While the information provided in this document is believed to be accurate, it is under development and
ACKme Networks reserves the right to make changes
without further notice to the product described herein
to improve reliability, function, or design, and makes no
guarantee or warranty concerning the accuracy of said
information, nor shall it be responsible for any loss or
damage of whatever nature resulting from the use of,
or reliance upon, such information. ACKme Networks
makes no warranties of any kind, whether express, implied or arising by custom or course of trade or performance, and specifically disclaims the implied warranties
of title, non-infringement, merchantability, or fitness for
a particular purpose.
No part of this document may be copied, reproduced,
stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photographic,
or otherwise, or used as the basis for manufacture or
sale of any items without the prior written consent of
ACKme Networks.
Trademarks
ACKme Networks and the ACKme Networks logo are
trademarks of ACKme Networks. Other trademarks in
this document belong to their respective owners.
This document provides information on the
AMW006 802.11b/g/n Wi-Fi networking module from
ACKme Networks. Specifications for the module I/O
and peripherals are taken from MCU datasheet. Specifications for the WLAN subsystem were compiled from
measured data unless otherwise noted.
Organization
This data sheet is organized into the following sections:
Self-contained ultra-low power Wi-Fi module with
microcontroller and secure TCP network stack.
Integrated SPI-serial flash for software upgrades
and user accessible read/write file system
Wi-Fi
Broadcom single band 2.4GHz IEEE 802.11b/g/n
1x1 Wi-Fi transceiver
Includes support for all Wi-Fi security modes in-
cluding Open, WEP, WPA, and WPA2-PSK
Microprocessor
ARM Cortex M4 based microprocessor operating at
up to 84MHz for 105 DMIPs
Interfaces*
UART: 2 x 4-wire up to 10.5Mbit/s
SPI : SPI-Master (42Mbit/s), SPI-Slave (21Mbit/s)
GPIO: Up to 21 GPIOs (overlaid with peripherals)
A/D converter: 9 channel input, 12-bit resolution,
2.4MSPS sampling in single-shot or scan mode
PWM: Up to 14 PWM outputs
Wake-up: Wake pin for ultra-low power operation
Two external antennas for diversity and improved
range
Maximum RF transmit power
- 802.11b/g : +19 dBm
- 802.11n : +14 dBm
Minimum Receive sensitivity
- 802.11b/g : -94 dBm
- 802.11n : -86 dBm
Sustained TCP throughput : 10 Mbit/s
Applications
Industrial, M2M and Home Automation
- Environmental monitoring
- Energy monitoring
- Wireless sensing, remote data logging
- HVAC, power, light, & thermostat control
- Appliance control
Security
- Cameras, Doors/Window monitoring
- Alarms, Smoke Detectors
- Door and entry control
Health & Fitness
- Fitness Equipment
- Home health monitoring e.g. weight scales
Consumer
- Audio, Toys, Robots
*Some interfaces share module pins
Operational & Radio
Single operating voltage : 3.3V (typical)
All I/O pins are +5V tolerant
Operational Temperature Range: -30°C to +85°C
Size : 20.3 x 15.2 x 2.7mm (0.80” x 0.60” x 0.11”)
Weight : 0.07 oz (2g)
Current consumption @ 3.3V, 25°C
- VBAT : 0.97µA (with 32k RTC)
- Standby : 2.8µA (3.8uA with 32k RTC)
- Stop : 10µA with RAM retention (113µs wake)
- Wi-Fi Powersave : 0.77mA (DTIM = 3)
- Active receive : 5.7mA @ 1Mbit/s UDP
- Active transmit : 11.4mA @ 1Mbit/s UDP
ADS-MW006-102R • Preliminary Data Sheet April 1, 2015
The AMW006 module from ACKme Networks combines
a microcontroller with a BCM43362 Wi-Fi device to
provide an advanced stand-alone Wi-Fi and networking
solution.
An integrated module avoids difficult RF layout and enables designers to rapidly embed Wi-Fi and secure networking functionality into virtually any device.
The ACKme Networks WiConnect serial-to-Wi-Fi application, pre-programmed into all modules, may be used
to fast-track module integration into end-products.
With dimensions of just 20.3mm x 15.2mm and a wide
temperature range, the module is suitable for integration into most embedded applications.
The Wi-Fi device from Broadcom includes an integrated
RF transmit power amplifier and provides superior
Wi-Fi performance and full compatibility with all 2.4GHz
802.11b/g/n Wi-Fi networks. Connections for two external antennas provide applications with maximum
radio range and mechanical design flexibility.
The microprocessor is based on a high-performance
ARM® 32-bit Cortex™-M4 operating at a frequency up
to 84MHz providing 1.25 DMIPS/MHz. An extensive
range of enhanced I/Os and peripherals are also available.
The AMW006 module offers extensive I/O and peripheral interfaces listed below, and provides additional
interface combinations by leveraging multiplexing and
alternate function capabilities.
The module is powered by a 3.3V power supply, a separate WLAN power supply pin is provided to minimize
noise coupling into the WLAN subsystem.
Various powersave modes offer ultra-low power operation. Wake from low power sleep mode is possible using IO pins or the internal real-time clock, and wake
from ultra-low power standby mode is achieved using
the dedicated wake pin.
The module incorporates a 32.768kHz crystal to maintain an accurate real time clock. A 32kHz clock output is
available on a dedicated module pin in both active
power save modes. The 32kHz clock output may be
used to drive the clock input of other system devices.
This avoids the need for an additional crystal thereby
minimizing total system cost.
The module has FCC & IC modular approval for use in
the United States and Canada, and CE approval for use
in Europe and other countries.
2 x 4-Wire UART interfaces
2 x SPI interfaces (1 master, 1 slave)
21 x GPIOs
9 x 12-bit A/D converters
14 x PWM outputs
1 x ultra-low power wake input
ADS-MW006-102R • Preliminary Data Sheet April 1, 2015
Figure 1 is a block diagram of the AMW006 module. The
main components of the module are a microprocessor
and BCM43362 Wi-Fi System-on-Chip (SoC). The processor and peripherals are driven by a 26MHz crystal.
The integrated real-time clock (RTC) is driven by a
32.768kHz crystal. An on-board 1MByte serial flash
chip may be used to store user data and configuration,
additional applications, and firmware images as part of
the ACKme secure over the air (OTA) update process.
Figure 1. AMW006 Architecture
3v3 MCU
3v3 Wi-Fi
32kHz Out
ADC
PWM
SPI
ARM
Cortex M4
84 MHz
96 kB RAM
The WLAN subsystem is controlled by WiConnect enabling the module to achieve minimum power consumption when the Wi-Fi networking interface is not required.
The module includes an antenna diversity switch. The
switch enables static or dynamic control of the external
antenna(s).
Wi-Fi
ADS-MW006-102R • Preliminary Data Sheet April 1, 2015
CAUTION! The absolute maximum ratings in Table 1 and Table 2 indicate levels where permanent damage to the device can occur, even if these limits are exceeded for only a brief duration. Functional operation is not guaranteed under these conditions. Operation at absolute maximum conditions for extended periods can adversely affect longterm reliability of the device.
The values in Table 1 reflect absolute maximum ratings from the respective microprocessor and BCM43362
datasheets.
Table 1. Absolute Maximum Voltage Ratings
Table 2. Absolute Maximum Environmental Ratings
3.2 Recommended Operating Conditions
Functional operation is not guaranteed outside the limits shown in Table 3 and Table 4, and operation outside these
limits for extended periods can adversely affect long-term reliability of the device.
DC Operating Conditions
Table 3. Recommended DC Operating Conditions
Notes:
1. VDD_3V3 and VDD_3V3_WIFI must be at the same voltage when using the Wi-Fi subsystem
2. The performance of the Wi-Fi subsystem is degraded significantly at low voltages
ADS-MW006-102R • Preliminary Data Sheet April 1, 2015
The AMW006 WLAN radio specifications are derived from the Broadcom BCM43362 WLAN radio specifications.
Unless otherwise stated, the specifications in this section apply when the operating conditions are within the limits
specified in Section 3.2, Recommended Operating Conditions. Functional operation outside these limits is not guaranteed.
All specifications are measured by connecting directly to either of the antenna ports via a short PCB trace with the
other antenna port terminated in 50 ohms.
4.1 Summary WLAN Specifications
Table 7. Summary WLAN Specifications
4.2 WLAN Receiver Specifications
Table 8. WLAN Receiver Performance Specifications
ADS-MW006-102R • Preliminary Data Sheet April 1, 2015