Sharp PQ30RV1, PQ30RV11, PQ30RV2, PQ30RV21 Datasheet

Low Power-Loss Voltage Regulators
PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21
PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21
Variable Output Low Power-Loss Voltage Regulators
Features
¡Compact resin full-mold package ¡Low power-loss (Dropout voltage : MAX.0.5V) ¡Variable output voltage (setting range : 1.5 to 30V) ¡Built-in output ON/OFF control function
Applications
¡Power supply for print concentration control of electronic
typewriters with display
¡Series power supply for motor drives ¡Series power supply for VCRs and TVs
Model Line-ups
Output voltage
Reference voltage precision : ±4%
Reference voltage precision : ±2%
1A output
PQ30RV1
PQ30RV11
2A output
PQ30RV2
PQ30RV21
Outline Dimensions
10.2MAX
7.4±0.2
PQ30RV31
29.1MAX
13.5MIN
1 ●2 ●3 ●4
Internal connection diagram
1
Specific IC
3
φ3.2±0.1
4-1.4
4-0.6
3-(2.54)
2
4
3.6±0.2
+0.3
-0
+0.2
-0.1
1 DC input (VIN) 2 DC output (V 3 GND 4 Output voltage
minute adjustment terminal (V
4.5±0.2
(0.5)
O)
ADJ)
(Unit : mm)
2.8±0.2
4.8MAX
15.6±0.5
(1.5)
Equivalent Circuit Diagram
1 2
Reference voltage generation circuit
“ In the absence of confirmation by device specification sheets,SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs,data books,etc.Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
*ASO protection circuit
Overheat protection circuit
-
4
+
*ASO:Area of Safety Operation
3
· Please refer to the chapter“ Handling Precautions ”.
Low Power-Loss Voltage Regulators
PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21
Absolute Maximum Ratings
*1
Input voltage
*1
Output voltage adjustment voltage Output current Power dissipation (No heat sink)
Power dissipation
(With infinite heat sink)
*2
Junction temperature Operating temperature Storage temperature Soldering temperature
*1
All are open except GND and applicable terminals.
*2
Overheat protection may operate at T
Parameter Symbol Rating Unit
V
PQ30RV1/PQ30RV11 PQ30RV2/PQ30RV21
PQ30RV1/PQ30RV11 PQ30RV2/PQ30RV21
j
>=125˚C.
IN
V
ADJ
I
O
P
D1
P
D2
T
j
T
opr
T
stg
T
sol
35
7 1 2
1.5 15 18
150
-20to+80
-40to+150
260 (For 10s)
Electrical Characteristics
Unless otherwise specified, condition shall be
IN
=15V, VO=10V, IO=0.5A, R1=390 (PQ30RV1/PQ30RV11)
V
IN
=15V, VO=10V, IO=1.0A, R1=390 (PQ30RV2/PQ30RV21) (Ta=25˚C)
V
Parameter Symbol Conditions
Input voltage Output voltage
Load regulation
PQ30RV1/PQ30RV2 PQ30RV11/PQ30RV21 PQ30RV1/PQ30RV11 PQ30RV2/PQ30RV21
Line regulation Ripple rejection
Reference voltage
PQ30RV1/PQ30RV2 PQ30RV11/PQ30RV21
Temperature coefficient of reference voltage Dropout voltage
PQ30RV1/PQ30RV11 PQ30RV2/PQ30RV21
Quiescent current
*3
Input voltage shall be the value when output voltage is 95% in comparison with the initial value.
V
V
RegL
R
RR
V
TcV
Vi-
IN
2
=94 to 8.5k
R
O
2
=84 to 8.7k
R
O
=5mA to 1A
I
O
=5mA to 2A
I
IN
=11 to 28V
V
eg
I
ref
=0
C
ref
=3.3µF
C
ref
j
=0 to 125˚C
T
ref
*3
, IO=0.5A
O
*3
, IO=2A
O
=0
I
I
q
-
Fefer to Fig. 2
-
4.5
1.5
-
-
­45 55
1.20
1.225
-
-
-
-
-
0.3
0.5
0.5 55 65
1.25
1.25 ±1.0
-
-
Fig.1 Test Circuit
MAX.TYP.MIN.
35 30
1.0
1.0
2.5
-
-
1.30
1.275
-
0.5 7
(Ta=25˚C)
V V
A W W ˚C
˚C ˚C ˚C
Unit
V V
% %
dB
V
%
V
mA
V
IN
0.33µF
3
A
21
R
4
R
Iq390
2
V
1
ref
V
Fig.2 Test Circuit of Ripple Rejection
e
i
~
V
IN
0.33µF
21
R
4
3
R
390
+
2
C
ref
1
3.3µF
47µF
+
47µF
+
V
O
R
2
I
O
A
V
R
L
+
O
I
e
o
V
~
R
L
VO=V
[R1=390,V
IO=0.5A f=120Hz (sine wave)
i
=0.5V
e RR=20 log (ei/eo)
R
ref
X 1+ --------- =1.25X 1 + ---------
R
1
ref
=1.25V]
rms
2
R
1
Low Power-Loss Voltage Regulators
0
5
10
15
20
0-20 50 100 150
P
D2
P
D1
Power dissipation P
D
(W)
Ambient temperature Ta (˚C)
P
D1
:No heat sink
P
D2
:With infinite heat sink
Fig.3 Power Dissipation vs. Ambient
Note) Oblique line portion:Overheat protection may operate
Fig.5
Temperature (PQ30RV1/PQ30RV11)
20
15
(W)
D
10
5
Power dissipation P
0
in this area.
D1
:No heat sink
P P
D2
:With infinite heat sink
P
D2
P
D1
0-20 50 100 150
Ambient temperature Ta (˚C)
Overcurrent Protection Characteristics
(PQ30RV1/PQ30RV11)
100
PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21
Fig.4 Power Dissipation vs. Ambient
Note) Oblique line portion:Overheat protection may operate
Fig.6
Temperature (PQ30RV2/PQ30RV21)
in this area.
Overcurrent Protection Characteristics
(PQ30RV2/PQ30RV21)
100
80
60
40
20
Relative output voltage (%)
0
0.5 1.0 1.5 2.00 Output current IO (A)
Fig.7 Output Voltage Adjustment
Characteristics
30
1 390
25
20
15
10
Output voltage VO (V)
5
0
1
10
10
R
2
10
R2 ()
3
4
10
80
60
40
20
Relative output voltage (%)
0
1.0 2.0 3.0 4.00
Output current IO (A)
Fig.8 Reference Voltage Deviation vs.
Junction Temperature
10
(mV)
ref
0
R1=390,R2=2.7k,VIN=15V
O
=0.5A(PQ30RV1/PQ30RV11)
I
O
= 1A(PQ30RV2/PQ30RV21)
Reference voltage deviation V
-10
5
10
I
-25 0 25 50 75 100 125
j
Junction temperature T
(˚C)
Low Power-Loss Voltage Regulators
PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21
Fig.9 Output Voltage vs. Input Voltage
(PQ30RV1/PQ30RV11)
15
1=390,R2=2.7k,Tj=25˚C
R
10
R
L=
5
Output voltage VO (V)
L=10
R
0
0
5101520
Input voltage VIN (V)
Fig.11 Dropout Voltage vs. Junction
Temperature (PQ30RV1/PQ30RV11)
0.5 R
1
=390,R2=2.7k
VIN:input voltage shall be the
0.4
value when output voltage is 95% in comparison with the initial value
(V)
-O
i
0.3
0.2
0.1
Dropout voltage V
Io=1A
0.75A
0.5A
0.25A
Fig.10 Output Voltage vs. Input Voltage
(PQ30RV2/PQ30RV21)
15
1
=390,R2=2.7k,Tj=25˚C
R
(V)
10
O
L=
R
5
Output voltage V
R
L=5
0
0
5101520
Input voltage V
IN
(V)
Fig.12 Dropout Voltage vs. Junction
Temperature (PQ30RV2/PQ30RV21)
0.5 R
1
=390,R2=2.7k
VIN:input voltage shall be the value when output voltage is
0.4 95% in comparison with the initial value
(V)
-O
Dropout voltage Vi
0.3
0.2
0.1
IO=2A
1.5A
1A
0.5A
0
-20 0
25 50 75 100 125
Junction temperature T
j
(˚C)
Fig.13 Quiescent Current vs. Junction
Temperature
5
VIN=35V
O
=0
I
4
(mA)
q
3
2
1
Quiescent current I
0
-20 0 25 50 75 100 125
j
Junction temperature T
(˚C)
0
-20 0
25 50 75 100 125
Junction temperature T
j (˚C)
Fig.14 Ripple Rejection vs. Input Ripple
Frequency (PQ30RV1/PQ30RV11)
80 70 60 50
No C
40 30 20
Tj=25˚C
Ripple rejection RR (dB)
R1=390,R2=2.7k
10
IO=0.5A,ei=0.5V V
IN
=15V
0
0.1 1 10 100 Input ripple frequency f
C
ref
=3.3µF
ref
rms
,
(kHz)
Low Power-Loss Voltage Regulators
PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21
Fig.15 Ripple Rejection vs. Input Ripple
Frequency (PQ30RV2/PQ30RV21)
80 70 60
No C
C
ref=3.3µF
ref
50 40 30 20
Tj=25˚C
Ripple rejection RR (dB)
R1=390,R2=2.7k
10
IO=0.5A,ei=0.5Vrms, VIN=15V
0
0.1 1 10 100 Input ripple frequency f
(kHz)
Fig.17 Ripple Rejection vs. Output Current
(PQ30RV2/PQ30RV21)
80
ref
=3.3µF
C
70
No C
ref
60
50
Fig.16 Ripple Rejection vs. Output Current
(PQ30RV1/PQ30RV11)
80
70
60
C
ref
=3.3µF
No C
ref
50
40
Ripple rejection RR (dB)
Tj=25˚C
1
=390,R2=2.7k
R VIN=15V,ei=0.5V
30
rms
,f=120Hz
0 0.2 0.4 0.6 0.8 1.0
Output current I
O
(A)
Fig.18 Output Peak Current vs. Dropout
Voltage (PQ30RV1/PQ30RV11)
2.0
(A)
OP
1.5
40
Ripple rejection RR (dB)
Tj=25˚C R1=390,R2=2.7k
IN
30
=15V,ei=0.5V
V
rms
,f=120Hz
0 0.2 0.4 0.6 0.8 1.0
O
Output current I
(A)
Fig.19 Output Peak Current vs. Dropout
Voltage (PQ30RV2/PQ30RV21)
4
(A)
OP
3
Output peak current I
Tj=25˚C
1
=390,R2=2.7k
R
0 5 10 15
Dropout voltage Vi
-O
(V)
Output peak current I
Tj=25˚C R
1
=390,R2=2.7k
1.0 0 5 10 15
Dropout voltage V
i
-O
(V)
Fig.20 Output Peak Current vs. Junction
Temperature (PQ30RV1/PQ30RV11)
2.0
(A)
OP
1.5
1.0
IOP:Output current when output voltage
Output peak current I
is 95% in comparison with the initial value R1=390,R2=2.7k
0.5
-20 0 25 50 75 100 125 Junction temperature Tj (˚C)
VIN-VO=5V
2V
0.5V
Low Power-Loss Voltage Regulators
PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21
Fig.21 Output Peak Current vs. Junction
Temperature (PQ30RV2/PQ30RV21)
5
(A)
OP
4
VIN-VO=5V
2V
3
IOP:Output current when output voltage
Output peak current I
is 95% in comparison with the initial value
R1=390,R2=2.7k
2
0.5V
-20 0 25 50 75 100 125 Junction temperature Tj (˚C)
Standard Connection
D
1
V
IN
1
C
IN
2
R
2
4
3
390
1
R
to10k
V
+
C
ref
+
C
O
O
Load
D1 : This device is necessary to protect the element from damage when reverse voltage may be applied to the regulator in case of
input short-circuiting.
Cref : This device is necessary when it is required to enhance the ripple rejection or to delay the output start-up time(*1).
(*1)Otherwise, it is not necessary. (Care must be taken since Cref may raise the gain, facilitating oscillation.) (*1)The output start-up time is proportional to Cre fX R2.
CIN, CO : Be sure to mount the devices CIN and CO as close to the device terminal as possible so as to prevent oscillation.
The standard specification of CIN and CO is 0.33µF and 47 µF, respectively. However, ajust them as necessary after checking.
R1, R2 : These devices are necessary to set the output voltage. The output voltage VO is given by the following formula:
VO=Vref X (1+R2/R1) (Vref is 1.25V TYP)
The standard value of R1 is 390.But value up 10kdoes not cause any trouble.
Low Power-Loss Voltage Regulators
PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21
ON/OFF Operation
D
D
1
V
V
IN
1
C
IN
2
D
2
R
2
4
3
R
1
V
ADJ
+
R
3
C
O
O
R
L
High : Output OFF
V
C
Low : Output ON
V
R
1
Equivalent Circuit in OFF-state
¡ON/OFF operation is available by mounting externally D2 and R3. ¡When VADJ is forcibly raised above Vref (1.25V TYP) by applying the external signal, the output is turned off (pass transistor of
regulator is turned off). When the output is OFF, VADJ must be higher then Vref MAX., and at the same time must be lower than maximum rating 7V. In OFF-state, the load current flows to RL from VADJ through R2. Therefore the value of R2 must be as high as possible.
¡VO'=VADJ X RL/(RL+R2)
occurs at the load. OFF-state equivalent circuit R1 up to 10 is allowed. Select as high value of RL and R2 as possible in this range. In some case, as output voltage is getting lower (VO<1V) , impedance of load resistance rises. In such condition, it is sometime impossible to obtain the minimum value of VO'. So add the dummy resistance indicated by RD in the figure to the circuit parallel to the load.
2
ADJ
R
2
R
R
L
D
VO’
An Example of ON/OFF Circuit Using the 1-chip Microcomputer Output Port (PQ30RV1)
<Specification> Output port of microcomputer
VOH (max) =0.5 V VOH (min) =2.4 V (IOH=0.2mA) MAX. rating of IOH=0.5mA
Output should be set as follows.
15.6V RL=52(IO=0.3A)
From VO=1.25V (1+R2/R1) we get VO=15.6V. R2/R1=11.48 Assuming that VF(max)=0.8V for D2 in case of VOH(min)=2.4V, we get VADJ=VOH(min)-VF(max)=2.4V-0.8V=1.6V. From Vref(max)=1.3V we get R3=0 If R1=10k , we get R2=11.48 X R1=114.8k and IOH as follows, ingnoring RL (52 Ω) : IOH=1.6V X (R1+R2) /R1 X R2 =1.6V X (10k Ω+114.8k Ω) /10k X 114.8k =0.17mA Hence, IOH<0.2mA. Therefore VOH(min)is ensured. Next, assuming that VF(min) =0.5V for D2 in case of VOH(max), we get: IOH=(5V-0.5V) (R1+R2) /R1 X R2=0.49mA which is less than the rating. Figure 1 shows the VO-VC characteristics when R1=10k , R2=115k , R3=0 , VIN=17V, RL=52 Ω, and D1=1S2076A (Hitachi).
Low Power-Loss Voltage Regulators
Output Voltage vs. Control Voltage (PQ30RV1)
V
IN
=17V
R
L
=52
R
1
15
(V)
O
10
5
Output voltage V
0 12345
Control voltage V
Model Line-ups for Lead Forming Type
Output voltage precision:±2.5%
5V outputOutput voltage
PQ30RV1B
=10k
R
2
=115k
R
3
=0
D
1
=1S2076A
C
(V)
2A output
PQ30RV2B
PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21
Outline Dimensions (PQ30RV1B/PQ30RV2B)
10.2MAX
7.4±0.2
PQ30RV1
(24.6)
1 ●2 ●3 ●4
φ3.2±0.1
4-1.4
4-0.6
3-(2.54)
3.6±0.2
+0.3
-0
+0.2
-0.1
Internal connection diagram
1
Specific IC
3
2
4
Note) The value of absolute maximum ratings and electrical characteristics is same as ones of PQ30RV1/2 series.
4.5±0.2
2.8±0.2
16.4±0.7
(2.0)
(1.5)
(0.5)
(3.2)
5±0.5
8.2±0.7
· ( ) : Typical value
· Radius of lead forming portion:R=0.5 to 1.5mm
1 DC input (V 2 DC output (V 3 GND 4 Output voltage
minute adjustment terminal (V
(5±0.5)
4.4MIN
IN
)
O
)
ADJ
)
(Unit : mm)
Loading...