Hall Device
Hall Voltage 160mV Thin-Type Package GaAs Hall Device
LT140A
■ Features
¡
Small temperature coefficient of the Hall voltage
¡
Good linearity of the Hall voltage
¡
Small imbalanced voltage
¡
Directly DC voltage applicable
■ Applications
¡
Brushless motors
VCR, CD, CD-ROM, FDD
¡
Measuring equipment
Gauss meters, magnetic substance detectors
¡
Noncontact sensors
Microswitches, tape-end detection
¡
Other magnetic detection
■ Absolute Maximum Ratings
Parameter
voltage
Control
current I
Control
Power dissipation
Operating temperature
Storage temperature
Soldering temperature
*1 Soldering time : 10 seconds
Symbol
V
P
T
*1
T
T
C
C
D
opr
stg
sol
Rating
12
15 mA
150
-20 to +125
-55 to +150
260
(Ta=25˚C)
Unit
mW
■ Outline Dimensions
0.3 0.3 0.6
14
0.50.5
2.45
1.45
23
0.3 0.3
0.9
1.45
1.40
0.6
0.4 0.2
V
˚C
As for dimensions of tape-packaged products, refer to page 44 .
˚C
˚C
Silver Mark
LT140A
(Unit : mm)
0.05±0.05
1.40
+0.1
0.14
Terminal connection
+
C
Input
1 : V
+
H
Output
2 : V
-
C
Input
3 : V
-
H
Output
4 : V
-0.04
■ Electrical Characteristics
No-load Hall voltage
*1
Rank A
Parameter
Imbalanced ratio
*2
Rank B
Rank C
Input resistance
Output resistance
Drift of imbalanced voltage vs. temperature
Temperature coefficient of Hall voltage
Temperature coefficient of input resistance
Linearity of Hall voltage
*1 No-load Hall voltage is nearly proportional to Vc (within the range of 1 to 6V) at temperatures of -20˚C to + 125˚C.
Keep the voltage within the allowable power dissipation range.
*2 Imbalanced ratio is in +/-12% within the range of Vc=1 to 6V.
VH=VM-VHO
1
β=
V
H(T1
)
α=
1
IN(T1
)
R
{K
H(B2
γ=
)-KH(B1)}
H(B1
)+KH(B2)}
{K
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices
shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device spcification sheets before using any SHARP device.
H(T2
)-VH(T1)}
{V
X
(T
2-T1
)
IN(T2
)-RIN(T1)}
{R
XX100
(T
2-T1
)
X2X100,
Symbol
V
V
H
C
=6V, B=100mT
V
C
V
HO/VH
R
R
|∆VHO|
OUT
β
α
γ
=6V,(B=0)/(B=100mT)
I
IN
M
=1mA, B=0mT
I
M
=1mA, B=0mT
V
C
=6V, B=0mT, Ta=-20˚C to 25˚C
V
C
=6V, B=0mT, Ta=25˚C to 125˚C
IC=6mA, B=100mT, T1=-20˚C, T2=125˚C
IM=1mA, B=0mT, T1=-20˚C, T2=125˚C
IC=6mA, B1=50mT, B2=100mT
X100
V
H
H
=
K
(ICXB)
Conditions
V
M
:Observed Hall voltage
HO
:Imbalanced voltage
V
H
:Sensitivity
K
MIN.
145
2
-5
-2
650
1 300
-
-
-
-
TYP.
160
-
-
-
800
1 600
5
-0.04
0.2
0.3
MAX.
175
12
5
-12
950
1 900
-
-
-
-
(Ta=25˚C)
Unit
mV
%
Ω
Ω
mV
%/˚C
%/˚C
%
LT140AHall Device
Fig. 1 Hall Voltage vs. Ambient
Temperature
200
160
(mV)
H
120
IC=6mA
80
Hall voltage V
40
0
-20 0 8040 120
Ambient temperature Ta (˚C)
B=100mT
VC=6V
Fig. 3 Hall Voltage vs. Magnetic Flux
Density
2 000
1 600
(mV)
H
1 200
800
VC=6V
T
a
=25˚C
Fig. 2 Input Resistance vs. Ambient
Temperature
2 000
1 600
(Ω)
IN
1 200
Input resistance R
B=0mT
M
=1mA
I
800
400
0
-20 0 8040 120
Ambient temperature T
a
(˚C)
Fig. 4 Hall Voltage vs. Control Current
400
B=100mT
a=25˚C
T
320
240
160
Hall voltage V
400
0
0 800400200 600 1 000
Magnetic flux density B (mT)
Fig. 5 Hall Voltage vs. Control Voltage
400
B=100mT
T
a
320
(mV)
H
240
160
Hall voltage V
=25˚C
80
0
08412
Control voltage V
C
(V)
Hall voltage VH (mV)
80
0
08412
Control current IC (mA)
Fig. 6 Power Dissipation vs. Ambient
Temperature
200
160
(mW)
D
120
80
40
Power dissipation P
0
08040 120 160 200
Ambient temperature T
a
(˚C)