NPN Silicon RF Transistor BFQ 71
● For broadband amplifiers up to 2 GHz and fast
non-saturated switches at collector currents from
1 mA to 20 mA.
● Hermetically sealed ceramic package.
● HiRel/Mil screening available.
● CECC-type available: CECC 50002/260.
ESD: Electrostatic discharge sensitive device, observe handling precautions!
Type Ordering Code
Marking
(tape and reel)
BFQ 71 Q62702-F77571 Cerec-X
Pin Configuration
1 2 3
B E C
Package
4
E
Maximum Ratings
Parameter Symbol Values Unit
Collector-emitter voltage V
CE0 15 V
Collector-emitter voltage, VBE = 0 VCES 20
Collector-base voltage V
CB0 20
Emitter-base voltage VEB0 2.5
Collector current I
C 30 mA
Base current IB 4
Total power dissipation, T
S ≤ 103 ˚C
3)
Ptot 300 mW
Junction temperature Tj 175 ˚C
1)
Ambient temperature range T
Storage temperature range T
A – 65 … + 175
stg – 65 … + 175
Thermal Resistance
Junction - ambient
Junction - soldering point
1)
For detailed dimensions see chapter Package Outlines.
2)
Package mounted on alumina 15 mm× 16.7 mm × 0.7 mm.
3)
TS is measured on the collector lead at the soldering point to the pcb.
2)
3)
Rth JA ≤ 320 K/W
Rth JS ≤ 240
Electrical Characteristics
A = 25 ˚C, unless otherwise specified.
at T
BFQ 71
Parameter Symbol
DC Characteristics
V
(BR)CE0 15 – –
C = 1 mA, IB = 0
I
I
CB0 ––50
CB = 10 V, IE = 0
V
I
EB0 ––10
EB = 2 V, IC = 0
V
FE
h
IC = 5 mA, VCE = 6 V
C = 20 mA, VCE = 6 V
I
V
CEsat – 0.16 0.4
C = 30 mA, IB = 3 mA
I
Base-emitter voltage
C = 5 mA, VCE = 6 V
I
V
BE – 0.78 –
min. typ. max.
40
40
90
100
250
–
UnitValues
VCollector-emitter breakdown voltage
nACollector-base cutoff current
µAEmitter-base cutoff current
–DC current gain
VCollector-emitter saturation voltage
Electrical Characteristics
A = 25 ˚C, unless otherwise specified.
at T
BFQ 71
Parameter Symbol
AC Characteristics
T
f
C = 5 mA, VCE = 6 V, f = 200 MHz
I
C = 20 mA, VCE = 6 V, f = 200 MHz
I
C
cb – 0.46 0.6
CB = 6 V, VBE = vbe = 0, f = 1 MHz
V
C
Collector-emitter capacitance
CE = 6 V, VBE = vbe = 0, f = 1 MHz
V
Input capacitance
EB = 0.5 V, IC = ic = 0, f = 1 MHz
V
Output capacitance
CE = 6 V, VBE = vbe = 0, f = 1 MHz
V
ce – 0.4 –
C
ibo – 1.2 –
C
obs – 0.86 1.2
F
I
C = 5 mA, VCE = 6 V, f = 10 MHz, ZS = 75 Ω
C = 2 mA, VCE = 6 V, f = 800 MHz, ZS = ZSopt
I
IC = 3 mA, VCE = 10 V, f = 2 GHz, ZS = ZSopt
min. typ. max.
–
4
–
–
–
4.2
5.2
1.4
1.5
3.2
–
–
2.2
3
–
UnitValues
GHzTransition frequency
pFCollector-base capacitance
dBNoise figure
Power gain
C = 2 mA, VCE = 6 V, f = 800 MHz,
I
S = ZSopt, ZL = ZLopt
Z
Transducer gain
C = 20 mA, VCE = 6 V, f = 1 GHz, Z0 = 50 Ω
I
two-tone intermodulation test
C = 15 mA, VCE = 10 V, dIM = 60 dB,
I
1 = 806 MHz, f2 = 810 MHz, ZS = ZL = 50 Ω
f
C = 15 mA, VCE = 10 V, f = 800 MHz
I
Gpe –15–
2
I S
21e I
– 13.4 –
Vo1 = Vo2 – 110 –
IP
3 – 23.5 –
mVLinear output voltage
dBmThird order intercept point
BFQ 71
Total power dissipation Ptot = f (TA*; TS)
*Package mounted on alumina
Transition frequency fT = f (IC)
CE = 6 V, f = 200 MHz
V
Collector-base capacitance C
BE = vbe = 0, f = 1 MHz
V
cb = f (VCB)
BFQ 71
Common Emitter Noise Parameters
Γ
f
Fmin Gp(Fmin) RN NF50 Ω Gp(F50Ω)
GHz dB dB MAG ANG Ω –dBdB
IC = 2 mA, VCE = 6 V, Z0 = 50 Ω
opt
0.01 1.1 – (Z
IC = 5 mA, VCE = 10 V, Z0 = 50 Ω
0.01
0.8
2.0
1.3
1.6
3.1
–
15.3
9
0.29
0.12
Noise figure F = f (ZS)
CE = 6 V, f = 10 MHz
V
S = 150 Ω) – – 1.6 –
S = 100 Ω)
(Z
56
124.5
–
18.5
30
–
0.24
0.67
1.7
1.8
–
–
14.8
–
BFQ 71
Circles of constant noise figure F = f (ZS)
and available power gain G
C = 5 mA, VCE = 10 V, f = 800 MHz
I
av = f (ZS)
Noise figure F = f (IC)
Power gain G = f (I
CE = 10 V, f = 800 MHz, ZLopt (G)
V
C)
Circles of constant noise figure F = f (Z
and available power gain G
C = 5 mA, VCE = 10 V, f = 2 GHz
I
av = f (ZS)
Noise figure F = f (I
S)
Power gain G = f (I
CE = 10 V, f = 2 GHz, ZLopt (G)
V
C)
C)