Silicon Laboratories SiM3L1xx User Manual

SiM3L1xx
High-Performance, Low-Power, 32-Bit Precision32™
MCU Family with up to 256 kB of Flash
32-bit ARM Cortex-M3 CPU
- 50 MHz maximum frequency
- Single-cycle multiplication, hardware division support
Memory
- 32–256 kB flash, in-system programmable
- 8–32 kB SRAM with configurable low power retention
Clock Sources
- Internal oscillator with PLL: 23–50 MHz
- Low power internal oscillator: 20 MHz
- Low frequency internal oscillator (LFO): 16.4 kHz
- External real-time clock (RTC) crystal oscillator
- External oscillator: Crystal, RC, C, CMOS clock
Power Management
- Three adjustable low drop-out (LDO) regulators
- Power-on reset circuit and brownout detectors
- DC-DC buck converter allows dynamic voltage scaling for
maximum efficiency (250 mW output)
- Multiple power modes supported for low power optimization
Low Power Features
- 75 nA typical current in Power Mode 8
- Low-current RTC (180 nA from LFO, 300 nA from crystal)
- 4 μs wakeup, register state retention and no reset required from
lowest power mode
- 175 μA/MHz at 3.6 V executing from flash
- 140 μA/MHz at 3.6 V executing from SRAM
- Specialized on-chip charge pump reduces power consumption
- Process/Voltage/Temperature (PVT) Monitor
5 V Tolerant Flexible I/O
- Up to 62 contiguous 5 V tolerant GPIO with one priority cross-
bar providing flexibility in pin assignments
Temperature Range: –40 to +85 °C Supply Voltage: 1.8 to 3.8 V
Analog Peripherals
- 12-Bit Analog-to-Digital Converter: Up to 250 ksps 12-bit mode
or 1
Msps 10-bit mode
- 10-Bit Current-mode Digital-to-Analog Converter
- 2 x Low-current comparators
Digital and Communication Peripherals
- 1 x USART with IrDA and ISO7816 Smartcard support
- 1 x UART that operates in low power mode
- 2 x SPIs, 1 x I2C, 16/32-bit CRC
- 128/192/256-bit Hardware AES Encryption
- Encoder/Decoder: Manchester and Three-out-of-Six
- Integrated LCD Controller: up to 160 segments (40x4), auto-
contrast and low power operation
Timers/Counters
- 3 x 32-bit or 6 x 16-bit timers with capture/compare
- 16-bit, 6-channel counter with capture/compare/PWM and
dead-time controller with differential outputs
- 16-bit low power timer/advanced capture counter operational in
the lowest power mode
- 32-bit real time clock (RTC) with multiple alarms
- Watchdog timer
- Low power mode advanced capture counter (ACCTR)
Data Transfer Peripherals
- 10-Channel DMA Controller
- 3 Channel Data Transfer Manager manages complex DMA
transfers without core intervention
On-Chip Debugging
- Serial wire debug (SWD) with serial wire viewer (SWV) or JTAG
(no boundary scan) allow debug and programming
- Cortex-M3 embedded trace macrocell (ETM)
Package Options
- QFN options: 40-pin (6 x 6 mm), 64-pin (9 x 9 mm)
- TQFP options: 64-pin (10 x 10 mm), 80-pin (12 x 12 mm)
Rev 1.1 11/14 Copyright © 2013 by Silicon Laboratories SiM3L1xx
2 Rev 1.1
SiM3L1xx
Table of Contents
1. Related Documents and Conventions...............................................................................5
1.1. Related Documents........................................................................................................5
1.1.1. SiM3L1xx Reference Manual.................................................................................5
1.1.2. Hardware Access Layer (HAL) API Description ....................................................5
1.1.3. ARM Cortex-M3 Reference Manual.......................................................................5
1.2. Conventions ...................................................................................................................5
2. Typical Connection Diagrams ............................................................................................6
2.1. Power .............................................................................................................................6
3. Electrical Specifications......................................................................................................8
3.1. Electrical Characteristics ................................................................................................8
3.2. Thermal Conditions ......................................................................................................30
3.3. Absolute Maximum Ratings..........................................................................................31
4. Precision32™ SiM3L1xx System Overview.....................................................................32
4.1. Power ...........................................................................................................................34
4.1.1. DC-DC Buck Converter (DCDC0)........................................................................34
4.1.2. Three Low Dropout LDO Regulators (LDO0) ......................................................35
4.1.3. Voltage Supply Monitor (VMON0) .......................................................................35
4.1.4. Power Management Unit (PMU)..........................................................................35
4.1.5. Device Power Modes...........................................................................................35
4.1.6. Process/Voltage/Temperature Monitor (TIMER2 and PVTOSC0).......................38
4.2. I/O.................................................................................................................................39
4.2.1. General Features.................................................................................................39
4.2.2. Crossbar ..............................................................................................................39
4.3. Clocking........................................................................................................................40
4.3.1. PLL (PLL0)...........................................................................................................41
4.3.2. Low Power Oscillator (LPOSC0) .........................................................................41
4.3.3. Low Frequency Oscillator (LFOSC0)...................................................................41
4.3.4. External Oscillators (EXTOSC0)..........................................................................41
4.4. Integrated LCD Controller (LCD0)................................................................................42
4.5. Data Peripherals...........................................................................................................43
4.5.1. 10-Channel DMA Controller.................................................................................43
4.5.2. Data Transfer Managers (DTM0, DTM1, DTM2) .................................................43
4.5.3. 128/192/256-bit Hardware AES Encryption (AES0) ............................................43
4.5.4. 16/32-bit Enhanced CRC (ECRC0) .....................................................................44
4.5.5. Encoder / Decoder (ENCDEC0) ..........................................................................44
4.6. Counters/Timers...........................................................................................................45
4.6.1. 32-bit Timer (TIMER0, TIMER1, TIMER2)...........................................................45
4.6.2. Enhanced Programmable Counter Array (EPCA0) .............................................45
4.6.3. Real-Time Clock (RTC0) .....................................................................................46
4.6.4. Low Power Timer (LPTIMER0)............................................................................46
4.6.5. Watchdog Timer (WDTIMER0)............................................................................46
4.6.6. Low Power Mode Advanced Capture Counter (ACCTR0)...................................47
4.7. Communications Peripherals .......................................................................................48
4.7.1. USART (USART0) ............................................................................................... 48
Rev 1.1 3
SiM3L1xx
4.7.2. UART (UART0)....................................................................................................48
4.7.3. SPI (SPI0, SPI1) .................................................................................................. 49
4.7.4. I2C (I2C0) ............................................................................................................49
4.8. Analog ..........................................................................................................................50
4.8.1. 12-Bit Analog-to-Digital Converter (SARADC0)...................................................50
4.8.2. 10-Bit Digital-to-Analog Converter (IDAC0) ......................................................... 50
4.8.3. Low Current Comparators (CMP0, CMP1) .......................................................... 50
4.9. Reset Sources..............................................................................................................51
4.10.Security ........................................................................................................................ 52
4.11.On-Chip Debugging .....................................................................................................52
5. Ordering Information.........................................................................................................53
6. Pin Definitions....................................................................................................................55
6.1. SiM3L1x7 Pin Definitions .............................................................................................55
6.2. SiM3L1x6 Pin Definitions .............................................................................................62
6.3. SiM3L1x4 Pin Definitions .............................................................................................69
6.4. TQFP-80 Package Specifications ................................................................................74
6.4.1. TQFP-80 Solder Mask Design.............................................................................77
6.4.2. TQFP-80 Stencil Design ...................................................................................... 77
6.4.3. TQFP-80 Card Assembly.....................................................................................77
6.5. QFN-64 Package Specifications ..................................................................................78
6.5.1. QFN-64 Solder Mask Design...............................................................................80
6.5.2. QFN-64 Stencil Design ........................................................................................ 80
6.5.3. QFN-64 Card Assembly.......................................................................................80
6.6. TQFP-64 Package Specifications ................................................................................81
6.6.1. TQFP-64 Solder Mask Design.............................................................................84
6.6.2. TQFP-64 Stencil Design ...................................................................................... 84
6.6.3. TQFP-64 Card Assembly.....................................................................................84
6.7. QFN-40 Package Specifications ..................................................................................85
6.7.1. QFN-40 Solder Mask Design...............................................................................87
6.7.2. QFN-40 Stencil Design ........................................................................................ 87
6.7.3. QFN-40 Card Assembly.......................................................................................87
7. Revision Specific Behavior...............................................................................................88
7.1. Revision Identification ..................................................................................................88
Document Change List...........................................................................................................90
Contact Information................................................................................................................91
4 Rev 1.1
SiM3L1xx

1. Related Documents and Conventions

1.1. Related Documents

This data sheet accompanies several documents to provide the complete description of the SiM3L1xx devices.

1.1.1. SiM3L1xx Reference Manual

The Silicon Laboratories SiM3L1xx Reference Manual provides the detailed description for each peripheral on the SiM3L1xx devices.

1.1.2. Hardware Access Layer (HAL) API Description

The Silicon Laboratories Hardware Access Layer (HAL) API provides C-language functions to modify and read each bit in the SiM3L1xx devices. This description can be found in the SiM3xxxx HAL API Reference Manual.

1.1.3. ARM Cortex-M3 Reference Manual

The ARM-specific features like the Nested Vectored Interrupt Controller are described in the ARM Cortex-M3 reference documentation. The online reference manual can be found here:
http://infocenter.arm.com/help/topic/com.arm.doc.subset.cortexm.m3/index.html#cortexm3.

1.2. Conventions

The block diagrams in this document use the following formatting conventions:
Figure 1.1. Block Diagram Conventions
Rev 1.1 5
SiM3L1xx

2. Typical Connection Diagrams

This section provides typical connection diagrams for SiM3L1xx devices.

2.1. Power

Figure 2.1 shows a typical connection diagram for the power pins of the SiM3L1xx devices when the dc-dc buck converter is not used.
Figure 2.1. Connection Diagram with DC-DC Converter Unused
Figure 2.2 shows a typical connection diagram for the power pins of the SiM3L1xx devices when the internal dc-dc buck converter is in use and I/O are powered directly from the battery.
Figure 2.2. Connection Diagram with DC-DC Converter Used and I/O Powered from Battery
Figure 2.3 shows a typical connection diagram for the power pins of the SiM3L1xx devices when used with an external radio device like the Silicon Labs EZRadio® or EZRadioPRO® devices.
6 Rev 1.1
SiM3L1xx
Figure 2.3. Connection Diagram with External Radio Device
Figure 2.4 shows a typical connection diagram for the power pins of the SiM3L1xx devices when the dc-dc buck converter is used and the I/O are powered separately.
Figure 2.4. Connection Diagram with DC-DC Converter Used and I/O Powered Separately
Rev 1.1 7
SiM3L1xx

3. Electrical Specifications

3.1. Electrical Characteristics

All electrical parameters in all Tables are specified under the conditions listed in Table 3.1, unless stated otherwise.

Table 3.1. Recommended Operating Conditions

Parameter Symbol Test Condition Min Typ Max Unit
Operating Supply Voltage on VBAT/VBATDC
Operating Supply Voltage on VDC V
Operating Supply Voltage on VDRV V
Operating Supply Voltage on VIO V
Operation Supply Voltage on VIORF V
Operation Supply Voltage on VLCD V
System Clock Frequency (AHB) f
Peripheral Clock Frequency (APB) f
Operating Ambient Temperature T
Operating Junction Temperature T
Note: All voltages with respect to V
SS
.
V
BAT
DC
DRV
IO
IORF
LCD
AHB
APB
A
J
1.8 3.8 V
1.25 3.8 V
1.25 3.8 V
1.8 V
1.8 V
1.8 3.8 V
0 50 MHz
0 50 MHz
–40 +85 °C
–40 105 °C
BAT
BAT
V
V
8 Rev 1.1

Table 3.2. Power Consumption

Parameter Symbol Test Condition Min Typ Max Unit
Digital Core Supply Current
Normal Mode with code executing from flash, peripheral clocks ON
Normal Mode with code executing from flash, peripheral clocks OFF
Normal Mode with code executing from flash, LDOs powered by dc-dc at 1.9 V, peripheral clocks OFF
Notes:
1. Currents are additive. For example, where I
functions increases supply current by the specified amount.
2. Includes all peripherals that cannot have clocks gated in the Clock Control module.
3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (<20 MHz) supply current.
4. Internal Digital and Memory LDOs scaled to optimal output voltage.
5. Flash AHB clock turned off.
6. Running from internal LFO, Includes LFO supply current.
7. LCD0 current does not include switching currents for external load.
8. IDAC output current not included.
9. Does not include LC tank circuit.
10. Does not include digital drive current or pullup current for active port I/O. Unloaded I
production test measurements.
1,2,3,4
—Full speed
1,2,3,4
—Full speed
1,2,3,4
—Full speed
I
BAT
I
BAT
I
BAT
F
= 49 MHz,
AHB
F
= 24.5 MHz
APB
F
= 20 MHz,
AHB
F
= 10 MHz
APB
F
= 2.5 MHz,
AHB
F
= 1.25 MHz
APB
F
= 49 MHz,
AHB
F
= 24.5 MHz
APB
F
= 20 MHz,
AHB
F
= 10 MHz
APB
F
= 2.5 MHz,
AHB
F
= 1.25 MHz
APB
F
= 49 MHz,
AHB
F
= 24.5 MHz
APB
V
= 3.3 V
BAT
F
= 49 MHz,
AHB
F
= 24.5 MHz
APB
V
= 3.8 V
BAT
F
= 20 MHz,
AHB
F
= 10 MHz
APB
V
= 3.3 V
BAT
F
= 20 MHz,
AHB
F
= 10 MHz
APB
V
= 3.8 V
BAT
is specified and the mode is not mutually exclusive, enabling the
BAT
SiM3L1xx
17.5 18.9 mA
6.7 7.2 mA
1.15 1.4 mA
13.3 14.5 mA
5.4 5.9 mA
980 1.2 μA
9.7 mA
8.65 mA
4.15 mA
3.9 mA
is included in all I
VIO
BAT
PM8
Rev 1.1 9
SiM3L1xx
Table 3.2. Power Consumption (Continued)
Parameter Symbol Test Condition Min Typ Max Unit
Power Mode 1 with code executing from RAM, peripheral clocks ON
Power Mode 1 with code executing from RAM, peripheral clocks OFF
Power Mode 1 with code executing from RAM, LDOs powered by dc-dc at 1.9 V, peripheral clocks OFF
Power Mode 2 with peripheral clocks ON
Notes:
1. Currents are additive. For example, where
functions increases supply current by the specified amount.
2.
Includes all peripherals that cannot have clocks gated in the Clock Control module.
3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (
4. Internal Digital and Memory LDOs scaled to optimal output voltage.
5. Flash AHB clock turned off.
6. Running from internal LFO, Includes LFO supply current.
7. LCD0 current does not include switching currents for external load.
8. IDAC output current not included.
9. Does not include LC tank circuit.
10. Does not include digital drive current or pullup current for active port I/O. Unloaded I
production test measurements.
1,2,3,4
1,2,3,4
1,2,3,4
1,2,3,4,5
—Full speed
—Full speed
—Full speed
—Core halted
I
BAT
I
BAT
I
BAT
I
BAT
F
= 49 MHz,
AHB
F
= 24.5 MHz
APB
F
= 20 MHz,
AHB
F
= 10 MHz
APB
F
= 2.5 MHz,
AHB
F
= 1.25 MHz
APB
F
= 49 MHz,
AHB
F
= 24.5 MHz
APB
F
= 20 MHz,
AHB
F
= 10 MHz
APB
F
= 2.5 MHz,
AHB
F
= 1.25 MHz
APB
F
= 49 MHz,
AHB
F
= 24.5 MHz
APB
V
= 3.3 V
BAT
F
= 49 MHz,
AHB
F
= 24.5 MHz
APB
V
= 3.8 V
BAT
F
= 20 MHz,
AHB
F
= 10 MHz
APB
V
= 3.3 V
BAT
F
= 20 MHz,
AHB
F
= 10 MHz
APB
V
= 3.8 V
BAT
F
= 49 MHz,
AHB
F
= 24.5 MHz
APB
F
= 20 MHz,
AHB
F
= 10 MHz
APB
F
= 2.5 MHz,
AHB
F
= 1.25 MHz
APB
I
is specified and the mode is not mutually exclusive, enabling the
BAT
<20 MHz) supply current.
13.4 16.6 mA
4.7 mA
810 μA
9.4 12.5 mA
3.3 mA
630 μA
7.05 mA
6.3 mA
2.75 mA
2.6 mA
7.6 11.3 mA
2.75 mA
575 μA
is included in all I
VIO
BAT
PM8
10 Rev 1.1
Table 3.2. Power Consumption (Continued)
Parameter Symbol Test Condition Min Typ Max Unit
Power Mode 2 with only Port I/O clocks on (wake from pin).
Power Mode 3 Mode (PM3CLKEN = 1)
Power Mode 4 speed with code executing from flash, peripheral clocks ON
Power Mode 5 speed with code executing from RAM, peripheral clocks ON
Power Mode 6 with peripheral clocks ON
Power Mode 8 Sleep, powered through VBAT, VIO, and VIORF at 2.4 V, 32kB of retention RAM
1,2,3,4,5
—Core halted
1,2,6
—Fast-Wake
1,2,4,6
—Slower clock
1,2,4,6
—Slower clock
1,2,4,6
—Core halted
1,2
—Low Power
I
BAT
I
BAT
I
BAT
I
BAT
I
BAT
I
BAT
F
= 49 MHz,
AHB
F
= 24.5 MHz
APB
F
= 20 MHz,
AHB
F
= 10 MHz
APB
F
= 2.5 MHz,
AHB
F
= 1.25 MHz
APB
V
= 3.8 V 320 530 μA
BAT
V
= 1.8 V 225 μA
BAT
F
= F
AHB
V
F
= F
AHB
V
F
= F
AHB
V
F
= F
AHB
V
F
= F
AHB
V
F
= F
AHB
V
RTC Disabled,
APB
BAT
APB
BAT
APB
BAT
APB
BAT
APB
BAT
APB
BAT
= 16 kHz,
= 3.8 V
= 16 kHz,
= 1.8 V
= 16 kHz,
= 3.8 V
= 16 kHz,
= 1.8 V
= 16 kHz,
= 3.8 V
= 16 kHz,
= 1.8 V
TA = 25 °C
RTC w/ 16.4 kHz LFO,
TA = 25 °C
SiM3L1xx
4 7.2 mA
1.47 mA
430 μA
385 640 μA
330 μA
320 490 μA
275 μA
315 490 μA
270 μA
75 400 nA
360 nA
RTC w/ 32.768 kHz Crystal,
TA = 25 °C
Notes:
1. Currents are additive. For example, where
functions increases supply current by the specified amount.
2.
Includes all peripherals that cannot have clocks gated in the Clock Control module.
3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (
4. Internal Digital and Memory LDOs scaled to optimal output voltage.
5. Flash AHB clock turned off.
6. Running from internal LFO, Includes LFO supply current.
7. LCD0 current does not include switching currents for external load.
8. IDAC output current not included.
9. Does not include LC tank circuit.
10. Does not include digital drive current or pullup current for active port I/O. Unloaded I
production test measurements.
I
is specified and the mode is not mutually exclusive, enabling the
BAT
<20 MHz) supply current.
Rev 1.1 11
670 nA
is included in all I
VIO
BAT
PM8
SiM3L1xx
Table 3.2. Power Consumption (Continued)
Parameter Symbol Test Condition Min Typ Max Unit
Power Mode 8 Sleep, powered by the low power mode charge pump, 32kB of reten­tion RAM
Unloaded VIO and V
Power Mode 8 Peripheral Currents
1,2
—Low Power
IORF
Current
10
I
BAT
I
VIO
RTC w/ 16.4 kHz LFO,
V
= 2.4 V, TA = 25 °C
BAT
RTC w/ 32.768 kHz Crystal,
V
= 2.4 V, TA = 25 °C
BAT
RTC w/ 16.4 kHz LFO,
V
= 3.8 V, TA = 25 °C
BAT
RTC w/ 32.768 kHz Crystal,
V
= 3.8 V, TA = 25 °C
BAT
180 nA
300 nA
245 nA
390 nA
2 nA
UART0 I
LCD07, No segments active I
LCD07, All (4 x 40) segments active I
Advanced Capture Counter (ACCTR0), LC Single-Ended Mode, Relative to Sampling Fre­quency
Notes:
9
1. Currents are additive. For example, where
functions increases supply current by the specified amount.
2.
Includes all peripherals that cannot have clocks gated in the Clock Control module.
3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (
4. Internal Digital and Memory LDOs scaled to optimal output voltage.
5. Flash AHB clock turned off.
6. Running from internal LFO, Includes LFO supply current.
7. LCD0 current does not include switching currents for external load.
8. IDAC output current not included.
9. Does not include LC tank circuit.
10. Does not include digital drive current or pullup current for active port I/O. Unloaded I
production test measurements.
UART0
LCD0
LCD0
I
ACCTR
V
= 3.8 V, TA = 25 °C 195 600 nA
BAT
V
= 2.4 V, TA = 25 °C 120 nA
BAT
V
= 3.8 V, TA = 25 °C 495 660 nA
BAT
V
= 2.4 V, TA = 25 °C 395 nA
BAT
V
= 3.8 V, TA = 25 °C 800 nA
BAT
V
= 2.4 V, TA = 25 °C 580 nA
BAT
V
= 2.4 V, TA = 25 °C,
BAT
CPMD = 01
V
= 3.8 V, TA = 25 °C,
BAT
V
BAT
V
BAT
V
BAT
V
BAT
I
is specified and the mode is not mutually exclusive, enabling the
BAT
CPMD = 01
= 2.4 V, TA = 25 °C,
CPMD = 10
= 3.8 V, TA = 25 °C,
CPMD = 10
= 2.4 V, TA = 25 °C,
CPMD = 11
= 3.8 V, TA = 25 °C,
CPMD = 11
<20 MHz) supply current.
1.11 nA/Hz
1.44 nA/Hz
1.45 nA/Hz
1.82 nA/Hz
2.15 nA/Hz
2.54 nA/Hz
is included in all I
VIO
BAT
PM8
12 Rev 1.1
Table 3.2. Power Consumption (Continued)
Parameter Symbol Test Condition Min Typ Max Unit
SiM3L1xx
Advanced Capture Counter (ACCTR0), LC Dual or Quadrature Mode, Relative to Sampling Fre­quency
Analog Peripheral Supply Currents
PLL0 Oscillator (PLL0OSC) I
Low-Power Oscillator (LPOSC0) I
Low-Frequency Oscillator (LFOSC0)
External Oscillator (EXTOSC0) I
9
I
ACCTR
PLLOSC
LPOSC
I
LFOSC
EXTOSC
V
= 2.4 V, TA = 25 °C,
BAT
CPMD = 01
V
= 3.8 V, TA = 25 °C,
BAT
CPMD = 01
V
= 2.4 V, TA = 25 °C,
BAT
CPMD = 10
V
= 3.8 V, TA = 25 °C,
BAT
CPMD = 10
V
= 2.4 V, TA = 25 °C,
BAT
CPMD = 11
V
= 3.8 V, TA = 25 °C,
BAT
CPMD = 11
Operating at 49 MHz 1.4 1.6 mA
Operating at 20 MHz 25 μA
Operating at 2.5 MHz 25 μA
Operating at 16.4 kHz 190 310 nA
FREQCN = 111 3.8 4.5 mA
FREQCN = 110 840 960 μA
FREQCN = 101 185 230 μA
1.39 nA/Hz
1.89 nA/Hz
2.08 nA/Hz
2.59 nA/Hz
3.47 nA/Hz
4.03 nA/Hz
FREQCN = 100 65 80 μA
FREQCN = 011 25 30 μA
FREQCN = 010 10 13 μA
FREQCN = 001 5 7 μA
FREQCN = 000 3 5 μA
Notes:
1. Currents are additive. For example, where
functions increases supply current by the specified amount.
2.
Includes all peripherals that cannot have clocks gated in the Clock Control module.
3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (
4. Internal Digital and Memory LDOs scaled to optimal output voltage.
5. Flash AHB clock turned off.
6. Running from internal LFO, Includes LFO supply current.
7. LCD0 current does not include switching currents for external load.
8. IDAC output current not included.
9. Does not include LC tank circuit.
10. Does not include digital drive current or pullup current for active port I/O. Unloaded I
production test measurements.
I
is specified and the mode is not mutually exclusive, enabling the
BAT
<20 MHz) supply current.
is included in all I
VIO
BAT
PM8
Rev 1.1 13
SiM3L1xx
Table 3.2. Power Consumption (Continued)
Parameter Symbol Test Condition Min Typ Max Unit
SARADC0 I
Temperature Sensor I
Internal SAR Reference I
VREF0 I
Comparator 0 (CMP0), Comparator 1 (CMP1)
8
IDAC0
Voltage Supply Monitor (VMON0) I
Flash Current on VBAT
Write Operation I
Erase Operation I
Notes:
1. Currents are additive. For example, where
functions increases supply current by the specified amount.
2.
Includes all peripherals that cannot have clocks gated in the Clock Control module.
3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (
4. Internal Digital and Memory LDOs scaled to optimal output voltage.
5. Flash AHB clock turned off.
6. Running from internal LFO, Includes LFO supply current.
7. LCD0 current does not include switching currents for external load.
8. IDAC output current not included.
9. Does not include LC tank circuit.
10. Does not include digital drive current or pullup current for active port I/O. Unloaded I
production test measurements.
SARADC
TSENSE
REFFS
REFP
I
CMP
I
IDAC
VMON
FLASH-W
FLASH-E
Sampling at 1 Msps, Internal
VREF used
Sampling at 250 ksps, lowest
power mode settings.
Normal Power Mode 680 μA
Normal Power Mode 160 μA
CMPMD = 11 0.5 2 μA
CMPMD = 10 3 8 μA
CMPMD = 01 10 16 μA
CMPMD = 00 25 42 μA
I
is specified and the mode is not mutually exclusive, enabling the
BAT
<20 MHz) supply current.
1.2 1.6 mA
390 540 μA
75 110 μA
80 μA
70 100 μA
10 22 μA
8 mA
15 mA
is included in all I
VIO
BAT
PM8
14 Rev 1.1

Table 3.3. Power Mode Wake Up Times

Parameter Symbol Test Condition Min Typ Max Unit
SiM3L1xx
Power Mode 2 or 6 Wake Time t
Power Mode 3 Fast Wake Time (using LFO as clock source)
Power Mode 8 Wake Time t
Notes:
1. W
ake times are specified as the time from the wake source to the execution phase of the first instruction following WFI.
This includes latency to recognize the wake event and fetch the first instruction (assuming wait states = 0).

Table 3.4. Reset and Supply Monitor

Parameter Symbol Test Condition Min Typ Max Unit
V
High Supply Monitor Threshold
BAT
(VBATHITHEN = 1)
V
Low Supply Monitor Threshold
BAT
(VBATHITHEN = 0)
Power-On Reset (POR) Threshold V
V
Ramp Time t
BAT
Reset Delay from POR t
Reset Delay from non-POR source t
V
V
PM2
t
PM3FW
PM8
VBATMH
VBATML
POR
RMP
POR
RST
4 5 clocks
425 μs
3.8 μs
Early Warning 2.20 V
Reset 1.95 2.05 2.1 V
Early Warning 1.85 V
Reset 1.70 1.75 1.77 V
Rising Voltage on
V
BAT
Falling Voltage on
V
BAT
Time to V
Time between release
of reset source and
> 1.8 V 10 3000 μs
BAT
Relative to V
V
POR
code execution
BAT
>
1.4 V
0.8 1 1.3 V
3 100 ms
10 μs
RESET Low Time to Generate Reset t
Missing Clock Detector Response Time (final rising edge to reset)
Missing Clock Detector Trigger Frequency
V
Supply Monitor Turn-On Time t
BAT
RSTL
t
MCD
F
MCD
MON
50 ns
F
> 1 MHz 0.5 1.5 ms
AHB
2.5 10 kHz
2 μs
Rev 1.1 15
SiM3L1xx

Table 3.5. On-Chip Regulators

Parameter Symbol Test Condition Min Typ Max Unit
DC-DC Buck Converter
Input Voltage Range V
Input Supply to Output Voltage Differ­ential (for regulation)
Output Voltage Range V
Output Voltage Accuracy V
Output Current I
Inductor Value
Inductor Current Rating I
Output Capacitor Value C
Input Capacitor Value
Load Regulation R
Maximum DC Load Current During Startup
Switching Clock Frequency F
Local Oscillator Frequency F
LDO Regulators
Input Voltage Range
Output Voltage Range
LDO Output Voltage Accuracy V
Output Settings in PM8 (All LDOs) V
Notes:
1. See reference manual for recommended inductors.
2. Recommended: X7R or X5R ceramic capacitors with low ESR. Example: Murata GRM21BR71C225K with ESR < 10
m (@ frequency > 1 MHz).
3. Input voltage specification accounts for the internal LDO dropout voltage under the maximum load condition to ensure
that the LDO output voltage will remain at a valid level as long as
4. The memory LDO output should always be set equal to or lower than the output of the analog LDO. When lowering both
LDOs (for example to go into PM8 under low supply conditions), first adjust the memory LDO and then the analog LDO. When raising the output of both LDOs, adjust the analog LDO before adjusting the memory LDO.
5. Output range represents the programmable output range, and does not reflect the minimum voltage under all
conditions. Dropout when the input supply is close to the output setting is normal, and accounted for.
6. Analog peripheral specifications assume a 1.8 V output on the analog LDO.
1
2
3
4
DCIN
V
DCREG
DCOUT
DCACC
DCOUT
L
DC
LDC
DCOUT
C
DCIN
load
I
DCMAX
DCCLK
DCOSC
V
LDOIN
V
LDO
LDOACC
LDO
I
< 50 mA 450 mA
load
I
> 50 mA 550 mA
load
Sourced from VBAT 1.8 3.8 V
Sourced from VDC 1.9 3.8 V
1.8 V < V
1.95 V < V
2.0 V < V
< 2.9 V 1.5 V
BAT
< 3.5 V 1.8 V
BAT
< 3.8 V 1.9 V
BAT
V
LDOIN
1.8 3.8 V
0.45 V
1.25 3.8 V
±25 mV
90 mA
0.47 0.56 0.68 μH
1 2.2 10 μF
4.7 μF
0.03 mV/mA
5 mA
1.9 2.9 3.8 MHz
2.4 2.9 3.4 MHz
0.8 1.9 V
±25 mV
is at or above the specified minimum.
16 Rev 1.1
Table 3.5. On-Chip Regulators (Continued)
Parameter Symbol Test Condition Min Typ Max Unit
Memory LDO Output Setting
5
V
LDOMEM
SiM3L1xx
During Programming 1.8 1.9 V
During Normal
Operation
1.5 1.9 V
Digital LDO Output Setting V
Analog LDO Output Setting During
Normal Operation
Notes:
1. See reference manual for recommended inductors.
2. Recommended: X7R or X5R ceramic capacitors with low ESR. Example: Murata GRM21BR71C225K with ESR < 10
m (@ frequency > 1 MHz).
3. Input voltage specification accounts for the internal LDO dropout voltage under the maximum load condition to ensure
that the LDO output voltage will remain at a valid level as long as
4. The memory LDO output should always be set equal to or lower than the output of the analog LDO. When lowering both
LDOs (for example to go into PM8 under low supply conditions), first adjust the memory LDO and then the analog LDO. When raising the output of both LDOs, adjust the analog LDO before adjusting the memory LDO.
5. Output range represents the programmable output range, and does not reflect the minimum voltage under all
conditions. Dropout when the input supply is close to the output setting is normal, and accounted for.
6. Analog peripheral specifications assume a 1.8 V output on the analog LDO.
6
LDODIG
V
LDOANA
F
< 20 MHz 1.0 1.9 V
AHB
F
> 20 MHz 1.2 1.9 V
AHB
1.8 V
V
is at or above the specified minimum.
LDOIN
Rev 1.1 17
SiM3L1xx

Table 3.6. Flash Memory

Parameter Symbol Test Condition Min Typ Max Unit
Write Time
Erase Time
Endurance (Write/Erase Cycles) N
Retention
Notes:
1. Does not include sequencing time before and after the write/erase operation, which may take up to 35 μs. During
2. Additional Data Retention Information is published in the Quarterly Quality and Reliability Report.
1
1
2
sequential write operations, this extra time is only taken prior to the first write and after the last write.
t
WRITE
t
ERASE
t
ERALL
WE
t
RET
One 16-bit Half Word 20 21 22 μs
One Page 20 21 22 ms
Full Device 20 21 22 ms
20k 100k Cycles
TA = 25 °C, 1k Cycles 10 100 Years
18 Rev 1.1

Table 3.7. Internal Oscillators

Parameter Symbol Test Condition Min Typ Max Unit
Phase-Locked Loop (PLL0OSC)
SiM3L1xx
Calibrated Output Frequency (Free-running output mode,
RANGE = 2)
Power Supply Sensitivity (Free-running output mode,
RANGE = 2)
Temperature Sensitivity (Free-running output mode,
RANGE = 2)
Adjustable Output Frequency Range
Lock Time t
PSS
f
PLL0OSC
PLL0OSC
TS
PLL0OSC
f
PLL0OSC
PLL0LOCK
Full Temperature and
Supply Range
TA = 25 °C,
Fout = 49 MHz
V
= 3.3 V,
BAT
Fout = 49 MHz
f
= 20 MHz,
REF
f
PLL0OSC
f
REF
f
PLL0OSC
M=19, N=399,
f
REF
f
PLL0OSC
M=0, N=1524,
= 50 MHz M=39, N=99, LOCKTH = 0
= 2.5 MHz,
= 50 MHz
LOCKTH = 0
= 32.768 kHz,
= 50 MHz
LOCKTH = 0
48.3 49 49.7 MHz
300 ppm/V
50 ppm/°C
23 50 MHz
2.75 μs
9.45 μs
92 μs
Low Power Oscillator (LPOSC0)
Oscillator Frequency f
Divided Oscillator Frequency f
Power Supply Sensitivity PSS
Temperature Sensitivity TS
Low Frequency Oscillator (LFOSC0)
Oscillator Frequency f
Power Supply Sensitivity PSS
Temperature Sensitivity TS
LPOSCD
LPOSC
LPOSC
LPOSC
LFOSC
LFOSC
LFOSC
Full Temperature and
Supply Range
Full Temperature and
Supply Range
TA = 25 °C 0.5 %/V
V
= 3.3 V 55 ppm/°C
BAT
Full Temperature and
Supply Range
TA = 25 °C,
V
= 3.3 V
BAT
TA = 25 °C 2.4 %/V
V
= 3.3 V 0.2 %/°C
BAT
Rev 1.1 19
19 20 21 MHz
2.375 2.5 2.625 MHz
13.4 16.4 19.7 kHz
15.8 16.4 17.3 kHz
SiM3L1xx
Table 3.7. Internal Oscillators (Continued)
Parameter Symbol Test Condition Min Typ Max Unit
RTC0 Oscillator (RTC0OSC)
Missing Clock Detector Trigger Frequency
RTC External Input CMOS Clock Frequency
RTC Robust Duty Cycle Range DC

Table 3.8. External Oscillator

Parameter
External Input CMOS Clock Frequency
External Crystal Frequency f
External Input CMOS Clock High Time t
External Input CMOS Clock Low Time t
Low Power Mode Charge Pump Supply Range (input from V
*Note: Minimum of 10 kHz when debugging.
BAT
)
f
RTCMCD
f
RTCEXTCLK
RTC
Symbol
f
CMOS
XTAL
CMOSH
CMOSL
V
BAT
Test Condition
8 15 kHz
0 40 kHz
25 55 %
Min Typ Max Unit
0* 50 MHz
0.01 25 MHz
9 ns
9 ns
2.4 3.8 V
20 Rev 1.1

Table 3.9. SAR ADC

Parameter Symbol Test Condition Min Typ Max Unit
SiM3L1xx
Resolution N
Supply Voltage Requirements (VBAT)
Throughput Rate (High Speed Mode)
Throughput Rate (Low Power Mode)
Tracking Time t
SAR Clock Frequency f
Conversion Time t
Sample/Hold Capacitor C
Input Pin Capacitance C
V
bits
ADC
f
S
f
S
TRK
SAR
CNV
SAR
IN
12 Bit Mode 12 Bits
10 Bit Mode 10 Bits
High Speed Mode 2.2 3.8 V
Low Power Mode 1.8 3.8 V
12 Bit Mode 250 ksps
10 Bit Mode 1 Msps
12 Bit Mode 62.5 ksps
10 Bit Mode 250 ksps
High Speed Mode 230 ns
Low Power Mode 450 ns
High Speed Mode 16.24 MHz
Low Power Mode 4 MHz
10-Bit Conversion,
SAR Clock = 16 MHz,
APB Clock = 40 MHz
Gain = 1 5 pF
Gain = 0.5 2.5 pF
High Quality Inputs 18 pF
Normal Inputs 20 pF
762.5 ns
Input Mux Impedance R
Voltage Reference Range V
Input Voltage Range* V
Power Supply Rejection Ratio PSRR
DC Performance
Integral Nonlinearity INL 12 Bit Mode ±1 ±1.9 LSB
Differential Nonlinearity (Guaranteed Monotonic)
Offset Error (using VREFGND) E
MUX
REF
IN
ADC
DNL 12 Bit Mode –1 ±0.7 1.8 LSB
OFF
High Quality Inputs 300
Normal Inputs 550
1 V
Gain = 1 0 V
Gain = 0.5 0 2xV
70 dB
10 Bit Mode ±0.2 ±0.5 LSB
10 Bit Mode ±0.2 ±0.5 LSB
12 Bit Mode, VREF = 2.4 V –2 0 2 LSB
10 Bit Mode, VREF = 2.4 V –1 0 1 LSB
Rev 1.1 21
BAT
REF
REF
V
V
V
SiM3L1xx
Table 3.9. SAR ADC (Continued)
Parameter Symbol Test Condition Min Typ Max Unit
Offset Temperature Coefficient TC
Slope Error E
Dynamic Performance (10 kHz Sine Wave Input 1dB below full scale, Max throughput)
Signal-to-Noise SNR 12 Bit Mode 62 66 dB
Signal-to-Noise Plus Distortion SNDR 12 Bit Mode 62 66 dB
Total Harmonic Distortion (Up to 5th Harmonic)
Spurious-Free Dynamic Range SFDR 12 Bit Mode –79 dB
*Note: Absolute input pin voltage is limited by the lower of the supply at VBAT and VIO.
OFF
M
10 Bit Mode 58 60 dB
10 Bit Mode 58 60 dB
THD 12 Bit Mode 78 dB
10 Bit Mode 77 dB
10 Bit Mode –74 dB
0.004 LSB/°C
–0.07 –0.02 0.02 %
22 Rev 1.1

Table 3.10. IDAC

Parameter Symbol Test Condition Min Typ Max Unit
Static Performance
SiM3L1xx
Resolution N
Integral Nonlinearity INL ±0.5 ±2 LSB
Differential Nonlinearity (Guaranteed Monotonic)
Output Compliance Range V
Full Scale Output Current I
Offset Error E
Full Scale Error Tempco TC
VBAT Power Supply Rejection Ratio 2 mA Range –220 ppm/V
Test Load Impedance (to VSS) R
Dynamic Performance
bits
DNL ±0.5 ±1 LSB
OCR
OUT
OFF
FS
TEST
2 mA Range,
T
= 25 °C
A
1 mA Range,
TA = 25 °C
0.5 mA Range, TA = 25 °C
2 mA Range 100 ppm/°C
V
1.98 2.046 2.1 mA
0.99 1.023 1.05 mA
491 511.5 525 μA
250 nA
1 k
10 Bits
BAT
1.0
V
Output Settling Time to 1/2 LSB min output to max
output
1.2 μs
Startup Time 3 μs
Rev 1.1 23
SiM3L1xx

Table 3.11. ACCTR (Advanced Capture Counter)

Parameter Symbol Test Condition Min Typ Max Unit
LC Comparator Response Time, CMPMD = 11 (Highest Speed)
LC Comparator Response Time, CMPMD = 00 (Lowest Power)
LC Comparator Positive Hysteresis Mode 0 (CPMD = 11)
LC Comparator Negative Hysteresis Mode 0 (CPMD = 11)
LC Comparator Positive Hysteresis Mode 1 (CPMD = 10)
t
RESP0
t
RESP3
HYS
HYS
HYS
CP+
CP-
CP+
+100 mV Differential 100 ns
–100 mV Differential 150 ns
+100 mV Differential 1.4 μs
–100 mV Differential 3.5 μs
CMPHYP = 00 0.37 mV
CMPHYP = 01 7.9 mV
CMPHYP = 10 16.7 mV
CMPHYP = 11 32.8 mV
CMPHYN = 00 0.37 mV
CMPHYN = 01 –7.9 mV
CMPHYN = 10 –16.1 mV
CMPHYN = 11 –32.7 mV
CMPHYP = 00 0.47 mV
CMPHYP = 01 5.85 mV
CMPHYP = 10 12 mV
LC Comparator Negative Hysteresis Mode 1 (CPMD = 10)
LC Comparator Positive Hysteresis Mode 2 (CPMD = 01)
LC Comparator Negative Hysteresis Mode 2 (CPMD = 01)
HYS
HYS
HYS
CP-
CP+
CP-
CMPHYP = 11 24.4 mV
CMPHYN = 00 0.47 mV
CMPHYN = 01 –6.0 mV
CMPHYN = 10 –12.1 mV
CMPHYN = 11 –24.6 mV
CMPHYP = 00 0.66 mV
CMPHYP = 01 4.55 mV
CMPHYP = 10 9.3 mV
CMPHYP = 11 19 mV
CMPHYN = 00 0.6 mV
CMPHYN = 01 –4.5 mV
CMPHYN = 10 –9.5 mV
CMPHYN = 11 –19 mV
24 Rev 1.1
Table 3.11. ACCTR (Advanced Capture Counter) (Continued)
Parameter Symbol Test Condition Min Typ Max Unit
SiM3L1xx
LC Comparator Positive Hysteresis Mode 3 (CPMD = 00)
LC Comparator Negative Hysteresis Mode 3 (CPMD = 00)
LC Comparator Input Range (ACCTR0_LCIN pin)
LC Comparator Common-Mode Rejection Ratio
LC Comparator Power Supply Rejec­tion Ratio
LC Comparator Input Offset Voltage V
LC Comparator Input Offset Tempco TC
Reference DAC Offset Error DAC
Reference DAC Full Scale Output DAC
Reference DAC Step Size DAC
HYS
HYS
V
CMRR
PSRR
OFF
CP+
CP-
IN
CP
CP
OFF
EOFF
FS
LSB
CMPHYP = 00 1.37 mV
CMPHYP = 01 3.8 mV
CMPHYP = 10 7.8 mV
CMPHYP = 11 15.6 mV
CMPHYN = 00 1.37 mV
CMPHYN = 01 –3.9 mV
CMPHYN = 10 –7.9 mV
CMPHYN = 11 –16 mV
–0.25 V
75 dB
72 dB
TA = 25 °C –10 0 10 mV
3.5 μV/°C
–1 1 LSB
Low Range VIO/8 V
BAT
0.25
+
High Range V
Low Range (48 steps) VIO/384 V
High Range (64 steps) VIO/64 V
IO
V
V
LC Oscillator Period T
LC Bias Output Impedance R
LC Bias Drive Strength I
Pull-Up Resistor Tolerance R
LCBIAS
LCOSC
LCBIAS
TOL
25 ns
10 μA Load 1 k
2 mA
PUVAL[4:2] = 0 to 6 -15 15 %
PUVAL[4:2] = 7 -10 10 %
Rev 1.1 25
SiM3L1xx

Table 3.12. Voltage Reference Electrical Characteristics

Parameter Symbol Test Condition Min Typ Max Unit
Internal Fast Settling Reference
Output Voltage V
Temperature Coefficient TC
Turn-on Time t
Power Supply Rejection PSRR
Internal Precision Reference
Valid Supply Range
Output Voltage
Short-Circuit Current I
Temperature Coefficient TC
Load Regulation
Load Capacitor
Turn-on Time
Power Supply Rejection PSRR
External Reference
Input Current
REFFS
REFFS
V
V
LR
C
VREFP
t
VREFPON
I
EXTREF
REFFS
REFFS
BAT
REFP
SC
VREFP
VREFP
VREFP
–40 to +85 °C,
V
= 1.8–3.8 V
BAT
VREF2X = 0 1.8 3.8 V
VREF2X = 1 2.7 3.8 V
25 °C ambient,
VREF2X = 0
25 °C ambient,
VREF2X = 1
Load = 0 to 200 μA to
VREFGND
Load = 0 to 200 μA to
VREFGND
4.7 μF tantalum, 0.1 μF ceramic bypass
0.1 μF ceramic bypass 200 μs
VREF2X = 0 320 ppm/V
VREF2X = 1 560 ppm/V
Sample Rate = 250 ksps;
VREF = 3.0 V
1.6 1.65 1.7 V
50 ppm/°C
1.5 μs
400 ppm/V
1.17 1.2 1.23 V
2.35 2.4 2.45 V
10 mA
35 ppm/°C
4.5 ppm/μA
0.1 μF
3.8 ms
5.25 μA

Table 3.13. Temperature Sensor

Parameter Symbol Test Condition Min Typ Max Unit
Offset V
Offset Error* E
Slope M 2.77 mV/°C
Slope Error* E
Linearity 1 °C
Turn-on Time 1.8 μs
*Note: Absolute input pin voltage is limited by the lower of the supply at VBAT and VIO.
26 Rev 1.1
OFF
OFF
M
TA = 0 °C 760 mV
TA = 0 °C ±14 mV
±25 μV/°C

Table 3.14. Comparator

SiM3L1xx
Parameter Symbol Test Condition Min Typ Max Unit
Response Time, CMPMD = 00 (Highest Speed)
Response Time, CMPMD = 11 (Lowest Power)
Positive Hysteresis Mode 0 (CPMD = 00)
Negative Hysteresis Mode 0 (CPMD = 00)
Positive Hysteresis Mode 1 (CPMD = 01)
Negative Hysteresis Mode 1 (CPMD = 01)
t
RESP0
t
RESP3
HYS
HYS
HYS
HYS
+100 mV Differential 100 ns
–100 mV Differential 150 ns
+100 mV Differential 1.4 μs
–100 mV Differential 3.5 μs
CP+
CP-
CP+
CP-
CMPHYP = 00 0.37 mV
CMPHYP = 01 7.9 mV
CMPHYP = 10 16.7 mV
CMPHYP = 11 32.8 mV
CMPHYN = 00 0.37 mV
CMPHYN = 01 –7.9 mV
CMPHYN = 10 –16.1 mV
CMPHYN = 11 –32.7 mV
CMPHYP = 00 0.47 mV
CMPHYP = 01 5.85 mV
CMPHYP = 10 12 mV
CMPHYP = 11 24.4 mV
CMPHYN = 00 0.47 mV
CMPHYN = 01 –6.0 mV
Positive Hysteresis Mode 2 (CPMD = 10)
Negative Hysteresis Mode 2 (CPMD = 10)
HYS
HYS
CP+
CP-
CMPHYN = 10 –12.1 mV
CMPHYN = 11 –24.6 mV
CMPHYP = 00 0.66 mV
CMPHYP = 01 4.55 mV
CMPHYP = 10 9.3 mV
CMPHYP = 11 19 mV
CMPHYN = 00 0.6 mV
CMPHYN = 01 –4.5 mV
CMPHYN = 10 –9.5 mV
CMPHYN = 11 –19 mV
Rev 1.1 27
SiM3L1xx
Table 3.14. Comparator (Continued)
Parameter Symbol Test Condition Min Typ Max Unit
Positive Hysteresis Mode 3 (CPMD = 11 )
Negative Hysteresis Mode 3 (CPMD = 11 )
Input Range (CP+ or CP–) V
Input Pin Capacitance C
Common-Mode Rejection Ratio CMRR
Power Supply Rejection Ratio PSRR
Input Offset Voltage V
Input Offset Tempco TC
Reference DAC Resolution N
HYS
HYS
IN
CP
OFF
OFF
Bits
CP+
CP-
CP
CP
CMPHYP = 00 1.37 mV
CMPHYP = 01 3.8 mV
CMPHYP = 10 7.8 mV
CMPHYP = 11 15.6 mV
CMPHYN = 00 1.37 mV
CMPHYN = 01 –3.9 mV
CMPHYN = 10 –7.9 mV
CMPHYN = 11 –16 mV
–0.25 V
7.5 pF
75 dB
72 dB
TA = 25 °C –10 0 10 mV
3.5 μV/°C
6 bits
BAT
0.25
+
V

Table 3.15. LCD0

Parameter Symbol Test Condition Min Typ Max Unit
Charge Pump Output Voltage Error V
LCD Clock Frequency F
CPERR
LCD
±50 mV
16 33 kHz
28 Rev 1.1
Loading...
+ 63 hidden pages