ...................................................................................................................................... 47
19.3 CE (Europe) ....................................................................................................................................... 48
19.5 Japan .................................................................................................................................................. 49
HCI over USB host interface
802.11 co-existence interface
Software programmable GPIO
PCM or I2S audio interfaces
Supply voltage: 1.7V to 3.6V or 3.1V to
3.6V
Temperature range: -30C to +85C
Ultra compact size: 13.05mm x 9.30mm
Bluetooth, CE, FCC, IC and South-Korea
qualified
PHYSICAL OUTLOOK
Bluegiga Technologies Oy
1 BT111 Product numbering
BT111-A-HCI
Antenna:
A = Internal
Firmware revision
Available products and product codes
Product code Description
BT111-A-HCI BT111 Bluetooth 4.0 HCI module with integrated antenna
Bluegiga Technologies Oy
Page 7 of 52
2 Block Diagram
26MHz XTAL
Antenna
BPF
RF
5V03V31V8
RAM
ROM
MMU
MCU
LDO 3V3
CSR8510
3 x LDO
LDO 1V8
1V3
I/O
PIO3
PIO4
PIO0
PIO1
PIO2
PIO5
32k EEPROM
SPI / PCM
USB
Figure 1: Block diagram of BT111
CSR8510
BT111 is based on CSR8510 dual mode chip. The chip includes all the functions required for a complete
Bluetooth radio with on chip LDO regulators. The chip provides SPI, PCM and USB interfaces. Up to 4 general
purpose I/Os are available for general usage, such as Wi-Fi coexistence or general indicators.
Antenna
Antenna is a ceramic monopole chip antenna. See the antenna characteristics in chapter 7.
Band Pass Filter
The band pass filter filters the out of band emissions from the transmitter to meet the specific regulations for
type approvals of various countries.
32k EEPROM
The embedded 32k EEPROM can be used to store customizable parameters, such as maximum TX power,
PCM configuration, USB product ID, USB vendor ID and USB product description.
26MHz Crystal
The embedded 26MHz crystal is used for generating the internal digital clocks.
Bluegiga Technologies Oy
Page 8 of 52
y
g
g
3 Pinout and Terminal Descriptions
1
GND
2
USBUSB+
3
PCM_SYNC/SPI_CS/PIO23
4
PIO5
5
PIO2
6
PCM_CLK/SPI_CLK/PIO24
7
PCM_IN/SPI_MOSI/PIO21
8
GND
9
VREG_IN_HV
10
GND
VREG_EN_RST#
VDD_PADS
VREG_OUT_HV
VREG_IN_USB
21
20
19
18
17
16VDD_HOST
PCM_OUT/SPI_MISO/PIO22
SPI_PCM_SEL
PIO01
GND
15
PIO0
121314
11
Figure 2: BT111
Power SupplyPin No.Pad TypeDescription
Take high to enable internal regulators. Also
acts as active low reset. Maximum voltage is
VDD_PADS
Note: USB regulator is always enabled and
not controlled b
this pin
Input to internal high-voltage regulator to
1.8V regulator, 3.3V output from USB
re
ulator.
Output from internal high-voltage to 1.8V
regulator. Input to second stage internal
ulators.
re
Input to USB regulator. Connect to external
USB bus supply, e.g. USB_VBUS
VREG_EN_RST#20
VREG_IN_HV10
VREG_OUT_HV18
VREG_IN_USB17
Input with strong
internal pull-down
Analogue regulator
input / output
Analogue regulator
output
Analogue regulator
input
VDD_HOST16VDDUSB system positive supply
VDD_PADS19VDDPositive supply for digital I/O pads
Table 1: Supply Terminal Descriptions
Bluegiga Technologies Oy
Page 9 of 52
g
PIO PortPin No.Pad TypeSupply DomainDescription
PIO011
PIO113
PIO26
Bidirectional, tristate,
with weak internal pulldown
PIO55
PCM InterfacePin No.Pad Type
PCM_OUT/
SPI_MISO/
PIO22
PCM_IN/
SPI_MOSI/
PIO21
PCM_SYNC/
SPI_CS#/
PIO23
PCM_CLK/
SPI_CLK/
PIO24
12
Output, tristate, with
weak internal pulldown
Input, tristate, with
8
weak internal pulldown
4
Bidirectional, tristate,
with weak internal
7
pulldown
VDD_PADSProgrammable input/output line
Table 2: I/O Terminal Descriptions
Supply
Domain
VDD_PADS
Description
PCM syncronous data output
SPI data output
Programmable input/output line
PCM syncronous data input
SPI data input
Programmable input/output line
PCM syncronous dara sync
SPI chip select, active low
Programmable input/output line
PCM syncronous data clock
SPI clock
rammable input/output line
Pro
SPI_PCM#_SEL14
Input with weak
internal pull-down
High switches SPI/PCM lines to SPI, low
switches SPI/PCM lines to PCM/PIO use
Table 3: PCM Interface
USB InterfacePin No.Pad Type
USB+3
USB-2USB data minus
Supply
Domain
VDD_HOSTBidirectional
Description
USB data plus with selectable internal 1.5k
pull-up resistor
Table 4: USB Interface
Ω
Bluegiga Technologies Oy
Page 10 of 52
4 External Dimensions and Land Pattern
Figure 3: Footprint (top view)
7.3mm (+/- 0.1mm)
1.9mm (+/- 10%)
13.05mm (+/- 0.1mm)
2.1mm (+/- 10%)
9.3mm (+/- 0.1mm)
Figure 4: External dimensions
Bluegiga Technologies Oy
Page 11 of 52
5 Layout Guide Lines
Use good layout practices to avoid excessive noise coupling to supply voltage traces or sensitive analog
signal traces. If using overlapping ground planes use stitching vias separated by max 3 mm to avoid emission
from the edges of the PCB. Connect all the GND pins directly to a solid GND plane and make sure that there
is a low impedance path for the return current following the signal and supply traces all the way from start to
the end.
A good practice is to dedicate one of the inner layers to a solid GND plane and one of the inner layers to
supply voltage planes and traces and route all the signals on top and bottom layers of the PCB. This
arrangement will make sure that any return current follows the forward current as close as possible and any
loops are minimized.
Signals
GND
Power
Signals
Figure 5: Typical 4-layer PCB construction
Overlapping GND layers without
GND stitching vias
Figure 6: Use of stitching vias to avoid emissions from the edges of the PCB
Overlapping GND layers with
GND stitching vias shielding the
RF energy
5.1 BT111-A Layout Guide
For optimal performance of the antenna place the module at the corner of the PCB of the mother board as
shown in the figure 7. Optionally the module can be placed on the long edge of the mother board. In this case
the metal clearance area must be extended minimum 10mm from the edge of the module, as shown in figure
7. The layout of the mother board has an impact on the antenna characteristic and radiation pattern, see the
antenna characteristics chapter. Do not place any metal (traces, components, battery etc.) within the
clearance area of the antenna. Connect all the GND pins directly to a solid GND plane. Place the GND vias as
close to the GND pins as possible. Use good layout practices to avoid any excessive noise coupling to signal
lines or supply voltage lines. Avoid placing plastic or any other dielectric material closer than 5 mm from the
antenna. Any dielectric closer than 5 mm from the antenna will detune the antenna to lower frequencies.
The antenna is optimized for mother board thickness of 1.0 mm. If the mother board is thicker than this, the
resonant frequency will be tuned downwards. If the mother board thickness is thinner than 1.0 mm, the
Bluegiga Technologies Oy
Page 12 of 52
resonant frequency will be tuned upwards. S11 is a measure of how big portion of the transmitted power is
reflected back from the antenna. An adequate performance can be expected if S11 is less than – 7 dB. If
using PCB thickness more than 1.6 mm, or if there is dielectric material around the antenna which is likely to
detune the resonant frequency, the antenna can be tuned in the mother board layout by removing FR4 below
the antenna.
Min. 10mm
BT111
Mother board
Figure 7: Recommended layouts for BT111-A
Mother board
Metal clearance area
BT111
Figure 8: Impedance matching of the antenna of BT111 with two different mother board PCB thickness
Bluegiga Technologies Oy
Page 13 of 52
6 Electrical Characteristics
6.1 Absolute Maximum Ratings
RatingMinMaxUnit
Storage temperature-40
VREG_IN_USB-0.25.85
VREG_IN_HV-0.24.9
VDD_HOST-0.23.7
VDD_PADS-0.23.7
Other terminal voltagesVSS - 0.4V
Table 5: Absolute maximum ratings
RatingMinMaxUnit
Operating temperature-30
VREG_IN_USB4.25
VREG_IN_HV2.3
VDD_HOST3.1
VDD_PADS
*) NOTE: The internal EEPROM is powered from VDD_PADS. To write the EEPROM,
minimum supply voltage is 2.7V and maximum is 3.3V. For reading the EEPROM the
minimum supply voltage is 1.7V and the maximum is 3.6V.
(*
Table 6: Recommended operating conditions
1.7
(*
+85
⁰
VDD + 0.4 VV
+85
⁰
5.75V
4.8V
3.6V
(*
3.6
C
V
V
V
V
C
V
6.2 Input/Output Terminal Characteristics
6.2.1 USB Linear Regulator
RatingMinTypMaxUnit
Input voltage4.255.0
Output voltage3.23.3
Output current--
Table 7: USB linear regulator
Bluegiga Technologies Oy
5.75V
3.4V
150mA
Page 14 of 52
6.2.2 High-voltage Linear Regulator
)
)
Normal OperationMinTypMaxUnit
Input voltage2.33.3
Output voltage1.751.85
Temperature coefficient-200Output noise (frequency range 100Hz to
100kHz
Settling time (settling ti within 10% of final
value
Output current--
Quiescent current (excluding load, I
Low-power Mode
Quiescent current (excluding load, I
<100µA)
Table 8: High-voltage Linear Regulator
load
load
<1mA)
--
--
3040
1418
4.8V
1.95V
200ppm/⁰C
0.4mV rms
5µs
100mA
60µA
23µA
6.2.3 Digital
Normal OperationMinTypMaxUnit
Input Voltage
input logic level low
V
IL
VIH input logic level high
Output Voltage
VOL output logic level low, IOL = 4.0mA
VOH output logic level high, IOL = 4.0mA
Input and Tristate Currents
Strong pull-up-150-40-10
Striong pull-down1040
Weak pull-up-5-1.0
Weak pull-down0.331.0
C
input capacitance
I
Table 9: Digital I/O characteristics
-0.4-
0.7 x VDD-
--
0.75 x VDD-
1.0-
0.4V
VDD + 0.4V
0.4V
-V
150
-0.33
5.0
5.0pF
µ
A
µ
A
µ
A
µ
A
Bluegiga Technologies Oy
Page 15 of 52
6.3 Current Consumption
Normal Operation
Idle5
USB Suspend200
Inguiry7351
File Transfer7358
LE Connected (Master)74(*
LE Scan (Master)48(*
*) LE AVG current consumption depends on the chosen TX interval and scanning window
Table 10: Current consumption of BT111 with 8 dBm TX power
Peak
(8 dBm)
AVGUnit
mA
µ
A
mA
mA
mA
mA
TX Peak = 73 mA
Peak = 14 mA
6.5 ms
Figure 9: Current consumption profile while creating a SPP connection
Peak = 48 mA
BGND Current = 6.4 mA
Window = 50 ms
Figure 10: LE scanning with 50 ms window
Bluegiga Technologies Oy
Page 16 of 52
Loading...
+ 36 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.