Siemens BFQ71 Datasheet

NPN Silicon RF Transistor BFQ 71
For broadband amplifiers up to 2 GHz and fast
non-saturated switches at collector currents from 1 mA to 20 mA.
Hermetically sealed ceramic package.
HiRel/Mil screening available.
CECC-type available: CECC 50002/260.
ESD: Electrostatic discharge sensitive device, observe handling precautions! Type Ordering Code
Marking
(tape and reel)
BFQ 71 Q62702-F77571 Cerec-X
Pin Configuration
1 2 3
B E C
Package
4
E
Maximum Ratings Parameter Symbol Values Unit
Collector-emitter voltage V
CE0 15 V
Collector-emitter voltage, VBE = 0 VCES 20 Collector-base voltage V
CB0 20
Emitter-base voltage VEB0 2.5 Collector current I
C 30 mA
Base current IB 4 Total power dissipation, T
S 103 ˚C
3)
Ptot 300 mW
Junction temperature Tj 175 ˚C
Ambient temperature range T Storage temperature range T
A – 65 … + 175 stg – 65 … + 175
Thermal Resistance
Junction - ambient Junction - soldering point
1)
For detailed dimensions see chapter Package Outlines.
2)
Package mounted on alumina 15 mm× 16.7 mm × 0.7 mm.
TS is measured on the collector lead at the soldering point to the pcb.
2)
Rth JA 320 K/W Rth JS 240
Electrical Characteristics
A = 25 ˚C, unless otherwise specified.
at T
BFQ 71
Parameter Symbol
DC Characteristics
V
(BR)CE0 15
C = 1 mA, IB = 0
I
I
CB0 ––50
CB = 10 V, IE = 0
V
I
EB0 ––10
EB = 2 V, IC = 0
V
FE
h
IC = 5 mA, VCE = 6 V
C = 20 mA, VCE = 6 V
I
V
CEsat 0.16 0.4
C = 30 mA, IB = 3 mA
I
Base-emitter voltage
C = 5 mA, VCE = 6 V
I
V
BE 0.78
min. typ. max.
40 40
90 100
250 –
UnitValues
VCollector-emitter breakdown voltage
nACollector-base cutoff current
µAEmitter-base cutoff current
DC current gain
VCollector-emitter saturation voltage
Electrical Characteristics
A = 25 ˚C, unless otherwise specified.
at T
BFQ 71
Parameter Symbol
AC Characteristics
T
f
C = 5 mA, VCE = 6 V, f = 200 MHz
I
C = 20 mA, VCE = 6 V, f = 200 MHz
I
C
cb 0.46 0.6
CB = 6 V, VBE = vbe = 0, f = 1 MHz
V
C
Collector-emitter capacitance
CE = 6 V, VBE = vbe = 0, f = 1 MHz
V
Input capacitance
EB = 0.5 V, IC = ic = 0, f = 1 MHz
V
Output capacitance
CE = 6 V, VBE = vbe = 0, f = 1 MHz
V
ce 0.4
C
ibo 1.2
C
obs 0.86 1.2
F
I
C = 5 mA, VCE = 6 V, f = 10 MHz, ZS = 75 C = 2 mA, VCE = 6 V, f = 800 MHz, ZS = ZSopt
I IC = 3 mA, VCE = 10 V, f = 2 GHz, ZS = ZSopt
min. typ. max.
– 4
– – –
4.2
5.2
1.4
1.5
3.2
– –
2.2 3 –
UnitValues
GHzTransition frequency
pFCollector-base capacitance
dBNoise figure
Power gain
C = 2 mA, VCE = 6 V, f = 800 MHz,
I
S = ZSopt, ZL = ZLopt
Z
Transducer gain
C = 20 mA, VCE = 6 V, f = 1 GHz, Z0 = 50
I
two-tone intermodulation test
C = 15 mA, VCE = 10 V, dIM = 60 dB,
I
1 = 806 MHz, f2 = 810 MHz, ZS = ZL = 50
f
C = 15 mA, VCE = 10 V, f = 800 MHz
I
Gpe –15–
2
I S
21e I
13.4
Vo1 = Vo2 110
IP
3 23.5
mVLinear output voltage
dBmThird order intercept point
BFQ 71
Total power dissipation Ptot = f (TA*; TS)
*Package mounted on alumina
Transition frequency fT = f (IC)
CE = 6 V, f = 200 MHz
V
Collector-base capacitance C
BE = vbe = 0, f = 1 MHz
V
cb = f (VCB)
BFQ 71
Common Emitter Noise Parameters
Γ
f
Fmin Gp(Fmin) RN NF50 Gp(F50Ω)
GHz dB dB MAG ANG –dBdB
IC = 2 mA, VCE = 6 V, Z0 = 50
opt
0.01 1.1 (Z
IC = 5 mA, VCE = 10 V, Z0 = 50
0.01
0.8
2.0
1.3
1.6
3.1
15.3 9
0.29
0.12
Noise figure F = f (ZS)
CE = 6 V, f = 10 MHz
V
S = 150 ) 1.6
S = 100 )
(Z
56
124.5
18.5 30
0.24
0.67
1.7
1.8 –
14.8 –
BFQ 71
Circles of constant noise figure F = f (ZS) and available power gain G
C = 5 mA, VCE = 10 V, f = 800 MHz
I
av = f (ZS)
Noise figure F = f (IC) Power gain G = f (I
CE = 10 V, f = 800 MHz, ZLopt (G)
V
C)
Circles of constant noise figure F = f (Z and available power gain G
C = 5 mA, VCE = 10 V, f = 2 GHz
I
av = f (ZS)
Noise figure F = f (I
S)
Power gain G = f (I
CE = 10 V, f = 2 GHz, ZLopt (G)
V
C)
C)
Loading...
+ 12 hidden pages