SGS Thomson Microelectronics TS615IPWT, TS615 Datasheet

TS615
DUAL WIDE BAND OPERATIONAL AMPLIFIER
WITH HIGH OUTPUT CURRENT
LOW NOISE : 2.5nV/Hz
HIGH OUTPUT CURRENT : 420mA
VERY LOW HARMONIC AND INTERMODU-
LATION D I S TORTIO N
HIGH SLEW RA TE : 410V/µs
-3dB BANDWIDTH : 40MHz@gain=12dB on
25load single ended.
on 50load, 12V power supply
CURRENT FEEDBACK STRUCTURE
5V to 12V POWER SUPPLY
SPECIFIED FOR 20 and 50DIFFER EN-
TIAL LOAD
POWER DOWN FUNCTION WITH A SHORT
CIRCUITED OUTPUT to keep the matching with the line in sleep mode
DESCRIPTION
The TS615 is a dual operational am plifier featur­ing a high output current 410mA. These drivers can be configured differentially for driving signals in telecommunication systems using multiple car­riers. The TS615 is ideally suited for xDSL (High Speed Asymmetrical Digital Subscriber Line) ap­plications. This circuit is c apable of driving a 10 or 25 load at ±2.5V, 5V, ±6V or +12V power supply. The TS615 will be able to reach a -3dB bandwidth of 40MHz on 25 load with a 12dB gain. This device is designed for the high slew rates to support low harmonic distortion and inter­modulation. The TS615 is fitted out with Power Down function to decrease the consumption. Dur­ing this sleep state the device displays a short cir­cuit output in order to keep the impedance match­ing with the line. The TS615 is housed in TSSOP14 Exposed-Pad plastic package for a very low thermal resistance.
P
TSSOP14 Exposed-Pad
(Plastic Micro package)
ORDER CODE
Part Number Temperature Range Package
TS615IPWT -40, +85°C PW
PW= Thin Shrink Small Outline Package with Exposed-Pad
(TSSOP Exposed-Pad) only available in Tape & Reel (PWT)
PIN CONNECTIONS (top view)
-VCC1
-VCC1
+VCC1
+VCC1
Non Inverting Input1
Non Inverting Input1
Inverting Input1
Inverting Input1
Power Down
Power Down
NC
NC
1
1 2
2 3
3
+ - - +
+ - - +
4
4 5
5 6
6 7
7
Top View
Top View
14
14
-VCC2
-VCC2
13
13
Output2Output1
Output2Output1
12
12
+VCC2
+VCC2
Non Inverting Input2
Non Inverting Input2
11
11 10
10
Inverting Input2
Inverting Input2 NC
NC
9
9
NC
NC
8
8
APPLICATION
Line driver for xDSL
Multiple Video Line Driver
December 2002
Cross Section V iew Showi ng Exposed-Pa d
Cross Section V iew Showi ng Exposed-Pa d
This pad c an be con nected to a (-Vcc) copper ar ea on the PCB
This pad c an be con nected to a (-Vcc) copper ar ea on the PCB
1/27
TS615
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
T
T
R R P ESD
except
pins 4, 5,
10, 11
ESD
only pins 4,
5, 10, 11
Supply voltage
CC
V
Differential Input Voltage
id
V
in Input Voltage Range
Operating Free Air Temperature Range -40 to + 85 °C
oper
Storage Temperature -65 to +150 °C
std
T
Maximum Junction Temperature 150 °C
j
Thermal Resistance Junction to Case 4 °C/W
thjc
Thermal Resistance Junction to Ambient Area 40 °C/W
thja
Maximum Power Dissipation (@25°C) 3.1 W
max.
CDM : Charged Device Model HBM : Human Body Model MM : Machine Model CDM : Charged Device Model HBM : Human Body Model MM : Machine Model Output Short Circuit
1. All voltage values, except differential voltage are with respect to network terminal.
2. Differential voltage are non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltage must never exceed V
4. An output current limitation protects the circuit from transient currents. Short-circuits can cause excessive heating. Destructive dissipation can result from short circuit on amplifiers.
1)
2)
3)
±7 V ±2 V ±6 V
1.5 2
200
1 1
100
4)
+0.3V.
CC
kV kV
V kV kV
V
OPERATING CONDITIONS
Symbol Parameter Value Unit
V
V
Power Supply Voltage ±2.5 to ±6 V
CC
+1.5V to +VCC-1.5V
Common Mode Input Voltage
icm
-V
CC
TYPICAL APPLICATION:
Differential Line Driver for xDSL Applications
12
12
11
11
10
10
Vi
Vi
R1
R1
R4
R4
Vi Vo
Vi Vo
5
5
4
4
Pw-Dwn
Pw-Dwn
+
+
1/2TS615
1/2TS615
_
_
14
14
R2
R2
GND
GND
R3
R3
3
3
_
_
1/2TS615
1/2TS615
+
+
1
1
6
6
+Vcc
+Vcc
-Vcc
-Vcc
+Vcc
+Vcc
-Vcc
-Vcc
13
13
2
2
12.5
12.5
12.5
12.5
Vo
Vo
1:2
1:2
25 100
25 100
V
2/27
TS615
ELECTRICAL CHARACTERISTICS
V
= ±6Volts, Rfb=910,T
CC
Note: as described on page 24 (table 71), the TS615 requires a 620Ω feedback res i st or for an optimis ed bandwidth wi t h a gai n of 12 B for a 12V power supply. Nevertheless, due to production test constraints, the TS615 is tested with the same feedback resistor for 12V and 5V power su ppl i es (910Ω).
Symbol Parameter Test Condition Min. Typ. Max. Unit
DC PERFORMANCE
V
Input Offset Voltage
io
V
Z
C
CMR
SVR
Differential Input Offset Voltage
io
I
Positive Input Bias Current
ib+
I
Negative Input Bias Current
ib-
Input(+) Impedance 82 k
IN+
Z
Input(-) Impedance 54
IN-
Input(+) Capacitance 1 pF
IN+
Common Mode Rejection Ratio 20 log (∆V
/∆Vio)
ic
Supply Voltage Rejection Ratio 20 log (∆V
I
Total Supply Current per Operator No load 14 17 mA
CC
/∆Vio)
cc
DYNAMIC PERFORMANCE and OUTPUT CHARACTERISTIC
R
Open Loop Transimpedance
OL
-3dB Bandwidth
Full Power Bandwidth
BW
Gain Flatness @ 0.1dB
Tr Rise Time
Tf Fall Time
Ts Settling Time
SR Slew Rate
V
High Level Output Voltage
OH
V
Low Level Output Voltage
OL
Output Sink Current
I
out
Output Source Current
= 25°C (unless otherwise specified)
amb
T
amb
< T
T
min.
T
amb
T
amb
T
min.
T
amb
T
min.
V
ic
T
min.
V
cc
T
min.
V
out
T
min.
< T
amb
= 25°C
< T
< T
amb
< T
< T
amb
= ±4.5V
< T
< T
amb
=±2.5V to ±6V < T
< T
amb
= 7Vp-p, RL = 25
< T
amb.
Small Signal V A
= 12dB, RL = 25
V
Large Signal V
= 12dB, RL = 25
A
V
Small Signal V
= 12dB, RL = 25
A
V
V
= 6Vp-p, AV = 12dB, RL
out
= 25
= 6Vp-p, AV = 12dB, RL
V
out
= 25
= 6Vp-p, AV = 12dB, RL
V
out
= 25
= 6Vp-p, AV = 12dB, RL
V
out
= 25
R
=25Ω Connected to GND
L
R
=25Ω Connected to GND
L
V
= -4Vp
out
< T
T
min.
V
out
T
min.
amb
= +4Vp
< T
amb
< T
< T
< T
max.
max.
max.
max.
max.
max.
<20mVp
out
=3Vp
out
<20mVp
out
max.
max.
1.25 3.5
2.1
mV
2.5 mV
630
7.8 315
3.2
A
µ
A
µ
58 63
61
72 79
78
521
8.9
dB
dB
M
25 40
MHz
26
7 MHz
10.6 ns
12.2 ns
50 ns
330 410 V/µs
4.8 5.1 V
-5.5 -5.2 V
-350 -530
-440
330 420
mA
365
3/27
TS615
Note: as described on page 24 (table 71), the TS615 requires a 620Ω feedback res i st or for an optimis ed bandwidth wi t h a gai n of 12 B for
a 12V power supply. Nevertheless, due to production test constraints, the TS615 is tested with the same feedback resistor for 12V and 5V power su ppl i es (910Ω).
Symbol Parameter Test Condition Min. Typ. Max. Unit
NOISE AND DISTORTION
eN Equivalent Input Noise Voltage F = 100kHz 2.5 nV/√Hz iNp Equivalent Input Noise Current (+) F = 100kHz 15 pA/√Hz iNn Equivalent Input Noise Current (-) F = 100kHz 21 pA/√Hz
= 14Vp-p, AV = 12dB
HD2
HD3
IM2
IM3
2nd Harmonic distortion (differential configuration)
3rd Harmonic distortion (differential configuration)
2nd Order Intermodulation Product (differential configuration)
3rd Order Intermodulation Produ ct (differential configuration)
V
out
F= 110kHz, R
= 14Vp-p, AV = 12dB
V
out
F= 110kHz, R
= 50Ω diff.
L
= 50Ω diff.
L
F1= 100kHz, F2 = 110kHz
= 16Vp-p, AV = 12dB
V
out
= 50Ω diff.
R
L
F1= 370kHz, F2 = 400kHz
= 16Vp-p, AV = 12dB
V
out
R
= 50Ω diff.
L
F1 = 100kHz, F2 = 110kHz
= 16Vp-p, AV = 12dB
V
out
= 50Ω diff.
R
L
F1 = 370kHz, F2 = 400kHz
= 16Vp-p, AV = 12dB
V
out
= 50Ω diff.
R
L
-87 dBc
-83 dBc
-76 dBc
-75
-88 dBc
-87
4/27
TS615
ELECTRICAL CHARACTERISTICS
V
= ±2.5Volts, Rfb=910,T
CC
Symbol Parameter Test Condition Min. Typ. Max. Unit
DC PERFORMANCE
V
Input Offset Voltage
io
V
Z
C
CMR
SVR
Differential Input Offset Voltage
io
I
Positive Input Bias Current
ib+
I
Negative Input Bias Current
ib-
Input(+) Impedance 71 k
IN+
Z
Input(-) Impedance 62
IN-
Input(+) Capacitance 1.5 pF
IN+
Common Mode Rejection Ratio 20 log (∆V
/∆Vio)
ic
Supply Voltage Rejection Ratio 20 log (∆V
I
Total Supply Current per Operator No load 11.9 15 mA
CC
/∆Vio)
cc
DYNAMIC PERFORMANCE and OUTPUT CHARACTERISTICS
R
Open Loop Transimpedance
OL
-3dB Bandwidth
BW
Full Power Bandwidth
Gain Flatness @ 0.1dB
Tr Rise Time
Tf Fall Time
Ts Settling Time
SR Slew Rate
V
High Level Output Voltage
OH
V
Low Level Output Voltage
OL
Output Sink Current
I
out
Output Source Current
= 25°C (unless otherwise specified)
amb
T
amb
< T
T
min.
T
amb
T
amb
T
min.
T
amb
T
min.
V
ic
T
min.
V
cc
T
min.
V
out
T
min.
< T
amb
= 25°C
< T
< T
amb
< T
< T
amb
= ±1V
< T
< T
amb.
=±2V to ±2.5V < T
< T
amb.
= 2Vp-p, RL = 10
< T
< T
amb.
Small Signal V
= 12dB, RL = 10
A
V
Large Signal V
= 12dB, RL = 10
A
V
Small Signal V A
= 12dB, RL = 10
V
V
= 2.8Vp-p, AV = 12dB
out
= 10
R
L
V
= 2.8Vp-p, AV = 12dB
out
= 10
R
L
= 2.2Vp-p, AV = 12dB
V
out
= 10
R
L
= 2.2Vp-p, AV = 12dB
V
out
R
= 10
L
R
=10Ω Connected to GND
L
R
=10Ω Connected to GND
L
= -1.25Vp
V
out
< T
T
min.
V
out
T
min.
< T
amb
= +1.25Vp
< T
< T
amb
max.
max.
max.
max.
max.
max.
<20mVp
out
= 1.4Vp
out
<20mVp
out
max.
max.
0.5 2.5
1.2
2.5 mV 530 8
0.8 11
1.24
55 60
58
63 77
76
25.4
2.1
20 30
MHz
20
5.7 MHz
11 ns
11.5 ns
39 ns
100 130 V/µs
1.5 1.75 V
-2.05 -1.8 V
-350 -470
-450
200 270
245
mV
A
µ
A
µ
dB
dB
M
mA
5/27
TS615
Symbol Parameter Test Condition Min. Typ. Max. Unit
NOISE AND DISTORTION
eN Equivalent Input Noise Voltage F = 100kHz 2.5 nV/√Hz iNp Equivalent Input Noise Current (+) F = 100kHz 15 pA/√Hz iNn Equivalent Input Noise Current (-) F = 100kHz 21 pA/√Hz
= 6Vp-p, AV = 12dB
HD2
HD3
IM2
IM3
2nd Harmonic distortion (differential configuration)
3rd Harmonic distortion (differential configuration)
2nd Order Intermodulation Product (differential configuration)
3rd Order Intermodulation Produ ct (differential configuration)
V
out
F= 110kHz, R
= 6Vp-p, AV = 12dB
V
out
F= 110kHz, R
= 20Ω diff.
L
= 20Ω diff.
L
F1= 100kHz, F2 = 110kHz
= 6Vp-p, AV = 12dB
V
out
R
= 20Ω diff.
L
F1= 370kHz, F2 = 400kHz V
= 6Vp-p, AV = 12dB
out
= 20Ω diff.
R
L
F1 = 100kHz, F2 = 110kHz
= 6Vp-p, AV = 12dB
V
out
= 20Ω diff.
R
L
F1 = 370kHz, F2 = 400kHz V
= 6Vp-p, AV = 12dB
out
R
= 20Ω diff.
L
-97 dBc
-98 dBc
-86
-88
-90
-85
dBc
dBc
POWER DOWN MODE FEA TURES (The Power Down command is a MOS input featuring a high input impedance)
V
= ±2.5Volts, 5Volts, ±6Volts or 12Volts, T
CC
Symbol Parameter Min. Typ. Max. Unit
Pin (6) Threshold Voltage for Power Down Mode
V
Low Level
pdw
High Level
Icc
R C
Power Down Mode Total Current Consumption@ VCC=5V
pdw
Power Down Mode Total Current Consumption@ V Power Down Mode Output Impedance @ VCC=5V
pdw
Power Down Mode Output Impedance @ V Power Down Mode Output Capacitance 63 pF
pdw
POWER DOWN CONTROL CIRCUIT STATUS
V
=Low Level
pdw
=High Level
V
pdw
= 25°C
amb
CC
=12V
CC
Active Standby
=12V
-V
-V
CC
CC
+2
-VCC+0.8 +V
69 80
148 180
19 23
15.3 19
CC
V
A
µ
A
µ
Ω Ω
6/27
TS615
Figure 1 : Load Configuration
Load: RL=25Ω, VCC=±6V
+6V
TS615
TS615
+6V
-6V
-6V
+
+
_
_
25
25
50
50
cable
49.9
49.9
33
33 1W
1W
cable
Figure 2 : Closed Loop Gai n vs. Frequency
AV=+1
2
0
-2
-4
-6
-8
(gain (dB)
-10
-12
-14
(Vcc=±2.5V, Rfb=1.1k, Rload=10) (Vcc=±6V, Rfb=750
-16 100 1k 10k 100k 1M 10M 100M
gain
phase
, Rload=25Ω)
Frequency (Hz)
(Vcc=±6V)
(Vcc=±2.5V)
(Vcc=±2.5V)
(Vcc=±6V)
50
50
40
20
0
-20
-40
-60
-80
-100
-120
Figure 4 : Load Configuration
Load: RL=10Ω, VCC=±2.5V
+2.5V
TS615
TS615
+2.5V
-2.5V
-2.5V
10
10
+
+
_
_
49.9
49.9
11
11
0.5W
0.5W
Figure 5 : Closed Loop Gai n vs. Frequency
AV=-1
2
0
-2
)
°
Phase (
-4
-6
-8
(gain (dB))
-10
-12
-14
(Vcc=±2.5V, Rfb=1k, Rin=1k, Rload=10) (Vcc=±6V, Rfb=680
-16 100 1k 10k 100k 1M 10M 100M
gain
phase
(Vcc=±2.5V)
(Vcc=±6V)
, Rin=680, Rload=25Ω)
Frequency (Hz)
cable
cable
(Vcc=±2.5V)
(Vcc=±6V)
50
50
50
50
-140
-160
-180
-200
)
°
-220
Phase (
-240
-260
-280
-300
Figure 3 : Closed Loop Gai n vs. Frequency
AV=+2
8
6
4
2
0
-2
(gain (dB))
-4
-6
-8
-10 100 1k 10k 100k 1M 10M 100M
gain
phase
(Vcc=±2.5V)
Frequency (Hz)
(Vcc=±6V)
(Vcc=±2.5V)
(Vcc=±6V)
40
20
0
-20
-40
-60
-80
-100
-120
Figure 6 : Closed Loop Gai n vs. Frequency
AV=-2
8
6
4
)
°
Phase (
2
0
-2
(gain (dB))
-4
-6
(Vcc=±2.5V, Rfb=1k, Rin=510, Rload=10)
-8
(Vcc=±6V, Rfb=680
-10 100 1k 10k 100k 1M 10M 100M
gain
phase
(Vcc=±2.5V)
(Vcc=±6V)
, Rin=750//620, Rload=25Ω)
Frequency (Hz)
(Vcc=±2.5V)
(Vcc=±6V)
-140
-160
-180
-200
-220
-240
-260
-280
-300
)
°
Phase (
7/27
TS615
Figure 7 : Closed Loop Gai n vs. Frequency
AV=+4
14
12
10
8
6
4
(gain (dB))
2
0
-2
(Vcc=±2.5V, Rfb=910, Rg=300, Rload=10) (Vcc=±6V, Rfb=620
-4 100 1k 10k 100k 1M 10M 100M
gain
phase
(Vcc=±2.5V)
(Vcc=±6V)
, R g =560//330Ω, Rload=25Ω)
Frequency (Hz)
(Vcc=±2.5V)
(Vcc=±6V)
Figure 8 : Closed Loop Gai n vs. Frequency
AV=+8
20
18
16
14
12
10
(gain (dB))
8
6
4
(Vcc=±2.5V, Rfb=680, Rg=240//160, Rload=10) (Vcc=±6V, Rfb=510
2
100 1k 10k 100k 1M 10M 100M
gain
phase
(Vcc=±2.5V)
(Vcc=±6V)
, Rg=270//100, Rload=25Ω)
Frequency (Hz)
(Vcc=±2.5V)
(Vcc=±6V)
40
20
0
-20
-40
-60
-80
-100
-120
40
20
0
-20
-40
-60
-80
-100
-120
Figure 10 : Closed Loop Gain vs. Frequency
AV=-4
14
12
10
8
)
°
Phase (
6
4
(gain (dB))
2
0
(Vcc=±2.5V, Rfb=1k, Rin=320//360, Rload=10)
-2
(Vcc=±6V, Rfb=620
-4 100 1k 10k 100k 1M 10M 100M
gain
phase
(Vcc=±2.5V)
(Vcc=±6V)
, Rin=360//270, Rload=25Ω)
Frequency (Hz)
Figure 11 : Closed Loop Gain vs. Frequency
AV=-8
)
°
Phase (
20
18
16
14
12
10
(gain (dB))
8
6
4
(Vcc=±2.5V, Rfb=680, Rin=160//180, Rload=10) (Vcc=±6V, Rfb=510
2
100 1k 10k 100k 1M 10M 100M
gain
phase
(Vcc= ± 2. 5V)
(Vcc=±6V)
, Rin=150//110, Rload=25Ω)
Frequency (Hz)
(Vcc=±2.5V)
(Vcc=±6V)
(Vcc=±2.5V)
(Vcc= ± 6V )
-140
-160
-180
-200
-220
-240
-260
-280
-300
-140
-160
-180
-200
-220
-240
-260
-280
-300
)
°
Phase (
)
°
Phase (
Figure 9 : Bandwidth vs. Temperature
AV=+4, Rfb=910
50
45
40
35
Bw (MHz)
30
25
20
-40-200 20406080
8/27
Vcc=±6V Load=25
Vcc=±2.5V Load=10
Temperature (°C)
Figure 12 : Positive Slew Rate
AV=+4, Rfb=620
4
2
(V)
0
OUT
V
-2
-4
0.0 10.0n 20.0n 30.0n 40.0n 50.0n
, V
=±6V, RL=25
CC
Time (s)
TS615
Figure 13 : Positive Slew Rate
AV=+4, Rfb=910
2
1
(V)
0
OUT
V
-1
-2
0.0 10.0n 20.0n 30.0n 40.0n 50.0n
, V
CC
=±2.5V, RL=10
Time (s)
Figure 14 : Negative Slew Rate
AV=+4, Rfb=620Ω, VCC=±6V, RL=25
4
2
Figure 16 : Positive Slew Rate
AV= - 4, Rfb=620
4
2
(V)
0
OUT
V
-2
-4
0.0 10.0n 20.0n 30.0n 40.0n 50.0n
, V
=±6V, RL=25
CC
Time (s)
Figure 17 : Positive Slew Rate
AV= - 4, Rfb=910
2
1
, V
CC
=±2.5V, RL=10
(V)
0
OUT
V
-2
-4
0.0 10.0n 20.0n 30.0n 40.0n 50.0n
Time (s)
Figure 15 : Negative Slew Rate
AV=+4, Rfb=910
2
1
(V)
0
OUT
V
-1
-2
0.0 10.0n 20.0n 30.0n 40.0n 50.0n
, V
CC
=±2.5V, RL=10
Time (s)
(V)
0
OUT
V
-1
-2
0.0 10.0n 20.0n 30.0n 40.0n 50.0n
Time (s)
Figure 18 : Negative Slew Rate
AV= - 4, Rfb=620Ω, VCC=±6V, RL=25
4
2
(V)
0
OUT
V
-2
-4
0.0 10.0n 20.0n 30.0n 40.0n 50.0n
Time (s)
9/27
Loading...
+ 18 hidden pages