SHARP PC367 User Manual

Page 1
PC367
PC367
Rank Table
Absolute Maximum Ratings
Outline Dimensions
(Unit : mm)
Low Input Current Type Photocoupler
1. Programmable controllers
2. Facsimiles
3. Telephones
Features
Applications
1. Low input current type (IF=0.5mA)
2. High resistance to noise due to high common mode rejection
voltage (CMR:MIN. 10kV/µs)
3. Mini-flat package
4. Isolation voltage (Viso:3 750Vrms)
5. Recognized by UL, file No. 64380
*1 Pulse width<=100µs, Duty ratio=0.001 *2 40 to 60%RH, AC for 1 minute, f=60Hz *3 For 10 seconds
Parameter Symbol Rating Unit
Forward current Peak forward current
IF
IFM
10
200
mA mA
mA
Reverse voltage
Input
Output
VR
V
V
Power dissipation Collector-emitter voltage
P 15
Collector power dissipation
Collector current
Total power dissipation
150
70
50
mW mW
mW
P
tot
IC
PC
VCEO
V
Emitter-collector voltage
6
V
ECO
Viso kVrms
170
Operating temperature
Topr
40 to +125
30 to +100
°C
°C
Storage temperature Isolation voltage
T
stg
*2
*3
*1
Soldering temperature
Tsol
260
3.75
°C
(Ta=25°C)
6
3 6 7
4 3
1 2
1
2
4
3
4.4
±0.2
5.3
±0.3
2.6
±0.2
0.1
±0.1
3.6
±0.3
2.54
±0.25
0.4
±0.1
0.5
+0.4
0.2
7.0
+0.2
0.7
Anode mark
Epoxy resin
45°
6°
Internal connection diagram
0.2
±0.05
1 2 3 4
AnodeAnode Cathode Emitter Collector
0.2mm or more
Soldering area
Model No. Rank mark Ic (mA) Conditions
PC367NT PC367N1T PC367N2T
A, B or no mark
A B
0.5 to 2.5
0.75 to 1.5
1.0 to 2.0
I
F=0.5mA
VCE=5V
T
a=25°C
Notice In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
Internet Internet address for Electronic Components Group http://www.sharp.co.jp/ecg/
查询PC367供应商
Page 2
PC367
Electro-optical Characteristics
Fig.2 Forward Current vs. Ambient
Temperature
Fig.1 Test Circuit for Common Mode Rejection Voltage
Parameter Symbol
MIN.
TYP. MAX. Unit
Forward voltage Reverse current
Collector current
Isolation resistance Floating capacitance
Response time
Common mode rejection voltage
Terminal capacitance Collector dark current
Emitter-collector breakdown voltage
Collector-emitter breakdown voltage
Collector-emitter saturation voltage
Rise time Fall time
V
F
IR Ct
ICEO BVCEO BVECO
RISO
Cf
IC
VCE (sat)
tr tf
CMR
Conditions
I
F=10mA
I
F=0.5mA, VCE=5V
I
F=10mA, IC=1mA
V=0, f=1kHz
V
CE=50V, IF=0
I
C=0.1mA, IF=0
I
E=10µA, IF=0
DC500V 40 to 60%RH
V=0, f=1MHz
V
CE=2V, IC=2mA, RL=100Ω
Ta=25°C, R
L=470Ω, VCM=1.5kV (peak),
I
F=0mA, VCC=9V, Vnp=100mV
1.4
V
V
R=4V
70
6
0.5
5×10
10
1×10
11
30
1.2
2.5
250
0.6
1.0
4
18
3
18
100
10
10
V
V
V
0.2
µA
µs µs
kV/µs
mA
pF
pF
nA
(Ta=25°C)
InputOutputTransfer characteristics
*4 Refer to Fig.1
*4
V
np
1)
1) V
cp
: Voltage which is generated by displacement current in floating
capacitance between primary and secondary side.
V
cp
V
CM
V
CM :
High wave pulse R
L
=470
V
CC
=9V
V
CM
R
L
V
CC
(dV/dt)
V
O
V
O
    
(Vcp Nearly = dV/dt×Cf×RL)
Forward current I
F
(mA)
Ambient temperature Ta (°C)
0
10
5
30 0 25 50 75 100 125
Fig.3
Diode Power Dissipation vs. Ambient Temperature
Diode power dissipation P (mW)
Ambient temperature Ta (°C)
0
15
10
5
30 0 25 50 75 100 125
Page 3
PC367
Fig.6 Peak Forward Current vs. Duty Ratio Fig.7 Forward Current vs. Forward Voltage
Fig.9 Collector Current vs. Collector-emitter
Voltage
Peak forward current I
FM
(mA)
Duty ratio
10
1000
100
10
2
10
3
10
1
22 2555 5 1
Pulse width <=100µs T
a
=25°C
2000
200
20
500
50
Forward current I
F
(mA)
0.1
1
10
100
0 0.5 1.0 1.5 2.0
Forward voltage V
F
(V)
Ta=25°C
Ta=75°C
Ta=100°C
Ta=50°C
Ta=0°C Ta=−25°C
Collector current I
C
(mA)
Collector-emitter voltage VCE (V)
0
30
0 2 4 6 8 10
Ta=25°C
25
20
15
10
5
IF=7mA
IF=5mA
IF=3mA
IF=2mA
IF=1mA
IF=0.5mA
PC (MAX.)
Fig.4 Collector Power Dissipation vs.
Ambient Temperature
Fig.5
Total Power Dissipation vs. Ambient Temperature
Total power dissipation P
tot
(mW)
Ambient temperature Ta (°C)
0
200
150
170
100
50
30 0 25 50 75 100 125
Collector power dissipation P
C
(mW)
Ambient temperature Ta (°C)
0
200
150
100
50
30 0 25 50 75 100 125
Fig.8 Current Transfer Ratio vs. Forward
Current
Current transfer ratio CTR (%)
Forward current IF (mA)
0.1 1 10
0
700
VCE=5V T
a
=25°C
600
500
400
300
200
100
Page 4
PC367
Fig.10 Relative Current Transfer Ratio vs.
Ambient Temperature
Fig.13 Response Time vs. Load Resistance
Response time (µs)
0.1
1000
0.1 1 10 Load resistance R
L
(k)
VCE=2V I
C
=2mA
T
a
=25°C
t
f
t
r
t
d
t
s
100
10
1
Relative current transfer ratio (%)
Ambient temperature Ta (°C)
30 10−20 100 20 30 40 50 60 70 80 90 100
VCE=5V I
F
=0.5mA
0
160
140
120
100
80
60
40
20
Fig.12 Collector Dark Current vs. Ambient
Temperature
Ambient temperature Ta (°C)
10
11
10
5
10
6
10
7
10
8
10
9
10
10
30 10090807060504030201001020
VCE=50V
Collector dark current I
CEO
(A)
Fig.11
Collector - emitter Saturation Voltage vs. Ambient Temperature
Collector-emitter saturation voltage V
CE (sat)
(V)
Ambient temperature Ta (°C)
0
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
IF=10mA I
C
=1mA
30 10090807060504030201001020
Fig.14
Response Time vs. Load Resistance (Saturation)
Response time (µs)
0.1
1000
1 10 100
Load resistance R
L
(k)
VCC=5V I
F
=16mA
T
a
=25°C
t
f
t
d
t
s
100
10
1
t
r
Fig.15 Test Circuit for Response Time
10%
Input
Output
Input
Output
90%
t
s
t
d
V
CC
R
D
R
L
t
f
t
r
Page 5
PC367
Fig.18 Reflow Soldering
25°C
2 min
230°C
200°C
180°C
1min
1 min
1.5 min
30s
Only one time soldering is recommended within the temperature profile shown below.
Fig.16
Voltage Gain vs Frequency
Voltage gain A
V
(dB)
25
5
0.1 1 10 100 1000 Frequency f (kHz)
VCE=2V I
C
=2mA
T
a
=25°C
0
5
10
15
20
RL=10kΩ
1k
100
Fig.17 Collector-emitter Saturation Voltage
vs. Forward Current
Collector-emitter saturation voltage V
CE (sat)
(V)
Forward current IF (mA)
0
5
0 2 4 6 8 10
Ta=25°C
4
3
2
1
IC=7mA IC=5mA IC=3mA IC=2mA
IC=1mA IC=0.5mA
Loading...