Siemens 4N33, 4N32 Datasheet

) )
. .
4N32/4N33
PHOTODARLINGTON
OPTOCOUPLER
FEATURES
Dimensions in inches (mm)
• Very High Current Transfer Ratio, 500% Min.
• High Isolation Resistance, 10
Typical
• Standard Plastic DIP Package
• Underwriters Lab File #E52744
V
VDE Approvals #0884 (Available with
DE
Option 1)
DESCRIPTION
The 4N32 and 4N33 are optically coupled isolators with a Gallium Arsenide infrared LED and a silicon photodarlington sensor. Switching can be achieved while maintaining a high degree of isola­tion between driving and load circuits. These opto­couplers can be used to replace reed and mercury relays with advantages of long life, high speed switching and elimination of magnetic fields.
Maximum Ratings Emitter
Peak Reverse Voltage........................................3 V
Continuous Forward Current.........................60 mA
Power Dissipation at 25 ° Derate Linearly from 55 °
C..........................100 mW
C....................1.33 mW/ ° C
Detector
Collector-Emitter Breakdown Voltage,
BV
.......................................................... 30 V
CEO
Emitter-Base Breakdown Voltage,
BV
............................................................. 8V
EBO
Collector-Base Breakdown Voltage,
BV
.......................................................... 50 V
CBO
Emiter-Collector Breakdown Voltage,
BV
............................................................ 5 V
ECO
Collector (load) Current...............................125 mA
Power Dissipation at 25 ° Derate Linearly from 25 °
C Ambient...........150 mW
C......................2.0 mW/ ° C
Package
Total Dissipation at 25 ° C Ambient .............250 mW
Derate Linearly from 25 °
Isolation Test V oltage.........................5300 VAC
C......................3.3 mW/ ° C
RMS
Between Emitter and Detector, Standard Climate: 23 °
C/50%RH,
DIN 50014
3
248 (6.30) 256 (6.50)
4
5
.335 (8.50) .343 (8.70)
.039
(1.00)
min.
4°
typ.
.018 (0.45) .022 (0.55)
Electrical Characteristics (T
Parameter Min. Typ. Max. Unit Condition Emitter
Forward Voltage 1.25 1.5 V I Reverse Current 0.1 100 µ AV Capacitance 25 pF V
Detector
BV
*30 VI
CEO
*50 VI
BV
CBO
BV
*8 VI
EBO
BV
*510VI
ECO
I
CEO
H
FE
Package
Pin One ID.
12
6
.130 (3.30) .150 (3.81)
.020 (.051) min.
.031 (0.80) .035 (0.90)
.100 (2.54) typ.
=25 ° C)
A
NC
1
2
3
.300 (7.62)
typ.
18° typ.
.010 (.25) .014 (.35)
.300 (7.62) .347 (8.82)
Anode
Cathode
1.0 100 nA V 13K I
6
Base
5
Collector
4
Emitter
.110 (2.79 .150 (3.81
=50 mA
F
=3.0 V
R
=0 V
R
=100 µ A, I
C
=100 µ A, I
C
=100 µ A, I
C
=100 µ A, I
E
=10 V, I
CE
=0.5 mA
C
=0
F
=0
F
=0
F
=0
F
=0
F
Leakage Path........................................ 7 mm min.
Air Path...................................................7 mm min.
Isolation Resitance
V
=500 V/25 ° C...................................... ≥ 10
IO
V
=500 V/100 ° C.................................... ≥ 10
IO
12 11
Storage Temperature ...................–55 ° C to +150 ° C
Operating Temperature ...............–55 °
Lead Soldering Time at 260 °
C....................10 sec.
C to +100 ° C
Current Transfer Ratio 500 % I
V
CEsat
Coupling Capacitance 1.5 pF Turn On Time 5
Turn Off Time 100 µ sI
*Indicates JEDEC registered values
5–1
1.0 V I
µ sV
=10 mA,
F
V
=10 V
CE
=2 mA,
C
I
=8 mA
F
=10 V,
CC
I
=50 mA
C
=200mA,
F
R
=180 Ω
L
Figure 1. Forward voltage versus forward current
C
C
C
0
V
V
5
C
V
V
V
O
1.4
1.3
Ta = -55°
1.2
1.1
Ta = 25°
1.0
0.9
Ta = 100°
0.8
VF - Forward Voltage - V
0.7
100101.1
IF - Forward Current - mA
Figure 5. Non-saturated and saturated HFE versus base current
1000
8000
6000
4000
2000
HFE - Forward Transfer Gain
Ta = 25°
0
.01 .1 1 10 100
Ib - Base Current - µA
Vce = 5
Vce = 1
Figure 2. Normalized non-saturated and saturated CTRce versus LED current
1.2
Normalized to:
Vce = 5 V
1.0 IF = 10 mA
0.8
Ta = 25 °C
0.6
0.4
0.2
0.0
NCTRce - Normalized CTRce
.1 1 10 100 1000
IF - LED Current - mA
Vce = 5 V
Vce =1V
Figure 3. Normalized non-saturated and saturated col­lector-emitter current versus LED current
10
Normalized to:
Ta = 25°C IF = 10 mA
1
Vce = 5 V
.1
.01
NIce - Normalized Ice
.001
IF - LED Current - mA
Vce = 5 V
Vce = 1V
101.1
100
Figure 4. Normalized collector-base photocurrent versus LED current
Figure 6. Low to high propagation delay versus collector load resistance and LED current
80
Ta = 25°C, Vcc = 5 Vth = 1.5 V
60
40
Delay - µs
20
0
tpLH - Low/High Propagation
0 5 10 15 20
IF - LED Current - mA
1K
220
470
100
Figure 7. High to low propagation delay versus collector load resistance and LED current
20
15
10
delay - µs
5
0
tpHL - High/Low Propagation
0 5 10 15 20
1K
100
IF - LED Current - mA
Ta = 25°C Vcc = 5 V Vth = 1.5
Figure 8. Switching waveform and switching schematic
10
Normalized to:
Ta = 25°C Vcb = 3.5 V
1
IF = 10 mA
.1
.01
NIcb - Normalized Icb
.001
.1 1 10 100
I
F
V
CC
R
L
t
D
t
O
R
t
PLH
I
F
V
VTH=1.5 V
t
PHL
t
t
S
F
IF - LED Current - mA
5–2
4N32/33
Loading...