Ω
4N32/4N33
PHOTODARLINGTON
OPTOCOUPLER
FEATURES
Dimensions in inches (mm)
• Very High Current Transfer Ratio, 500% Min.
• High Isolation Resistance, 10
11
Typical
• Standard Plastic DIP Package
• Underwriters Lab File #E52744
V
• VDE Approvals #0884 (Available with
DE
Option 1)
DESCRIPTION
The 4N32 and 4N33 are optically coupled isolators
with a Gallium Arsenide infrared LED and a silicon
photodarlington sensor. Switching can be
achieved while maintaining a high degree of isolation between driving and load circuits. These optocouplers can be used to replace reed and mercury
relays with advantages of long life, high speed
switching and elimination of magnetic fields.
Maximum Ratings
Emitter
Peak Reverse Voltage........................................3 V
Continuous Forward Current.........................60 mA
Power Dissipation at 25 °
Derate Linearly from 55 °
C..........................100 mW
C....................1.33 mW/ ° C
Detector
Collector-Emitter Breakdown Voltage,
BV
.......................................................... 30 V
CEO
Emitter-Base Breakdown Voltage,
BV
............................................................. 8V
EBO
Collector-Base Breakdown Voltage,
BV
.......................................................... 50 V
CBO
Emiter-Collector Breakdown Voltage,
BV
............................................................ 5 V
ECO
Collector (load) Current...............................125 mA
Power Dissipation at 25 °
Derate Linearly from 25 °
C Ambient...........150 mW
C......................2.0 mW/ ° C
Package
Total Dissipation at 25 ° C Ambient .............250 mW
Derate Linearly from 25 °
Isolation Test V oltage.........................5300 VAC
C......................3.3 mW/ ° C
RMS
Between Emitter and Detector,
Standard Climate: 23 °
C/50%RH,
DIN 50014
3
248 (6.30)
256 (6.50)
4
5
.335 (8.50)
.343 (8.70)
.039
(1.00)
min.
4°
typ.
.018 (0.45)
.022 (0.55)
Electrical Characteristics (T
Parameter Min. Typ. Max. Unit Condition
Emitter
Forward Voltage 1.25 1.5 V I
Reverse Current 0.1 100 µ AV
Capacitance 25 pF V
Detector
BV
*30 VI
CEO
*50 VI
BV
CBO
BV
*8 VI
EBO
BV
*510VI
ECO
I
CEO
H
FE
Package
Pin One ID.
12
6
.130 (3.30)
.150 (3.81)
.020 (.051) min.
.031 (0.80)
.035 (0.90)
.100 (2.54) typ.
=25 ° C)
A
NC
1
2
3
.300 (7.62)
typ.
18° typ.
.010 (.25)
.014 (.35)
.300 (7.62)
.347 (8.82)
Anode
Cathode
1.0 100 nA V
13K I
6
Base
5
Collector
4
Emitter
.110 (2.79
.150 (3.81
=50 mA
F
=3.0 V
R
=0 V
R
=100 µ A, I
C
=100 µ A, I
C
=100 µ A, I
C
=100 µ A, I
E
=10 V, I
CE
=0.5 mA
C
=0
F
=0
F
=0
F
=0
F
=0
F
Leakage Path........................................ 7 mm min.
Air Path...................................................7 mm min.
Isolation Resitance
V
=500 V/25 ° C...................................... ≥ 10
IO
V
=500 V/100 ° C.................................... ≥ 10
IO
12
11
Storage Temperature ...................–55 ° C to +150 ° C
Operating Temperature ...............–55 °
Lead Soldering Time at 260 °
C....................10 sec.
C to +100 ° C
Current Transfer Ratio 500 % I
Ω
V
Ω
CEsat
Coupling Capacitance 1.5 pF
Turn On Time 5
Turn Off Time 100 µ sI
*Indicates JEDEC registered values
5–1
1.0 V I
µ sV
=10 mA,
F
V
=10 V
CE
=2 mA,
C
I
=8 mA
F
=10 V,
CC
I
=50 mA
C
=200mA,
F
R
=180 Ω
L
Figure 1. Forward voltage versus forward current
1.4
1.3
Ta = -55°
1.2
1.1
Ta = 25°
1.0
0.9
Ta = 100°
0.8
VF - Forward Voltage - V
0.7
100101.1
IF - Forward Current - mA
Figure 5. Non-saturated and saturated HFE versus
base current
1000
8000
6000
4000
2000
HFE - Forward Transfer Gain
Ta = 25°
0
.01 .1 1 10 100
Ib - Base Current - µA
Vce = 5
Vce = 1
Figure 2. Normalized non-saturated and saturated
CTRce versus LED current
1.2
Normalized to:
Vce = 5 V
1.0
IF = 10 mA
0.8
Ta = 25 °C
0.6
0.4
0.2
0.0
NCTRce - Normalized CTRce
.1 1 10 100 1000
IF - LED Current - mA
Vce = 5 V
Vce =1V
Figure 3. Normalized non-saturated and saturated collector-emitter current versus LED current
10
Normalized to:
Ta = 25°C
IF = 10 mA
1
Vce = 5 V
.1
.01
NIce - Normalized Ice
.001
IF - LED Current - mA
Vce = 5 V
Vce = 1V
101.1
100
Figure 4. Normalized collector-base photocurrent
versus LED current
Figure 6. Low to high propagation delay versus
collector load resistance and LED current
80
Ta = 25°C, Vcc = 5
Vth = 1.5 V
60
40
Delay - µs
20
0
tpLH - Low/High Propagation
0 5 10 15 20
IF - LED Current - mA
1KΩ
220Ω
470Ω
100Ω
Figure 7. High to low propagation delay versus
collector load resistance and LED current
20
15
10
delay - µs
5
0
tpHL - High/Low Propagation
0 5 10 15 20
1KΩ
100Ω
IF - LED Current - mA
Ta = 25°C
Vcc = 5 V
Vth = 1.5
Figure 8. Switching waveform and switching schematic
10
Normalized to:
Ta = 25°C
Vcb = 3.5 V
1
IF = 10 mA
.1
.01
NIcb - Normalized Icb
.001
.1 1 10 100
I
F
V
CC
R
L
t
D
t
O
R
t
PLH
I
F
V
VTH=1.5 V
t
PHL
t
t
S
F
IF - LED Current - mA
5–2
4N32/33