Silicon Laboratories BRD4257A, EFR32FG14, BRD4257B Reference Manual

Page 1
EFR32FG14 2400/915 MHz Dual Band 19 dBm Radio Board BRD4257A Reference Manual
The BRD4257A Flex wireless applications. The board contains a dual-band Flex Gecko Wireless System-on­Chip and it is optimized for operating at 19 dBm output power. For the 2.4 GHz band with the on-board printed antenna and UFL connector, radiated and conducted testing is supported. For the 915 MHz band, the on-board SMA connector enables conducted testing and attachment of external whip antenna for radiated tests.
The BRD4257A Flex Gecko Radio Board plugs into the Wireless Starter Kit Mainboard, which is included with the Flex Gecko Starter Kit and gives access to display, buttons and additional features from Expansion Boards. With the supporting Simplicity Studio suite of tools, developers can take advantage of graphical wireless application develop­ment and visual energy profiling and optimization. The board also serves as an RF ref­erence design for applications targeting 2.4 GHz and 915 MHz dual band wireless oper­ation with 19 dBm output power.
This document contains a brief introduction and description of the BRD4257A Radio Board features, focusing on the RF sections and performance.
Gecko Radio Board enables developers to develop proprietary
RADIO BOARD FEATURES
• Wireless SoC: EFR32FG14P233F256GM48
CPU core: ARM
• Flash memory: 256 kB
• RAM: 32 kB
• Operation frequency: 2.4 GHz + 915 MHz
• Transmit power: 19 dBm
• 2.4 GHz: Integrated PCB antenna, UFL connector (optional)
• 915 MHz: Single SMA connector both for transmit and receive
• Crystals for LFXO and HFXO: 32.768 kHz and 38.4 MHz
• 8 Mbit low-power serial flash for over-the­air updates
Cortex®-M4 with FPU
silabs.com | Building a more connected world. Rev. 1.00
Page 2
Table of Contents
1. Introduction ................................
4
2. Radio Board Connector ...........................5
2.1 Introduction...............................5
2.2 Radio Board Connector Pin Associations.....................5
3. Radio Board Block Summary .........................6
3.1 Introduction...............................6
3.2 Radio Board Block Diagram .........................6
3.3 Radio Board Block Description ........................6
3.3.1 Wireless MCU............................6
3.3.2 LF Crystal Oscillator (LFXO) .......................6
3.3.3 HF Crystal Oscillator (HFXO).......................6
3.3.4 Matching Network for Sub-GHz ......................6
3.3.5 Matching Network for 2.4 GHz ......................7
3.3.6 SMA Connector ...........................7
3.3.7 UFL Connector ...........................7
3.3.8 Radio Board Connectors ........................7
3.3.9 Inverted-F Antenna ..........................7
3.3.10 Serial Flash ............................7
3.3.11 Serial EEPROM ...........................7
4. RF Section ................................8
4.1 Introduction...............................8
4.2 Schematic of the RF Matching Network .....................8
4.2.1 Description of the Sub-GHz RF Matching ..................8
4.2.2 Description of the 2.4 GHz RF Matching ...................8
4.3 RF Section Power Supply ..........................8
4.4 Bill of Materials for the sub-GHz Matching ....................8
4.5 Bill of Materials for the 2.4 GHz Matching ....................9
4.6 Inverted-F Antenna ............................9
5. Mechanical Details .............................11
6. EMC Compliance ............................. 12
6.1 Introduction...............................12
6.2 EMC Regulations for 915 MHz ........................12
6.2.1 FCC15.247 Emission Limits for the 902-928 MHz Band ..............12
6.3 ETSI EN 300-328 Emission Limits for the 2400-2483.5 MHz Band ............12
6.4 FCC15.247 Emission Limits for the 2400-2483.5 MHz Band ..............12
6.5 Applied Emission Limits for the 2.4 GHz Band ...................12
7. RF Performance ............................. 13
7.1 Conducted Power Measurements .......................13
silabs.com | Building a more connected world. Rev. 1.00 | 2
Page 3
7.1.1 Conducted Measurements in the 915 MHz Band ................13
7.1.2 Conducted Measurements in the 2.4 GHz Band ................14
7.2 Radiated Power Measurements ........................15
7.2.1 Radiated Measurements in the 915 MHz Band .................16
7.2.2 Radiated Measurements in the 2.4 GHz Band .................16
8. EMC Compliance Recommendations ..................... 17
8.1 Recommendations for 915 MHz FCC 15.247 Compliance ...............17
8.2 Recommendations for 2.4 GHz ETSI EN 300-328 Compliance .............17
8.3 Recommendations for 2.4 GHz FCC 15.247 Compliance ...............17
9. Board Revision History .......................... 18
10. Errata................................. 19
11. Document Revision History ........................ 20
silabs.com | Building a more connected world. Rev. 1.00 | 3
Page 4
BRD4257A Reference Manual
Introduction
1. Introduction
The EFR32 Flex Gecko Radio Boards provide a development platform (together with the Wireless Starter Kit Mainboard) for the Silicon Labs EFR32 Flex Gecko Wireless System-on-Chips and serve as reference designs for the matching networks of the RF interfaces.
The BRD4257A Radio Board supports dual-band operation with its integrated sub-GHz ISM band and 2.4 GHz band transceivers. The sub-GHz section is designed to operate in the US FCC 902-928 MHz band with an external whip antenna, the 2.4 GHz section is de­signed to operate at the 2400-2483.5 MHz band with the on-board printed antenna. The matching networks are optimized for operating at 19 dBm output power.
To develop and/or evaluate the EFR32 Flex Gecko, the BRD4257A Radio Board can be connected to the Wireless Starter Kit Main­board to get access to display, buttons and additional features from Expansion Boards and also to evaluate the performance of the RF interfaces.
silabs.com | Building a more connected world. Rev. 1.00 | 4
Page 5
GND
F9 / PA3 / VCOM.#RTS_#CS
3v3
NC / P36
P200
Upper Row
NC / P38 NC / P40 NC / P42 NC / P44
DEBUG.TMS_SWDIO / PF1 / F0
DISP_ENABLE / SENSOR_ENABLE / PD15 / F14
UIF_BUTTON0 / PF6 / F12
UIF_LED0 / PF4 / F10
VCOM.#CTS_SCLK / PA2 / F8
UIF_BUTTON0 / PF6 / P4
DEBUG.TDO_SWO / PF2 / F2
DISP_SI / PC6 / F16
VCOM.TX_MOSI / PA0 / F6
PTI.DATA / PB12 / F20
DISP_EXTCOMIN / PD13 / F18
USB_VBUS
5V
Board ID SCL
GND
Board ID SDA
USB_VREG
F7 / PA1 / VCOM.RX_MISO
F5 / PA5 / VCOM_ENABLE
F3 / PF3 / DEBUG.TDI
F1 / PF0 / DEBUG.TCK_SWCLK
P45 / NC
P43 / NC
P41 / NC
P39 / NC
P37 / PD15 / DISP_ENABLE / SENSOR_ENABLE
F11 / PF5 / UIF_LED1 F13 / PF7 / UIF_BUTTON1 F15 / PC8 / DISP_SCLK F17 / PD14 / DISP_SCS F19 / PB13 / PTI.SYNC F21 / PB11 / PTI.CLK
GND
VMCU_IN
VCOM.#CTS_SCLK / PA2 / P0
P201
Lower Row
VCOM.#RTS_#CS / PA3 / P2
UIF_BUTTON0 / PF6 / P4 UIF_BUTTON1 / PF7 / P6
GND
VRF_IN
P35 / PD15 / DISP_ENABLE / SENSOR_ENABLE
P7 / PC9
P5 / PC8 / DISP_SCLK
P3 / PC7
P1 / PC6 / DISP_SI
P33 / PD14 / DISP_SCS
P31 / PD13 / DISP_EXTCOMIN
P29 / NC
P27 / NC
P25 / NC
P23 / NC
P21 / NC
P19 / NC
P17 / NC
P15 / NC
P13 / PC11
P11 / PA1 / VCOM.RX_MISO
P9 / PA0 / VCOM.TX_MOSI
NC / P34
UIF_LED1 / PF5 / P32
NC / P30
DEBUG.TDO_SWO / PF2 / P28
DEBUG.TMS_SWDIO / PF1 / P26
DEBUG.TCK_SWCLK / PF0 / P24
PTI.SYNC / PB13 / P22
PTI.DATA / PB12 / P20
PTI.CLK / PB11 / P18
VCOM_ENABLE / PA5 / P16
PA4 / P14
PC10 / P12
DEBUG.TDI / PF3 / P10
UIF_LED0 / PF4 / P8
BRD4257A Reference Manual
Radio Board Connector
2. Radio Board Connector
2.1 Introduction
The board-to-board connector scheme allows access to all EFR32FG14 GPIO pins as well as the RESETn signal. For more information on the functions of the available pins, see the EFR32FG14 data sheet.
2.2 Radio Board Connector Pin Associations
The figure below shows the mapping between the connector and the EFR32FG14 pins and their function on the Wireless Starter Kit Mainboard.
Figure 2.1. BRD4257A Radio Board Connector Pin Mapping
silabs.com | Building a more connected world. Rev. 1.00 | 5
Page 6
3. Radio Board Block Summary
EFR32
Inverted-F
PCB
Antenna
2.4 GHz RF
UFL
Connector
LF
Crystal
32.768k
HF
Crystal
38.4M
Radio Board
Connectors
8 Mbit
MX25R
Serial Flash
I2C
24AA024
Serial EEPROM
Matching
Network &
Output
Selection
GPIO
UART
Debug
Packet Trace
AEM
I2C
SPI
SPI
2.4 GHz RF
2.4 GHz RF
SubGHz RF
Matching
Network &
DC Bias
SubGHz RF
SMA
Connector
EFR32
EFR32
Wireless SoC
3.1 Introduction
This section gives a short introduction to the blocks of the BRD4257A Radio Board.
3.2 Radio Board Block Diagram
The block diagram of the BRD4257A Radio Board is shown in the figure below.
BRD4257A Reference Manual
Radio Board Block Summary
Figure 3.1. BRD4257A Block Diagram
3.3 Radio Board Block Description
3.3.1 Wireless MCU
BRD4257A Flex Gecko Radio Board incorporates an EFR32FG14P233F256GM48 Wireless System-on-Chip featuring 32-bit Cor-
The tex®-M4 with FPU core, 256 kB of flash memory, 32 kB of RAM, an integrated 2.4 GHz band and an integrated sub-GHz ISM band
transceiver with output power up to 19 dBm. For additional information on the EFR32FG14P233F256GM48, refer to the EFR32FG14 Data Sheet.
3.3.2 LF Crystal Oscillator (LFXO)
The BRD4257A Radio Board has a 32.768 kHz crystal mounted. For details regarding the crystal configuration, refer to Application Note "AN0016: Oscillator Design Considerations".
3.3.3 HF Crystal Oscillator (HFXO)
The BRD4257A Radio Board has a 38.4 MHz crystal mounted. For details regarding the crystal configuration, refer to Application Note "AN0016: Oscillator Design Considerations".
3.3.4 Matching Network for Sub-GHz
The BRD4257A Radio Board incorporates a sub-GHz matching network which connects both the sub-GHz TX and RX pins of the EFR32FG14 to the SMA connector to be able to transmit and receive with one antenna. The component values have been optimized for the 915 MHz band RF performance and current consumption with 19 dBm output power.
For a detailed description of the matching network see Chapter 4.2.1 Description of the Sub-GHz RF Matching.
silabs.com | Building a more connected world. Rev. 1.00 | 6
Page 7
3.3.5 Matching Network for 2.4 GHz
BRD4257A Reference Manual
Radio Board Block Summary
The BRD4257A
Radio Board incorporates a 2.4 GHz matching network which connects the 2.4 GHz TRX pin of the EFR32FG14 to the one on-board printed inverted-F antenna. The component values have been optimized for the 2.4 GHz band RF performance and cur­rent consumption with 19 dBm output power.
For a detailed description of the matching network, see Chapter 4.2.2 Description of the 2.4 GHz RF Matching.
3.3.6 SMA Connector
To be able to perform conducted measurements or mount external antenna for radiated measurements, range tests etc., Silicon Labs added an SMA connector to the Radio Board. The connector allows an external 50 Ohm cable or antenna to be connected during de­sign verification or testing.
3.3.7 UFL Connector
To be able to perform conducted measurements, Silicon Labs added a UFL connector to the Radio Board. The connector allows an external 50 Ohm cable or antenna to be connected during design verification or testing.
Note: By default, the output of the matching network is connected to the printed inverted-F antenna by a series component. It can be connected to the UFL connector as well through a series 0 Ohm resistor, which is not mounted by default. For conducted measure­ments through the UFL connector, the series component to the antenna should be removed and the 0 Ohm resistor should be mounted (see Chapter 4.2.2 Description of the 2.4 GHz RF Matching for further details).
3.3.8 Radio Board Connectors
Two dual-row, 0.05” pitch polarized connectors make up the BRD4257A Radio Board interface to the Wireless Starter Kit Mainboard.
For more information on the pin mapping between the EFR32FG14P233F256GM48 and the Radio Board Connector, refer to Chapter
2.2 Radio Board Connector Pin Associations.
3.3.9 Inverted-F Antenna
The BRD4257A Radio Board includes a printed inverted-F antenna (IFA) tuned to have close to 50 Ohm impedance at the 2.4 GHz band.
For detailed description of the antenna, see Chapter 4.6 Inverted-F Antenna.
3.3.10 Serial Flash
The BRD4257A Radio Board is equipped with an 8 Mbit Macronix MX25R SPI flash that is connected directly to the EFR32FG14 to support over-the-air (OTA) updates. For additional information on the pin mapping see the schematic of the BRD4257A.
3.3.11 Serial EEPROM
The BRD4257A Radio Board is equipped with a serial I2C EEPROM for board identification and to store additional board related infor­mation.
silabs.com | Building a more connected world. Rev. 1.00 | 7
Page 8
4. RF Section
GND
GND
GND
GND
VBIAS
GND
C1
C6
C10
L2
C3
C7
P2
U.FL
3
2
1
C4
Ground
RF I/ORF Crystal
RF Analog Power
PA Power
U1B EFR32
2G4RF_IOP
20
2G4RF_ION
19
RFVDD
9
HFXI
10
HFXO
11
PAVDD
21
RFVSS
17
PAVSS
18
SUBGRF_OP
13
SUBGRF_ON
14
SUBGRF_IP
15
SUBGRF_IN
16
C8
C2
R2 0R
NM
L4
L6
TP1
R1 0R
L3
BAL1
0900BL15C050
SE
1
BAL2
4
BAL1
3
BIAS
2
GND
5
N/C
6
AT1
INVERTED_F
P1
SMA
3
2
1
4 5
L7
L1
L5
C5
Sub-GHz Matching Network
TRX Matching &
Filter
Filter
Inverted-F
Antenna
UFL
Connector
TRX Matching
Discrete Balun
GND
GND
GND
VDCDC
PAVDD
GND
VBIAS
X1
38.400 MHz
31
2 4
C107
10P
L102
BLM18AG601SN1
1 2
L103
BLM18AG601SN1
1 2
C102
100P
C103
10P
C106
220N
Supply Filtering
High Frequency
Crystal
2.4 GHz Matching Network
2.4 GHz Path Selection
SMA
Connector
Sub-GHz PA
Power Supply
4.1 Introduction
This section gives a short introduction to the RF section of the BRD4257A Radio Board.
4.2 Schematic of the RF Matching Network
The schematic of the RF section of the BRD4257A Radio Board is shown in the following figure.
BRD4257A Reference Manual
RF Section
Figure 4.1. Schematic of the RF Section of the BRD4257A
4.2.1 Description of the Sub-GHz RF Matching
The sub-GHz
matching network connects the differential TX outputs and RX inputs of the sub-GHz RF port to the SMA connector while transforming the impedances to 50 Ohm. Careful design procedure was followed to ensure that the RX input circuitry does not load down the TX output path while in TX mode and that the TX output circuitry does not degrade receive performance while in RX mode.
The matching includes a differential impedance matching circuitry, a discrete balanced-unbalanced transformer and a filter section. The targeted output power is 19 dBm at 915 MHz.
4.2.2 Description of the 2.4 GHz RF Matching
The 2.4 GHz matching connects the 2G4RF_IOP pin to the on-board printed Inverted-F Antenna. The 2G4RF_ION pin is connected to ground. For higher output powers (13 dBm and above) beside the impedance matching circuitry it is recommended to use additional harmonic filtering as well at the RF output. The targeted output power of the BRD4257A board is 19 dBm. Therefore, the RF output of the IC is connected to the antenna through a four-element impedance matching and harmonic filter circuitry.
For conducted measurements, the output of the matching network can also be connected to the UFL connector by relocating the series R1 resistor to the R2 resistor position between the output of the matching and the UFL connector.
4.3 RF Section Power Supply
On the BRD4257A Radio Board the supply pin of the radio (RFVDD) is connected directly of the output of the on-chip DC-DC converter while the supply for the sub-GHz and 2.4 GHz power amplifiers (SUBGRF_ON, SUBGRF_OP and PAVDD pins) is provided directly by the Motherboard. This way, by default, the DC-DC converter provides 1.8 V for the RF analog section, the Motherboard provides 3.3 V for the PAs (for details, see the schematic of the BRD4257A).
4.4 Bill of Materials for the sub-GHz Matching
The Bill of Materials of the sub-GHz matching network of the BRD4257A Radio Board is shown in the following table.
silabs.com | Building a more connected world. Rev. 1.00 | 8
Page 9
BRD4257A Reference Manual
RF Section
Table 4.1. Bill of Materials for the BRD4257A Sub-GHz RF Matching Network
Component Name Value Manufacturer Part Number
L3 3.3 nH Murata LQW15AN3N3B80D
L4 3.3 nH Murata LQW15AN3N3B80D
L5 18 nH Murata LQW15AN18NG00D
L6 10 nH Murata LQW15AN10NJ00D
L7 10 nH Murata LQW15AN10NJ00D
C3 1.8 pF Murata GRM1555C1H1R8WA01D
C4 1.8 pF Murata GRM1555C1H1R8WA01D
C5 3.9 pF Murata GRM1555C1H3R9WA01D
C6 3.3 pF Murata GRM1555C1H3R3BA01D
C7 5.6 pF Murata GRM1555C1H5R6BA01D
C8 3.3 pF Murata GRM1555C1H3R3BA01D
C10 56 pF Murata GRM1555C1H560GA01D
4.5 Bill of Materials for the 2.4 GHz Matching
The Bill of Materials of the 2.4 GHz matching network of the BRD4257A
Radio Board is shown in the following table.
Table 4.2. Bill of Materials for the BRD4257A 2.4GHz RF Matching Network
Component Name Value Manufacturer Part Number
L1 1.8 nH Murata LQP15MN1N8W02D
L2 3.0 nH Murata LQP15MN3N0W02D
C1 2.0 pF Murata GRM1555C1H2R0WA01D
C2 1.0 pF Murata GRM1555C1H1R0WA01D
4.6 Inverted-F Antenna
The BRD4257A Radio
Board includes an on-board printed inverted-F antenna tuned for the 2.4 GHz band. Due to the design restric­tions of the Radio Board, the input of the antenna and the output of the matching network can't be placed directly next to each other. Therefore, a 50 Ohm transmission line was necessary to connect them. The resulting impedance and reflection measured at the output of the matcing network are shown in the following figure. As it can be observed, the impedance is close to 50 Ohm (the reflection is around or better than -10 dB) for the entire 2.4 GHz band.
silabs.com | Building a more connected world. Rev. 1.00 | 9
Page 10
BRD4257A Reference Manual
RF Section
Figure 4.2. Impedance and Reflection of the Inverted-F Antenna of the BRD4257A Board Measured from the Matching Output
silabs.com | Building a more connected world. Rev. 1.00 | 10
Page 11
5. Mechanical Details
SMA Connector
LFXTAL
EFR32xx
HFXTAL
UFL
Connector
Printed
Inverted-F
Antenna
Sub-GHz
Matching
and Filter
Frame of
the
Optional
Shielding
Can
2.4 GHz Matching and Filter
45 mm
30 mm
38.6 mm
4.4 mm
2.4 GHz Path Selection
DC-DC
&
Supply
Filter
Caps.
Serial Flash
DC-DC
Inductor
24 mm
27.3 mm
28.6 mm
5 mm
Interface
Connector
Interface
Connector
15 mm
Board
Identification
PAVDD
Supply
Selection
Display
Enable
Selection
WSTK Sensor Enable
Selection
The BRD4257A Radio Board is illustrated in the figures below.
BRD4257A Reference Manual
Mechanical Details
Figure 5.1. BRD4257A Top View
Figure 5.2. BRD4257A Bottom View
silabs.com | Building a more connected world. Rev. 1.00 | 11
Page 12
BRD4257A Reference Manual
EMC Compliance
6. EMC Compliance
6.1 Introduction
Compliance of the fundamental and harmonic levels of the BRD4257A Radio Board is tested against the following standards:
• 915 MHz:
• FCC 15.247
• 2.4 GHz:
• ETSI EN 300-328
• FCC 15.247
6.2 EMC Regulations for 915 MHz
6.2.1 FCC15.247 Emission Limits for the 902-928 MHz Band
FCC 15.247 allows conducted output power up to 1 Watt (30 dBm) in the 902-928 MHz band. For spurious emmissions the limit is
-20 dBc based on either conducted or radiated measurement, if the emission is not in a restricted band. The restricted bands are speci­fied in FCC 15.205. In these bands the spurious emission levels must meet the levels set out in FCC 15.209. In the range form 960 MHz to the frequency of the 10th harmonic it is defined as 0.5 mV/m at 3 m distance (equals to -41.2 dBm in EIRP).
In case of operating in the 902-928 MHz band from the first 10 harmonics only the 2nd and 7th harmonics are not in restricted bands so for those the -20 dBc limit should be applied. For the rest of the harmonics the -41.2 dBm limit should be applied.
6.3 ETSI EN 300-328 Emission Limits for the 2400-2483.5 MHz Band
Based on ETSI EN 300-328, the allowed maximum fundamental power for the 2400-2483.5 MHz band is 20 dBm EIRP. For the unwan­ted emissions in the 1 GHz to 12.75 GHz domain the specified limit is -30 dBm EIRP.
6.4 FCC15.247 Emission Limits for the 2400-2483.5 MHz Band
FCC 15.247 allows conducted output power up to 1 Watt (30 dBm) in the 2400-2483.5 MHz band. For spurious emissions the limit is
-20 dBc based on either conducted or radiated measurement, if the emission is not in a restricted band. The restricted bands are speci­fied in FCC 15.205. In these bands the spurious emission levels must meet the levels set out in FCC 15.209. In the range from 960 MHz to the frequency of the 5th harmonic it is defined as 0.5 mV/m at 3 m distance which equals to -41.2 dBm in EIRP.
Additionally, for spurious frequencies above 1 GHz, FCC 15.35 allows duty-cycle relaxation to the regulatory limits. For the EmberZNet PRO the relaxation is 3.6 dB. Therefore, the -41.2 dBm limit can be modified to -37.6 dBm.
If operating in the 2400-2483.5 MHz band the 2nd, 3rd and 5th harmonics can fall into restricted bands. As a result, for those harmonics the -37.6 dBm limit should be applied. For the 4th harmonic the -20 dBc limit should be applied.
6.5 Applied Emission Limits for the 2.4 GHz Band
The above ETSI limits are applied both for conducted and radiated measurements.
The FCC restricted band limits are radiated limits only. In addition, Silicon Labs applies the same restrictions to the conducted spec­trum. By doing so, in case of a custom board, assuming that an antenna is used which has 0 dB gain at the fundamental and the har­monic frequencies, the compliance with the radiated limits can be estimated based on the conducted measurement.
The overall applied limits are shown in the table below.
Table 6.1. Applied Limits for Spurious Emissions for the 2.4 GHz Band
Harmonic Frequency Limit
2nd 4800~4967 MHz -37.6 dBm
3rd 7200~7450.5 MHz -37.6 dBm
4th 9600~9934 MHz -30 dBm
5th 12000~12417.5 MHz -37.6 dBm
silabs.com | Building a more connected world. Rev. 1.00 | 12
Page 13
BRD4257A Reference Manual
RF Performance
7. RF Performance
7.1 Conducted Power Measurements
During measurements, the BRD4257A Radio Board was attached to a Wireless Starter Kit Mainboard which was supplied by USB. The voltage supply for the Radio Board was 3.3 V.
7.1.1 Conducted Measurements in the 915 MHz Band
The BRD4257A Radio Board was connected directly to a Spectrum Analyzer through its SMA connector. The supply for the RF section (RFVDD) was 1.8 V provided by the on-chip DCDC converter, the supply for the sub-GHz power amplifier (SUBGRF_ON, SUBGRF_OP) was 3.3 V provided by the mainboard (VBIAS through the discrete balun); for details, see the schematic of the BRD4257A. The transceiver was operated in continuous carrier transmission mode. The output power of the radio was set to 19 dBm.
The typical output spectrum is shown in the following figure.
Figure 7.1. Typical Output Spectrum of the BRD4257A
As shown in the figure, the fundamental is close to 19 dBm so it is compliant with the 30 dBm fundamental limit. The strongest unwan­ted emission (-20 dBc) with large margin. The other unwanted emissions are under -50 dBm, so the conducted spectrum is compliant with the regu­lation limits.
silabs.com | Building a more connected world. Rev. 1.00 | 13
is the double-frequency harmonic, but with only around -38.9 dBm level it is compliant with the corresponding limit
Page 14
7.1.2 Conducted Measurements in the 2.4 GHz Band
BRD4257A Reference Manual
RF Performance
The BRD4257A Radio
Board was connected directly to a Spectrum Analyzer through its UFL connector (the R1 resistor was removed and a 0 Ohm resistor was soldered to the R2 resistor position). The supply for the RF section (RFVDD) was 1.8 V provided by the on­chip DCDC converter, the supply for the 2.4 GHz power amplifier (PAVDD) was 3.3 V provided by the mainboard; for details, see the schematic of the BRD4257A. The transceiver was operated in continuous carrier transmission mode. The output power of the radio was set to 19 dBm.
The typical output spectrum is shown in the following figure.
Figure 7.2. Typical Output Spectrum of the BRD4257A
As shown in the figure, the fundamental is slightly lower than 19 dBm and all of the unwanted emissions are under the -37.6 dBm ap­plied limit.
Note: The
conducted
measurement is performed by connecting the on-board UFL connector to a Spectrum Analyzer through an SMA
Conversion Adapter (P/N: HRMJ-U.FLP(40)). This connection itself introduces approximately 0.3 dB insertion loss.
silabs.com | Building a more connected world. Rev. 1.00 | 14
Page 15
7.2 Radiated Power Measurements
BRD4257A Reference Manual
RF Performance
During measurements,
the BRD4257A Radio Board was attached to a Wireless Starter Kit Mainboard which was supplied by USB. The voltage supply for the Radio Board was 3.3 V. The radiated power was measured in an antenna chamber by rotating the board 360 de­grees with horizontal and vertical reference antenna polarizations in the XY, XZ and YZ cuts. The measurement planes are illustrated in the figure below.
Figure 7.3. Illustration of Reference Planes with a Radio Board Plugged into the Wireless Starter Kit Mainboard
Note: The radiated measurement results presented in this document were recorded in an unlicensed antenna chamber. Also, the radi-
ated
power levels may change depending on the actual application (PCB size, used antenna, and so on). Therefore, the absolute levels
and margins of the final application are recommended to be verified in a licensed EMC testhouse.
silabs.com | Building a more connected world. Rev. 1.00 | 15
Page 16
7.2.1 Radiated Measurements in the 915 MHz Band
BRD4257A Reference Manual
RF Performance
For the
915 MHz radiated power measurements, an external whip antenna (P/N: ANT-915-CW-HWR-SMA) was used as a transmitter antenna. It was connected to the SMA connector of the BRD4257A Radio Board. The supply for the RF section (RFVDD) was 1.8 V provided by the on-chip DCDC converter, the supply for the sub-GHz power amplifier (SUBGRF_ON, SUBGRF_OP) was 3.3 V provi­ded by the mainboard (VBIAS through the discrete balun); for details, see the schematic of the BRD4257A. The transceiver was operat­ed in continuous carrier transmission mode. The output power of the radio was set to 19 dBm.
The measured radiated powers are shown in the table below.
Table 7.1. Maximums of the Measured Radiated Powers in EIRP [dBm]
Frequency EIRP [dBm] Orientation Margin [dB] Limit in EIRP [dBm]
Fund 20.8 YZ/H 9.2 30
2nd -30.1 YZ/H 30.9 -20 dBc
3rd -47.6 XY/V 6.4 -41.2
4th -49.5 YZ/H 8.3 -41.2
5th
<-50
*
-/- >10 -41.2
6th -48.5 YZ/H 7.3 -41.2
7th
8th
9th
10th
<-50
<-50
<-50
<-50
*
*
*
*
-/- >30 -20 dBc
-/- >10 -41.2
-/- >10 -41.2
-/- >10 -41.2
* Signal level is below the Spectrum Analyzer noise floor.
As shown in the table, the fundamental is below the regulation limit by more than 9 dB, the harmonic levels are also compliant.
7.2.2 Radiated Measurements in the 2.4 GHz Band
For the
transmitter antenna, the on-board printed inverted-F antenna of the BRD4257A Radio Board was used (the R1 resistor was mounted). The supply for the RF section (RFVDD) was 1.8 V provided by the on-chip DCDC converter, the supply for the 2.4 GHz power amplifier (PAVDD) was 3.3 V provided by the mainboard; for details, see the schematic of the BRD4257A. The transceiver was operated in continuous carrier transmission mode. The output power of the radio was set to 19 dBm based on the conducted measure­ment. During the measurement the sub-GHz antenna (P/N: ANT-915-CW-HWR-SMA) was attached to the SMA connector.
The results are shown in the table below.
Table 7.2. Maximums of the Measured Radiated Powers in EIRP [dBm]
Frequency EIRP [dBm] Orientation Margin [dB] Limit in EIRP [dBm]
Fund 21.4 YZ/H 8.6 30
2nd -46.7 XZ/H 9.1 -37.6
3rd
4th
5th
<-50
<-50
<-50
*
*
*
-/- >10 -37.6
-/- >10 -30
-/- >10 -37.6
* Signal level is below the Spectrum Analyzer noise floor.
As shown in the table, due to the high gain of the inverted-F antenna, the level of the fundamental is higher than 19 dBm. The strongest harmonic is the double-frequency one and it is compliant with the -37.6 dBm applied limit with ~9 dB margin.
silabs.com | Building a more connected world. Rev. 1.00 | 16
Page 17
BRD4257A Reference Manual
EMC Compliance Recommendations
8. EMC Compliance Recommendations
8.1 Recommendations for 915 MHz FCC 15.247 Compliance
As it was shown in the previous chapter, the BRD4257A Flex Gecko Radio Board with 19 dBm output power is compliant with the emis­sion limits of the FCC 15.247 regulation. Although the BRD4257A Radio Board has an option for mounting a shielding can, it is not required for the compliance.
8.2 Recommendations for 2.4 GHz ETSI EN 300-328 Compliance
As it was shown in the previous chapter, the power of the fundamental of the BRD4257A Flex Gecko Radio Board with 19 dBm output exceeds the 20 dBm limit of the ETSI EN 300-328 regulation during the radiated power measurement due to the high antenna gain. In order to be compliant, reduction of the fundamental power is required by approximately 2.4 dB. The harmonic emissions are under the
-30 dBm limit with a large margin. Although the BRD4257A Radio Board has an option for mounting a shielding can, it is not required for the compliance.
8.3 Recommendations for 2.4 GHz FCC 15.247 Compliance
As it was shown in the previous chapter, the power of the fundamental of the BRD4257A Flex Gecko Radio Board with 19 dBm output is compliant with the 30 dBm limit of the FCC 15.247 regulation. The harmonic emissions are under the -37.6 dBm applied limit with margin. Although the BRD4257A Radio Board has an option for mounting a shielding can, it is not required for the compliance.
silabs.com | Building a more connected world. Rev. 1.00 | 17
Page 18
BRD4257A
Reference Manual
Board Revision History
9. Board Revision History
Table 9.1. BRD4257A Radio Board Revisions
Radio Board Revision Description
A01 Updating EFR revision to Rev. B.
A00 Initial revision.
Note: The silkscreen marking on the board (e.g. PCBxxxx A00) denotes the revision of the PCB. The revision of the actual Radio Board is laser printed in the 'Board Info' field on the PCB. Also, it can be read from the on-board EEPROM.
silabs.com | Building a more connected world. Rev. 1.00 | 18
Page 19
10. Errata
There are no known errata at present.
BRD4257A Reference Manual
Errata
silabs.com | Building a more connected world. Rev. 1.00 | 19
Page 20
11. Document Revision History
Revision 1.00
2017-10-26
Initial document revision.
BRD4257A Reference Manual
Document Revision History
silabs.com | Building a more connected world. Rev. 1.00 | 20
Page 21
http://www.silabs.com
Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA
Simplicity Studio
One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!
IoT Portfolio
www.silabs.com/IoT
SW/HW
www.silabs.com/simplicity
Quality
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.
Loading...