Siemens PEB2084H Datasheet

ICs for Communications
Quadruple Transceiver for S/T Interface QUAT-S
PEB 2084 Version 1.2
Data Sheet 07.95
T2084-V12-D1-7600
Ausgabe 07.95 Herausgegeben von Siemens AG,
Kommunikation, Balanstraße 73, 81541 München
© Siemens AG 1995.
Alle Rechte vorbehalten.
Wichtige Hinweise!
Gewähr für die Freiheit von Rechten Dritter leisten wir nur für Bauelemente selbst, nicht für Anwendungen, Verfahren und für die in Bauelementen oder Baugruppen realisier ten Schaltungen.
Mit den Angaben werden die Bauelemente spezifiziert, nicht Eigenschaften zugesich ert .
Liefermöglichkeiten und technische Änderun­gen vorbehalten.
Fragen über Technik, Preise und Liefermög­lichkeiten richten Sie bitte an den Ihnen nächstgelegenen Vertrieb Halbleiter in Deutschland oder an unsere Landesgesell­schaften im Ausland.
Bauelemente können aufgrund technischer Erfordernisse Gefahrstoffe enthalten. Aus­künfte darüber bitten wir unter Angabe des betreffenden Typs ebenfalls über den Vertrieb Halbleiter einzuholen.
Die Siemens AG ist ein Hersteller von CECC­qualifizierten Produkten.
Verpackung
Bitte benutzen Sie die Ihnen bekannten Ver­werter. Wir helfen Ihnen auch weiter – wen­den Sie sich an Ihren für Sie zuständigen Ver­trieb Halbleiter. Nach Rücksprache nehmen wir Verpackungsmaterial sortiert zurück. Die Transportkosten müssen Sie tragen.
Für Verpackungsmaterial, das unsort i ert an uns zurückgeliefert wird oder für das wir keine Rücknahmepflicht haben, müssen wir Ihnen die anfallenden Kosten in Rechnung stellen.
Bausteine in lebenserhaltenden Geräten oder Systemen müssen ausdrücklich da­für zugelassen sein!
Kritische Bauelemente
ter der Siemens AG dürfen nur mit ausdrückli­cher schriftlicher Genehmigung des Bereichs Halbleiter der Siemens AG in lebenserhalten­den Geräten oder Systemen den.
1 Ein kritisches Bauelement ist ein in einem
lebenserhaltenden Gerät oder System ein­gesetztes Bauelement, bei dessen Ausfall berechtigter Grund zur Annahme besteht, daß das lebenserhaltende Gerät oder Sy­stem ausfällt bzw. dessen Sicherheit oder Wirksamkeit beeinträchtigt wird.
2 Lebenserhaltende Geräte und Systeme
sind (a) zur chirurgischen Einpflanzung in den menschlichen Körper gedacht, oder (b) unterstützen bzw. erhalten das menschliche Leben. Sollten sie ausfallen, besteht berechtigter Grund zur Annahme, daß die Gesundheit des Anwenders ge­fährdet werden kann.
1
des Bereichs Halblei-
2
eingesetzt wer-
PEB 2084 Revision History: Current Version: Data Sheet 07.95
Previous Releases: Preliminary Technical Manual 2.94 Page
(in previous Version)
11 10 Figure 1, IDO = Output and Input 9 12 Pin 40, IDO, resistor definition 20 22 Boundary scan, sequence of test pins (new) 29 33 Push-pull sensing 43 44 State diagram (DI F3) 55 60 Maximum voltage on any pin 56 63 Power supply current
Page (in current Version)
Subjects (major changes since last revision)
PEB 2084
Table of Contents Page
1Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
1.2 Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
1.3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
1.4 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
2.1 Device Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
2.2 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
2.2.1 S/T Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
®
2.2.2 IOM
2.2.3 JTAG Boundary Scan Test Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
2.3 Individual Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
2.3.1 Transceiver, Analog Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
2.3.2 Timing Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
2.3.3 Receive Signal Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
2.3.4 Activation / Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
2.3.5 S/T Interface Frame Structures Synchronization . . . . . . . . . . . . . . . . . . . . . .29
2.3.5.1 Multi-Frame Generation with a short FSC . . . . . . . . . . . . . . . . . . . . . . . . . . .30
2.3.5.2 Super-Frame (M-bit) Generation using SSYNC (for DECT) . . . . . . . . . . . . .31
-2 System Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
3 Operational Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
3.1 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
3.2 Push – Pull Sensing on Pin IDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
®
3.3 IOM
-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
3.3.1 ISDN Channels Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
3.3.2 Monitor Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
3.3.3 D-Channel Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
3.3.4 Command/Indicate Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
3.4 Activation and Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
3.4.1 LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
3.4.2 LT-T Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
3.4.3 Example of Activation/Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
3.5 Diagnostic Functions, Test Loop-backs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
3.6 S and Q Channel Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
3.7 Default-Use of Pin CEB/SSYNC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
4 Registers Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
4.1 Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
4.2 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
4.3 Loopback Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
4.4 Auxiliary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
4.5 Other Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Semiconductor Group 4
PEB 2084
Table of Contents Page
5 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
5.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
5.2 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
5.3 Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
5.4 Recommended Oscillator Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
5.5 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
5.6 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
®
5.7 IOM
5.8 Timing of Boundary Scan Test Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
5.9 Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
6 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
-2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
IOM®, IOM®-1, IOM®-2, SICOFI®, SICOFI®-2, SICOFI®-4, SICOFI®-4µC, SLICOFI®, ARCOFI ARCOFI SICAT
MUSAC Purchase of Siemens I
the I
®
-SP, EPIC®-1, EPIC®-S, ELIC®, IPAT®-2, ITAC®, ISAC®-S, ISAC®-S TE, ISAC®-P, ISAC®-P TE, IDEC®,
®
, OCTAT®-P, QUAT®-S are registered trademarks of Siemens AG.
-A, FALC™54, IWE™, SARE™, UTPT™, ASM™, ASP™ are trademarks of Siemens AG.
2
2
C-system provided the system confor ms to the I2C specifications defined by Philips. Copyright Philips 1983.
C components conveys a license under the Philips’ I2C patent to use the components in
®
, ARCOFI®-BA,
Semiconductor Group 5
General Information

1Overview

The PEB 2084, Quadrupl e Transceiver for S/T Interfaces (QUAT-S), imple ments four­wire S/T interface s used to link voice/da ta digit al termin als to PBX su bscriber lin es and PBX trunk lines to the public ISDN. The QUAT-S is an optimized device for PBX applications but can also be used in Hubs and Multipl exers. It can handle up to four S/T interfaces simultaneously. While each channel is independently useable as S or T interface.
The PEB 2084, QUAT-S, provides electrical and functional link between the analog S/T interface and the ISDN-Oriented Modular (IOM-2) interface. It handles the S/T interfaces fully according to CCITT I.430, ETSI 300.012, and ANSI T1.605 standards.
The PEB 2084, QUAT-S, is a CMOS device offered in a P-MQFP-44 package. It operates from a single 5 V power supply.
Other Siemens’ integrated circuits for PBX applications are: PEB 20550 Extended Line Card Interface Controller (ELIC) PEB 2465 Signal-processing Codec Filter with 4 Channels (SICOFI-4) PEB 2096 Octal Transceiver for U PEB 2075 ISDN D-Channel Controller (IDEC)
Interfaces (OCTAT-P)
PN
Semiconductor Group 6
General Information
R
IOM -2
8 x S
8 x U
PN
TE 0
TE 7
TE 0
TE 7
2048 kbit/s
S
0
U
PN
QUAT-S PEB 2084
OCTAT -P
R
PEB 2096
CFI 00
ELIC
PCM
PCM
R
PEB 20550
1
16 x t/r
TE 1
TE 16
SLIC
r/t
SLIC
R
SICOFI -4 PEB 2465
T
SS
Memory
µP
R
IOM -2
R
IOM -2
D Arbiter
2
SACCO-A
3
SACCO-B
µP Interface
4 x D Cannel
Signaling
QUAT-S
2084PEB
R
IDEC PEB 2075
8 x T
0
CO
7
ITB05392
Example for an Integrated Analog / Digital PBX Application
Semiconductor Group 7
Quadruple Transceiver for S/T Interface
PEB 2084
(QUAT-S)
CMOS

1.1 Features

• Four full duplex (B1 + B2 + D) S/T interface transceivers, each equipped with the following functions: – Analog S/T interfaces fully according to the
CCITT I.430, ETSI 300.012 and ANSI T1.605
standards. – 192 kbit/s transmission rate – Receive timing recovery
– Conversion between pseudo-ternary
and binary codes – Conversion between S/T and IOM-2 frame structures – Activation / deactivation procedures, triggered by primitives received over the
-2 interface or by info received from the line (e.g. detection of INFO1)
IOM – Access to S and Q bits of S/T interface – Execution of test loops – Loop length up to 1.5 km (point-to-point) – Frame alignment in trunk applications with maximum wander of ± 50 µs – Logical S/T interface functions identical to PEB 2081, SBCX, for line card
applications. – Analog S/T line transceivers identical to PEB 2081, SBCX.
• IOM-2 interface
• D-channel access control
• Support for JTAG boundary scan test
•1µ CMOS technology with low power consumption
• + 5 V power supply
• P-MQFP-44 package
P-MQFP-44-2
Type Ordering Code Package
PEB 2084 H Q6701-H6481 P-MQFP-44-2 (SMD)
Semiconductor Group 8 07.95

1.2 Logic Symbol

PEB 2084
Figure 1 QUAT-S Logic Symbol
Semiconductor Group 9
1.3 Pin Configuration
(top view)
PEB 2084
P-MQFP-44-2
Semiconductor Group 10
1.4 Pin Description
PEB 2084
Pin No. Symbol Input (I)
Output (O)
29, 30 32, 33 27, 26 24, 23 5, 4 2, 1 7, 8 10, 11
43 42 41
40
39
SR0a,b SX0a,b SR1a,b SX1a,b SR2a,b SX2a,b SR3a,b SX3a,b
FSC DCL IDI
IDO
ICS
I O I O I O I O
I I I
O/I
I
Function
S/T Interface a: positive, b: negative
No. 0: differential input No. 0: differential output No. 1: differential input No. 1: differential output No. 2: differential input No. 2: differential output No. 3: differential input No. 3: differential output
®
-2 Interface
IOM
Frame Synchronization Clock (8 kHz) Data Clock IOM Interface Data Input: Data Downstream in LT-S
Data Upstream in LT-T
IOM Interface Data Output: Data Upstream in LT-S
Data Downstream in LT-T Output open-drain: resistor to push-pull: resistor to V
V
SS
DD
resistor = 100 k to 1 M refer to push-pull sensing, chapter 3.2 IOM Interface Channel Select (pin-strapping) 0: channels 0 though 3 selected 1: channels 4 through 7 selected
JTAG Boundary Scan Test Interface
16 15 14 13
20 21
Semiconductor Group 11
TMS TCK TDI TDO
XTAL1 XTAL2
I I I O
I O
Test Mode Select Test Clock 6.25 MHz Test Data Input Test Data Output
Oscillator or 7.68 MHz clock input Oscillator output
1.4 Pin Description (cont’d)
PEB 2084
Pin No. Symbol Input (I)
Function
Output (O)
36 CLK1/
IDS
O/I CLK1: Clock output 1.536 MHz synchronized to
the trunk line (after reset in high impedance state, only activated by programming configuration regist er)
IDS: IOM-Interface Data Rate Select during HW
reset (pin-strapping) 0: double DCL (normal IOM-2 interface) 1: single DCL The value of the input is sampled by the falling edge of RST. Afterwards the pin may
be used for CLK1 functions. 35 CLK2 O 7.68 MHz clock output 38 RST I Reset, active high 17 CEB /
SSYNC
I/O / I
CEB: Common echo bit for collision resolution in
logical subscriber LT-S bus configurations
(open drain output, external pull-up resistor
required.)
SSYNC
: Superframe synchronization input
18 DRDY O D-channel Ready signal to control HDLC hardware in
LT-T mode (open-drain or push-pull operation identical to pin IDO)
6, 12,
V
DD
I
+ 5 V power supply 22, 28, 34, 44 3, 9, 19,
V
SS
I
Reference ground 25, 31, 37
Semiconductor Group 12
PEB 2084

2 Functional Description

The PEB 2084, QUAT-S, performs the layer-1 functions of the ISDN basi c access for four S/T interfaces.

2.1 Device Architecture The QUAT-S contains the following functional blocks: Refer to figure 2

• Four line transceivers with analog S/T interfaces
• One digital IOM-2 interface
• Frame structure converter between the IOM-2 interface and the S/T interfaces
• JTAG boundary scan test interface
• Clocking, reset and initialization block
Figure 2 QUAT-S Device Architecture
Semiconductor Group 13
PEB 2084

2.2 Interfaces

PEB 2084, QUAT-S, provides four independent S/T interfaces, one IOM-2 interface and one JTAG boundary scan test interface.

2.2.1 S/T Interface

Frame Structure
One frame consists of 48 bits, at a nominal bit rate of 192 kbit/s. Thus each frame carries two octets of B1, two octets of B2 and 4 bits of D-channel, according to the B1+B2+D structure defined for the ISDN basic access (the total user data rate is 144 kbit/s). The beginning of the frame is marked with a F-bit using a code violation (no Mark inversion). The frame structures for data downstream (from network to subscriber) and for data upstream (from subscriber to network) are shown in figure 3.
NT TE
NTTE
DL.
L.F B1 EDAF N
0 1 0
2 Bits Offset
0 1 0
F = Framing Bit
DC Balancing Bit=L D-Channel Bit=D D-Echo-Channel Bit=E
Auxiliary Framing Bit or Q-Bit=F
A
48 Bits in 250 µs
A
B2 EDM B1 SDEB2E D L. F L.
L.FL.DL.B1FL.L.D
A
L.FL.DL.B2L.D L.B1L.DL.B2
t
Bit set to a Binary Value N=N
B1 = Bit within B Channel
Bit within B Channel
B2 = A = Bit used for Activation S = Subchannel SC1 through SC5 bit position M = Multiframing Bit
FA=
1
2
ITD02330
Figure 3 Frame Structure at Reference Points S and T (CCITT I.430)
The E-bit (= Echo bit to the D-channel bit) can be controlled via C/I channel and may be used to carry the “available” / “blocked” information sent by ELIC, PEB 20550. Refer to chapter 3.3.3.
Semiconductor Group 14
PEB 2084
Coding
The QUAT-S uses a pseudo-ternary coding technique on the S/T interface (with a 100%
pulse width) according to CCITT I.430 reco mmendation. A binary ‘1’ corresponds to a neutral level (space = no current) on the S/T line, binary ‘0’ s are coded as alternating positive and negative pulses (= marks), figure 4.
Code violation (CV) is caused by two successive pulses with the same pola rity (= no mark inversion).
Figure 4 S/T Interface Line Code
For details refer to Technical Manual PEB 2081, SBCX.
Semiconductor Group 15
PEB 2084
Interface Configurations The QUAT-S provides four S/T interfaces for different applications, see figure 5:
• Subscriber’s connection to PBX (LT-S Mode) for different line configurations:
– Point-to-point – Short passive bus – Extended passive bus
• PBX connection to CO trunk (LT-T Mode)
Figure 5 S/T Interface Configurations
The T interface is physically identical to the S interface.
Semiconductor Group 16
PEB 2084

2.2.2 IOM®-2 System Interface

The PEB 2084, QUAT-S, is equipped with a digital ISDN Oriented Modular (IOM-2) interface, for interconnection with other telecommunication ICs, such as IDEC (PEB 2075), EPIC (PEB 2055) and EL IC (PEB 20550). EPIC and ELIC represent the first switching stage towards the exchange system.
Figure 6 System Integration, IOM
®
-2 Interface
Interface Signals
The IOM-2 interface is a four-wire serial interfa ce which comprises two data lines and two clock lines for synchronization. Refer to figure 6.
Data is carried over Data Upstream (DU) and Data Downstream (DD) lines. The downstream and upstream directions are always seen with respect to the exchange. Downstream refers to the information flow from the central exchange via PBX to the subscriber and upstream vice versa.
Semiconductor Group 17
PEB 2084
Thus, depending on the programma ble QUAT-S mode, the data lines IDI and IDO get different meanings: IDI (IOM interface Data Input) = Data Downstream in LT-S
= Data Upstream in LT-T
IDO (IOM-2 interface Data Output) = Data Upstream in LT-S
= Data Downstream in LT-T
The data is clocked by Data Clock (DCL) that operates at single or double data rate. The selection is done by pinstrapping (CLK1/IDS). The IOM frames are delimited by an 8 kHz Frame Synchronization Clock (FSC). The FSC rising edge indicates the start of an
-2 frame.
IOM The IOM-2 interface speci fication desc ribes open drain d ata lines with ext ernal pull-up
resistors. However, if operation is logically point-to-point, tristate operation is possible as well.
Frame Structure
One IOM-2 frame typically contains 8 IOM channels (sub-frames). The ISDN user data rate is 144 kbit/s (B1 + B2 + D). The data is transmitted transparently synchronously and in phase in both directions over the IOM-2 interface using time division multiplexing within the 125 µs IOM-2 interface frame.
Refer to figure 7. QUAT-S requires IOM-2 frame consisting of n complete ISDN channels (with 32 bits per
channel); n = 4, 5, 6, … 16. Nominal bit rate of data (IDI and IDO) 1024 kbit/s … 4096 kbit/s
Nominal frequency of DCL 2048 kHz … 8192 kHz Selectable frequency of DCL 1024 kHz … 4096 kHz Nominal frequency of FSC 8 kHz
Semiconductor Group 18
PEB 2084
s
µ
125
FSC
DCL
R
IOM
DU
DD
CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7
R
IOM
CH7CH6CH5CH4CH3CH2CH1CH0
CH0
CH0
B1 B2
MONITOR
D
C/I
MM RX
ITD04319
Figure 7 Multiplexed Frame Structure of the IOM-2 Interface in LT Mode with 2048 kbit/s Data Rate
Each IOM ISDN channel consists of a total of 32 bits, or four octets: B1 (8 bits) + B2 (8 bits) + D (2 bits) plus 14 bits for intercommunication.
• Two 8-bit B1 an d B2 channels fo r voice and data communicatio n with a data rat e of
64 kbit/s each,
• One 8-bit monitor channel for transferring maintenance information,
• One 2-bit D-channel for data transfer (e.g. signalling) with a data rate of 16 kbit/s
• Four command/indication (C/I) bits for controlling layer-1 functions.
• Two bits for handling the monitor channel: MR an MX (hand shake control).
8 bits 8 bits 8 bits 2 4 bits 1 1
B1 channel B2 channel Monitor channel D ch. Command/
MR MX
Indication
The user data rate is 144 kbit/s (B1 + B2 + D).
Monitor Channels
The monitor channel is used to convey message oriented local functions such as software programming or access to internal registers via a layer-2 controller (ICC, ELIC,…). There is a defined handshake procedure between the monitor channel transmitter and the receiver in order to ensure a safe data transfer over the IOM-2 interface.
Semiconductor Group 19
PEB 2084
The monitor channel operates on an asynchronous basis. While data transfer on the bus takes place synchronized to the frame, the data flow is controlled by a handshake procedure using the monitor chann el rec eiv e bit (MR ) an d the m onitor channel transmit bit (MX). For example: data is placed onto the monitor channel and the MX bit is activated (active low). This data will be transmitted repeatedly once per 8 kHz frame until the transfer is acknowledged via the MR bit.
The monitor channel is in an idle con dition when the MX bit is inactive in two or more consecutive frames (indication of End Of Message EOM).
The monitor channel is also used to convey S and Q maintenance bits information (S/Q channel).
The PEB 2084, QUAT-S, handles four monitor channels allocated to its four S/T interfaces. The implemented monitor protocol is according to the IOM Interface Specification, Rev. 2. For more details and an example refer to chapter 3.3.2.
D-Channels
The D-channels are sw itched transparently bet ween the S/T interf aces and the IOM-2 interface. Depending on the data load on a line card, different PBX architectures can be implemented for D-channel handling in LT-S applications:
For decentral signalling, up to 32 subscribers can be served with only one special HDLC controller which is integrated in the PEB 20550, ELIC (SACCO-A).
For intensive data packet handling in LT-S mode (e.g. in PC networks) or in LT-T applications, additional HDLC controllers such as HSCX, IDEC, ESCC 2 or 8 or MUNICH 32 may be connected to the IOM-2 interface. If a D-channel collision resolution according to CCITT I.430 is require d, the QUAT-S o ffers a stro be signal to control the connected HDLC (LAPD) controller.
For operational description refer to chapter 3.3.3.
C/I-Channels
A C/I-channel is used for communication between the PEB 2084, QUAT-S, and a processor via a layer-2 device, to control and monitor layer-1 functions (activation/deactivation and additional control functions). The layer-2 device monitors the layer-1 indication continu ously and i ndicates a c hange i f a new code is found t o be valid in two consecutive IOM frames (double last look criterion).
The codes originated by layer-2 devices are called “Commands”, those originated by the PEB 2084, QUAT-S, are called “Indications”.
The PEB 2084, QUAT-S, handles four C/I-channels; one for each S/T transceiver. For a list of the C/I codes and their use refer to chapter 3.6.
Semiconductor Group 20
PEB 2084

2.2.3 JTAG Boundary Scan Test Interface

The QUAT-S provides a boundary scan support for a cost effective board testing. It consists of:
– Complete boundary scan for 11 signals (pins) according to IEEE Std. 1149.1
specification – Test access port controller (TAP) – Four dedicated pins (TCK, TMS, TDI, TDO) – One 32-bit IDCODE register – Specific functions for SXna,b
Boundary Scan
The following QUAT-S pins are included in the boundary scan: FSC, DCL, IDI, IDO, RST, ICS, CEB, DRDY, CLK1, CLK2 and XTAL1.
Depending on the pin functionality one or two boundary scan cells are provided.
Pin Type Number of Boundary Scan Cells Usage
Input 1 Input Output 2 Output, enable
When the TAP controller is in the appropriate mode data is shifted into/ out of the boundary scan via the pins TDI/TDO using the 6.25 MHz clock on pin TCK.
The QUAT-S pins are included in the boundary scan in the following sequence:
Boundary Scan Number
TDI ––>
Pin Number Pin Name Type Number of
Scan Cells
143FSCI1 242DCLI1 341IDII1 440IDOO2+1 539ICSI1 638RSTI1 7 36 CLK1/IDS O/I 2 + 1 835CLK2O2 920XTAL1I1 10 18 DRDY O 2 11 17 CEB/SSYNC
Semiconductor Group 21
I/O 1 + 2
PEB 2084
TAP Controller
The Test Access Port (TAP) controller implements the state machine defined in the JTAG standard IEEE Std. 1149.1. Transitions on the pin TMS cause the TAP contro lle r to perform a state change.
Following the standard definition five instructions are executable. TAP controller instructions:
Code Instruction Function
0000 EXTEST External testing 0001 INTEST Internal testing 0010 SAMPLE/PRELOAD Snap-shot testing 0011 IDCODE Reading ID code 0100 Test Mode TM1 Single pulses (2 kHz) on SXna,b 0101 Test Mode TM2 Continuous pulses (96 kHz) on SXna,b 11XX BYPASS Bypass operation
Note:The instructions TM1 and TM2 require 7.68 MHz at XTAL1. EXTEST is used to examine the board interconnections.
When the TAP controller is in the state “update DR”, all output pins are updated with the falling edge of TCK. When it has ente red state “capt ure DR” the levels of al l input pins are latched with the rising edge of TCK. The in/out shifting of the scan vectors is typically done using the instruction SAMPLE/PRELOAD.
INTEST supports internal chip testing. When the TAP controller is in the state “update DR”, all inputs are updated internally with
the falling edge of TCK. When it has entered state “capture DR” the levels of all outputs are latched with the rising edge of TCK. The in/out shifting of the scan vectors is typically done using the instruction SAMPLE/PRELOAD.
0001 (INTEST) is the default value of the instruction register. SAMPLE / PRELOAD provides a snap-shot of the pin level during norma l operation or
is used to preload (TDI) / shift out (TDO) the boundary scan with a test vector. Both activities are transparent to the system functionality.
Note:The input pin XTAL1 should not be evaluated.
The input frequency (7.68 MHz) is not synchronous to TCK (6.25 MHz) which may cause not predictable snap-shots on the pin XTAL1.
Semiconductor Group 22
Loading...
+ 50 hidden pages