Silicon Laboratories Si3024-KS Datasheet

Si3036
FCC/JATE MC’97 S
ILICON
DAA
Features
Complete DAA includes the following:
!
AC’97 2.1 Compliant
!
Primary or Secondary Codec
!
Phone Line Interface Compliant with FCC Part 68 and JATE
!
86 dB Dynamic Range TX/RX Paths
!
3.3 or 5 V Power Supply
!
3000 V Isolation
!
Integrated Ring Detector
!
Wake-Up on Ring
!
Caller ID Support
!
Integrated Analog Front End
!
2- to 4-Wire Hybrid
!
Low-Power Standby Mode
!
Low Profile SOIC Packages
!
Patented ISOcap™ Technology
Applications
!
Software Modems
!
Audio/Telephony Sub-Systems
!
Audio/Modem Riser Cards (AMR)
!
Mobile Daughter Cards (MDC)
!
Mini-PCI Cards
The Si3036 is an integrated direct access arrangement (DAA) chipset that provides a digital, pr ogrammable interface to a telephone line. Availabl e in two 16-pin small outline packages (AC’97 interface on Si3024 and phone-line interface on Si3012), the chipset eliminates the need for an analog front end (AFE), an isolation transformer, relays, opto-isolators, and a 2- to 4-wire hybrid. The Si3036 dramatically reduces the number of discrete components and cost required to achieve compliance with FCC Part 68 and JATE. The Si3024 complies with the AC’97 2.1 specification.
Functional Block Diagram
Si3024 Si3012
Ordering Information
See page 50.
Pin Assignments
Si3024 (SOIC)
MCLK/XIN
XOUT
BIT_CLK
SDATA_IN
SDATA_OUT
SYNC
RESET
SDATA_IN
SDATA_OUT
SYNC
RESET
AOUT
1 2 3 4
V
D
5 6 7 8
Si3024 (TSSOP)
1 2 3 4 5 6
ID0
7
C1A
8
GND
16 15 14 13 12 11 10
16 15 14 13 12
11
10
9
9
GPIO_A GPIO_B ID1 V
A
GND C1A ID0 AOUT
V
D
BIT_CLK XOUT MCLK/XIN GPIO_A GPIO_B ID1 V
A
XOUT
MCL K /X IN
RESET
BIT_CLK
SYNC
SDATA_IN
SDATA_OUT
IDO
ID1 GPIO_A GPIO_B
Clock
AC'97
Digital
Interfa ce
Control
Interfa ce
Isolation Interfa ce
Isolation Interfa ce
Hybrid
DC
Termination
Ring Detect
Off-Hook
Out
TX
In
RX
HYBD
VREG2 VREG DCT REXT IGND
RNG1 RNG2 QB QE
Si3012 (SOIC or TSSOP)
TSTA TSTB IGND
RNG1 RNG2
C1B
QB QE
1 2 3 4 5 6 7 8
16 15 14 13 12 11 10
9
TX NC RX REXT DCT HYBD VREG2 VREG
US Patent # 5,870,046 US Patent # 6,061,009 Other Patents Pending
Rev. 1.2 12/00 Copyright © 2000 by Silicon Laboratories Si3036-DS12
Si3036
2 Rev. 1.2
Si3036
T
ABLE OF
C
ONTENTS

Section Page

Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Si3036 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Analog Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
AC-Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
JATE Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Isolation Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Off-Hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Ring Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Wake-Up on Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Pulse Dialing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
On-Hook Line Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Caller ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Loop Current Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Analog Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Filter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
In-Circuit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Lightning Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Safety and Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Si3024 as Secondary Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Si3024 as Primary MC’97 Codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Si3024 Connection to the Digital AC’97 controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Resetting Si3036 Chipset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
AC-Link Digital Serial Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Codec Register Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
AC-Link Low Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Appendix—UL1950 3rd Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Pin Descriptions: Si3024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Pin Descriptions: Si3012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
SOIC Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
TSSOP Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Rev. 1.2 3
Si3036

Electrical Specifications

Table 1: Recommended Operating Conditions
Parameter
Ambient Temperature
1
3
Si3024 Supply Voltage, Analog V Si3024 Supply Voltage, Digital Si3024 Supply Voltage, Digital
Notes:
1.
The Si3036 specifications are guaranteed when the typical application circuit (including component tolerances) of Figure 19 and any Si3024 and Si3012 are used.
2. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of 25°C unless otherwise stated.
3.
The temperature specifications are guaranteed when using the typical application circuit on a 4 sq. in. minimum FR4 PCB. For other materials and smaller form factors, heat dissipation factors may apply. Contact Silicon Laboratories for more details.
4.
The digital supply, V operating from 3.3 V. 3.3 V operation applies to both the AC’97 Digital Interface and the digital signals RESET and ID1
.
4 4
can operate from either 3.3 V or 5.0 V. The Si3024 supports interface to 3.3V logic when
D,
Symbol Test Condition
T
A A
V
D
V
D
K-Grade 0 25 70 °C
VA = 5 V 4.75 5.0 5.25 V
VA = Charge Pump 3.0 3.3 3.6 V
Min
2
Typ
Max
2
Unit
4.75 5.0 5.25 V
, ID0,
Table 2: Loop Characteristics
(VD = 3.0 to 3.6 V, VA = Charge Pump, TA = 0 to 70°C, See Figure 1)
Parameter Symbol Test Condition Min Typ Max Unit
DC Termination Voltage V DC Termination Voltage V DC Ring Current I DC Ring Current I AC Termination Impedance Z Operating Loop Current I
TR
TR RDC RDC
ACT
LP
Loop Current Sense Bits LCS LCS = Fh 180 155 mA Ring Detect Voltage V Ring Frequency F On-hook Leakage Current I
RD
R
LK
Ringer Equivalence Number REN w/ Caller ID 1.0 1.67 Ringer Equivalence Number REN w/o Caller ID 0.2
IL = 20 mA 7.7 V
IL = 105 mA 12 V
w/ Caller ID 1 mA
w/o Caller ID 20 µA
—600— 20 120 mA
13 18 26 V
RMS
15 68 Hz
VTR = –48 V 1 µA
4 Rev. 1.2
TIP
+
Si3012 V
TR
600
10 µF
Si3036
I
L
RING
Note: The remainder of the circuit is identical to the one shown in Figure 19 on page 15.
Figure 1. Test Circuit for Loop Characteristics
Table 3: DC Characteristics, V
(VA = 4.75 to 5.25 V, VD = 4.75 to 5.25 V, TA = 0°C to 70°C)
Parameter Symbol Test Condition Min Typ Max Unit
High Level Input Voltage V Low Level Input Voltage V High Level Output Voltage V Low Level Output Voltage V Input Leakage Current I Power Supply Current, Analog I Power Supply Current, Digital I Total Supply Current, Sleep Mode I
= + 5 V
D
A
IH IL
OH
OL
L A
D
+ I
3.5 V ——0.8V
IO = –2 mA 2.4 V
IO = 2 mA 0.4 V
–10 10 µA VA pin 0.1 2 mA VD pin 14 17 mA
D
——1.5mA
Table 4: DC Characteristics, VD = + 3.3 V
(VD = 3.0 to 3.6 V, VA = Charge Pump, TA = 0 to 70°C)
Parameter Symbol Test Condition Min Typ Max Unit
High Level Input Voltage V Low Level Input Voltage V High Level Output Voltage V Low Level Output Voltage V Input Leakage Current I Power Supply Current, Digital I Total Supply Current, Sleep Mode I
A
IH IL
OH
OL
L
D
+ I
IO = –2 mA 2.4 V
IO = 2 mA 0.35 V
VD pin 12 14.5 mA
D
Rev. 1.2 5
2.4 V ——0.8V
–10 10 µA
—1.53.0mA
Si3036
Table 5: AC Characteristics
(VD = 3.0 to 5.25 V, VA = Charge Pump, TA = 0 to 70°C)
Parameter Symbol Test Condition Min Typ Max Unit
Freq Response, Transmit Transmit Full Scale Level Freq Response, Receive Receive Full Scale Level Dynamic Range Dynamic Range
4 5
Total Harmonic Distortion
1 2
(0 dB gain) V
1
2,3
(0 dB gain) V
6
F
RT TX
F
RR RX
Low –3 dB corner 16 Hz
—0.98—V
PEAK
Low –3 dB corner 16 Hz
—0.98—V
PEAK
DR VIN = 1 kHz, –3 dBFS 80 86 dB DR VIN = 1 kHz, –3 dBFS 84 dB
THD VIN = 1 kHz, –3 dBFS –84 dB Dynamic Range (call progress AOUT) DR THD (call progress AOUT) THD
AO
AO
AOUT Full Scale Level 0.75V
VIN = 1 kHz 60 dB VIN = 1 kHz 1.0 %
—V
A
PP
AOUT Output Impedance 10 k Mute Level (call progress AOUT) –90 dBFS Dynamic Range (Caller ID mode) DR
2
Caller ID Full Scale Level (0 dB gain)
Notes:
1. These characteristics are determined by external components. See Figure 19 on page 15.
2. Parameter measured at TIP and RING of Figure 19 on page 15.
3.
Receive Full Scale Level will produce –0.9 dBFS at SDATA_IN.
4. DR = 3 dB + 20log (RMS signal/RMS noise). Applies to both transmit and receive paths. Measurement bandwidth is 300 to 3400 Hz. Sample rate = 9.6 kHz, loop current = 40 mA.
5. DR = 3 dB + 20log (RMS signal/RMS noise). Applies to both tran smit and rece ive path s. Mea surem ent band widt h is 15 to 3400 Hz. Sample rate = 9.6 kHz, loop current = 40mA.
6.
THD = 20log (RMS distortion/RMS signal). This applies to both the transmit and receive paths. Sample rate = 9.6 kHz, loop current = 40 mA.
V
CID
VIN = 1 kHz, –13 dBFS 60 dB
CID
—0.8—V
PEAK
Table 6: Absolute Maximum Ratings
Parameter Symbol Value Unit
DC Supply Voltage V Input Current, Si3024 Digital Input Pins I Digital Input Voltage V Operating Temperature Range T Storage Temperature Range T
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
6 Rev. 1.2
D
IND
STG
, V
IN
A
A
–0.5 to 6.0 V
± 10 mA
–0.3 to (VD + 0.3) V
–40 to 100 °C –65 to 150 °C
Si3036
Table 7: AC Link Timing Characteristics—Cold Reset
(VD = 3.0 to 3.6 V, VA = Charge Pump, TA = 25°C, CL = 50 pF)
Parameter Symbol Min Typ Max Unit
RESET RESET
Active Low Pulse Width T Inactive to BIT_CLK Startup
rst_low
T
rst2clk
1.0 µs
162.8 ns
Delay
T
rst2clk
T
rst_low
RESET
BIT_CLK
Figure 2. Cold Reset Timing Diagram
Table 8. AC Link Timing Characteristics—Warm Reset
(VD = 3.0 to 3.6 V, VA = Charge Pump, TA = 25°C, CL = 50 pF)
Parameter Symbol Min Typ Max Unit
SYNC Active High Pulse Width T SYNC Inactive to BIT_CLK Startup Delay T
sync_high
sync2clk
1.0 µs
162.8 ns
SYNC
BIT_CLK
T
sync_high
T
sync2clk
Figure 3. Warm Reset Timing Diagram
Rev. 1.2 7
Si3036
Table 9. AC Link Timing Characteristics—Clocks
(VD = 3.0 to 3.6 V, VA = Charge Pump, TA = 25°C, CL = 50 pF)
Parameter Symbol Min Typ Max Unit
BIT_CLK Frequency 12.288 MHz BIT_CLK Period T
clk_period
81.4 ns BIT_CLK Output Jitter 750 ps BIT_CLK High Pulse Width* T BIT_CLK low Pulse Width* T
clk_high
clk_low
36 40.7 45 ns
36 40.7 45 ns SYNC Frequency 48.0 kHz SYNC Period T SYNC High Pulse Width T SYNC Low Pulse Width T
*Note: Worst case duty cycle rest ricted to 45/55.
BIT_CLK
sync_period
sync_high
sync_low
20.8 µs —1.3—µs — 19.5 µs
T
clk_low
T
clk_high
T
clk_period
T
sync_low
SYNC
T
sync_high
T
Figure 4. Clocks Timing Diagram
8 Rev. 1.2
sync_period
Si3036
Table 10. AC Link Timing Characteristics—Data Se tup and Hold
(VD = 3.0 to 3.6 V, VA = Charge Pump, TA = 25°C, CL = 50 pF)
Parameter Symbol Min Typ Max Unit
Setup to Falling Edge of BIT_CLK T Hold from Falling Edge of BIT_CLK T
T
setup
BIT_CLK
SYNC SDATA_OUT
SDATA_IN
T
hold
setup
hold
15.0 ns
5.0 ns
Figure 5. Data Setup and Hold Timing Diagram
Table 11. AC Link Rise and Fall Times
(VD = 3.0 to 3.6 V, VA = Charge Pump, TA = 25°C, CL = 50 pF)
Parameter Symbol Min Typ Max Unit
BIT_CLK Rise Time Trise BIT_CLK Fall Time Tfall SYNC Rise Time Trise SYNC Fall Time Tfall SDATA_IN Rise Time Trise SDATA_IN Fall Time Tfall SDATA_OUT Rise Time Trise SDATA_OUT Fall Time Tfall
clk
clk
sync
sync
din din dout
dout
2—6ns 2—6ns 2—6ns 2—6ns 2—6ns 2—6ns 2—6ns 2—6ns
BIT_CLK
SYNC
Trise
Trise
clk
sync
SDATA_IN
Tfall
Tfall
clk
SDATA_OUT
sync
Trise
Trise
din
dout
Figure 6. Signal Rise and Fall Timing Diagram
Rev. 1.2 9
Tfall
Tfall
din
dout
Si3036
Table 12. AC Link Timing Characteristics— Low Power Mode Timing
(VD = 3.0 to 3.6 V, VA = Charge Pump, TA = 25°C, CL = 50 pF)
Parameter Symbol Min Typ Max Unit
End of Slot 2 to BIT_CLK, SDATA_IN
T
s2_pdown
——1.s
Low
SYNC
BIT_CLK
DATA_OUT
SDATA_IN
Slot 1 Slot 2
Write to
Note: B IT_C LK n o t to s c a le
0x56
Data
MLNK
Don't care
Figure 7. AC-Link Low Power Mode Timing Diagram
Table 13. ATE Test Mode
(VD = 3.0 to 3.6 V, VA = Charge Pump, TA = 25°C, CL = 50 pF)
Parameter
Setup to falling edge of RESET
1,2
(also
applies to SYNC) Rising edge of RESET
Notes:
1. All AC link signals are normal ly low th rough the tra iling edge of RESET
of RESET causes AC’97 AC-link outputs to go high impedance, which is suitable for ATE in circuit testing.
2. When the test mode has been entered, AC’97 must be issued another RESET the normal operating mode.
to Hi-Z delay T
Symbol Min Typ Max Unit
T
setup2rst
off
15.0 ns
25.0 ns
T
s2_pdown
. Bringing SDA TA_OUT high for the trailing edge
with all AC-link signals low to return to
RESET
SDATA_OUT
SDATA_IN, BIT_CLK
T
off
Figure 8. ATE Test Mode Timing Diagram
10 Rev. 1.2
T
setup2rst
Hi-Z
Table 14: Digital FIR Filter Characteristics—Transmit and Receive
(VD = 3.0 to 3.6 V, VA = Charge Pump, Sample Rate = 8 kHz, TA = 70°C)
Parameter Symbol Min Typ Max Unit
Si3036
Passband (0.1 dB) F Passband (3 dB) F
(0.1 dB)
(3 dB)
0—3.3kHz
0—3.6kHz Passband Ripple Peak-to-Peak –0.1 0.1 dB Stopband 4.4 kHz Stopband Attenuation –74 dB Group Delay t
Note: Typical FIR filter characteristics for Fs = 8000Hz are shown in Figures 9, 10, 11, and 12.
gd
12/Fs sec
Table 15: Digital IIR Filter Characteri stics—Transmit and Receive
(VD = 3.0 to 3.6 V, VA = Charge Pump, Sample Rate = 8 kHz, TA = 70°C)
Parameter Symbol Min Typ Max Unit
Passband (3 dB) F
(3 dB)
Passband Ripple Peak-to-Peak –0.2 0.2 dB Stopband 4.4 kHz Stopband Attenuation –40 dB Group Delay t
Note:
Typical IIR filter characteristics for Fs = 8000 Hz are shown in Figures 13, 14, 15, and 16. Figures 17 and 18 show group delay versus input frequency.
gd
0—3.6kHz
1.6/Fs sec
Rev. 1.2 11
Si3036
Attenuation—dB
Input Frequency—Hz
Figure 9. FIR Receive Filter Response
Attenuation—dB
Input Frequency—Hz
Figure 10. FIR Receive Filter Passband Ripple
Attenuation—dB
Input Frequency—Hz
Figure 11. FIR Transmit Filter Response
Attenuation—dB
Input Frequency—Hz
Figure 12. FIR Transmit Filter Passband Ripple
For Figures 9–12, all filter plots apply to a sample rate of Fs = 8 kHz. The filters scale with the sample rate as follows:
F
where Fs is the sample frequency.
12 Rev. 1.2
(0.1 dB)
F
(–3 dB)
= 0.4125 Fs
= 0.45 Fs
Si3036
Attenuation—dB
Input Frequency—Hz
Figure 13. IIR Receive Filter Response
Attenuation—dB
Input Frequency—Hz
Figure 14. IIR Receive Filter Passband Ripple
Attenuation—dB
Input Frequency—Hz
Figure 15. IIR T ransmit Filter Response
Attenuation—dB
Input Frequency—Hz
Figure 16. IIR Transmit Filter Passband Ripple
For Figures 13–16, all filter plots apply to a sample rate of Fs = 8 kHz. The filters scale with the sample rate as follows:
F
where Fs is the sample frequency.
= 0.45 Fs
(–3 dB)
Rev. 1.2 13
Si3036
Delay—µs
Input Frequency—Hz
Figure 17. IIR Receive Group Delay
Delay—µs
Input Frequency—Hz
Figure 18. IIR Transmit Group Delay
14 Rev. 1.2

Typical Application Circuit

+3.3VD
C10
ID1#
BITCLK
SDATA_IN
SDATA_OUT
SYNC
RESET#
AOUT
ID0#
Rev. 1.2 15
24.576 MHz
Y1
1
MCLK/XIN
2
XOUT
3
BIT_CLK
4
VD
5
SDATA_IN
6
SDATA_OUT
7
SYNC
89
RESET AOUT
Si3024
C3
GND
Z4
D3 BAV99
16 15 14
ID1
13
VA
12 11
C1A
10
ID0
R27
C30
C35C34
U1
GPIO_A GPIO_B
No Ground Plane In DAA Section
1
TSTA
2
TSTB
C1
R28
BAV99
C2
3
IGND
4
C1B
5
RNG1
6
RNG2
7
QB
89
QE VREG
Z5D4
Si3012
Q1
R1
U2
16
TX
15
NC
14
RX
13
REXT
12
DCT
11
HYBD
10
VREG2
C6
C12
C16
R4
+
C5
R2
+
R5
R21
R18
C23
Q2
R6
C20
Z1
Q3
Note1: If JATE support is not required, R21, C12 and C23 may be removed and the following modifications implemented: R21 should be replaced with a 0 ohm resistor or shorted, and R4 should be changed to a 604 ohm, 1/ 4 W, +- 1%.
Note 2: See Appendix for applications requiring UL 1950 3rd Edition compliance.
R23
R22
C4
C8
C11
C7
R10
R9
Figure 19. Typical Application Circuit for the Si3036
FB2
D1
RV2
C9
D2
C32
C25
RV1
C24
C31
FB1
J1
1 2 3 4 5 6
RJ-11
Si3036
Si3036

Bill of Materials

Table 16. FCC Component Values—Si3036 Chipset
Component
C1,C4 150 pF, 3 kV, X7R, ±20% Novacap, Venkel, Johanson, Murata, Panasonic
C2 Not Installed C3 0.22 µF, 16 V, X7R, ±20% C5 1 µF, 16 V, Tant/Elec, ±20%
C6,C10,C16 0.1 µF, 16 V, X7R, ±20%
C7,C8,C9 15 nF, 250 V, X7R, ±20% Novacap, Johanson, Murata, Panasonic
C11 39 nF, 16 V, X7R, ±20% C12 C23
C24,C25,C31,C32
C30
C34,C35
D1,D2
D3,D4
FB1,FB2 Ferrite Bead Murata
Q1,Q3 A42, NPN, 300 V OnSemiconductor, Fairchild
Q2 A92, PNP, 300 V OnSemiconductor, Fairchild RV1 Sidactor, 275 V, 100 A Teccor, ST Microelectronics, Microsemi, TI RV2 MOV, 240 V Panasonic
R1 51 , 1/2 W ±5%
R2 15 , 1/4 W ±5%
R42,R18,R21
R5,R6 36 kΩ, 1/10 W ±5%
R9,R10 2 k, 1/10 W ±5% R22,R23 20 k, 1/10 W ±5% R27,R28 10 Ω, 1/10 W ±5%
U1 Si3024 Silicon Labs U2 Si3012 Silicon Labs
Y1
Z1 Zener diode, 18 V Vishay, Rohm, OnSemi
Z4,Z5 Zener diode, 5.6 V, 1/2 W Diodes Inc., OnSemiconductor, Fairchild
Notes:
1. The following referenc e des ignato rs were i ntentio nally omitt ed: C 13–C15, C17– C22, C2 6–C29, C 31–C3 3, R3 , R7,
R8, R11–R17, R19, and R20.
2. If JA TE suppo rt is not requi red, R21 , C12, and C2 3 may be remov ed and the fol lowing modific ations imple mented: R21 should be replaced with a 0 resistor or shorted, and R4 should be changed to a 604 , 1/4 W, ±1%.
3. Alternate population option is C24, C25 (2200 pF, 3 kV, X7R, ±10% and C31, C32 not installed).
4. Install only if needed for improved radiated emissions performance (10 pF, 16 V, NPO, ±10%).
5. Y1, C34, and C35 should be installed if the Si3024 is configured as a primary device.
6. Several diode bridge configurations are acceptable (suppliers include General Semi, Diodes Inc.)
1
2 2
3
4
5
6
2
4
2.7 nF, 16 V, X7R, ±20%
0.1 µF, 16 V, Tant/Elec/X7R, ±20% 1000 pF, 3 kV, X7R, ±10% Novacap, Venkel, Johanson, Murata, Panasonic
33 pF,16 V, NPO, ±5% Novacap, Venkel, Johanson, Murata, Panasonic
Dual Diode, 300 V, 225 mA Central Semiconductor
BAV99 Dual Diode, 70 V, 350 mW Diodes Inc., OnSemiconductor, Fairchild
24.576 MHz, 18 pF, 50 ppm
Value Supplier(s)
Not Installed
301 Ω, 1/10 W, ±1%
16 Rev. 1.2
Si3036

Analog Output

Figure 20 illustrates an option al application circuit to support the analog outp ut capability of the Si3036 for call progress monitoring purp os es. Th e AO UT le ve l ca n be s et to 0 dB , –6 dB, –12 dB, and mute for both tran sm it and receive paths through the ATM/ARM bits in Register 5Ch. U1 provides a gain of 26 dB. Additional gain adjustments may be made by varying the voltage divider created by R1 and R3.
+5 V
AOUT
C2 R3
C6C1
R1
326
+ –
C4
5
U1
4
C3
+
C5
Speaker
R2
Figure 20. Optional Connection to AOUT for a Call Progress Speaker
Table 17. Component Values—Optional Connection to AOUT
Symbol Value
C1 2200 pF, 16 V, ±20%
C2, C3, C5 0.1 µF, 16 V, ±20%
C4 100 µF, 16 V, Elec. ±20% C6 820 pF, 16 V, ±20% R1 10 k, 1/10 W, ±5% R2 10 Ω, 1/10 W, ±5% R3 47 k, 1/10 W, ±5% U1 LM386
Rev. 1.2 17
Loading...
+ 37 hidden pages