SGS Thomson Microelectronics TS4972IJT, TS4972 Datasheet

TS4972
1.2W AUDIO POW ER AMPL IFIER
WITH STANDBY MODE ACTIVE HIGH
OPERATING FROM V
= 2.5V to 5.5V
CC
RAIL TO RAIL OUTPUT
1.2W OUTPUT POWER @ Vcc=5V, THD=1%,
F=1kHz, with 8Load
ULTRA LOW CONSUMPTION IN STANDBY
75dB PSRR @ 217Hz from 2.5 to 5V
LOW POP & CLICK
ULTRA LOW DISTORTION (0.05%)
UNITY GAIN STABLE
FLIP CHIP PACKAGE 8 x 300µm bumps
DESCRIPTION
The TS497 2 i s an Audio Pow er Amplifier capable of delivering 1.6W of continuous RMS ouput pow­er into a 4
This Audio Am plifier is exhibiting 0.1% distortion level (THD) from a 5V supply for a Pout = 250mW RMS. An external standby mode cont rol reduces the supply current to less than 10n A. An internal shutdown protection is provided.
load @ 5V.
PIN CONNECTIONS (Top View)
TS4972JT - FLIP CHIP
76
Vin
8
Vout1
Vin
12
+
Vcc
Gnd
5
Stdby
Vout2
Bypass
3
4
The TS4972 has been designed for high quality audio applications such as m obile phones and t o minimize the number of external components.
The unity-gain stable amplifier can be configured by external gain setting resistors.
APPLICATIONS
Mobile Phones (Cellular / Cordless)
PDAs
Laptop/Notebook computers
Portable Audio Devices
ORDER CODE
Part
Number
Temperature
Range
TS4972IJT -40, +85°C
J = Flip Chip Package - only available in Tape & Reel (JT))
January 2003
Package
J
Marking
4972
TYPICAL APPLICATION SCHEMATIC
Audio
Input
Rin
Vin-
1
Cin
VCC
Rstb
Vin+
7
Bypass
3
Standby
5
Cb
Cfeed
Rfeed
VCC
6
VCC
-
+
Bias
GND
2
­AV = -1
+
Vout 1
Vout 2
8
4
TS4972
Cs
RL
8 Ohms
1/28
TS4972
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
T
T
R
Supply voltage
CC
V
Input Voltage
i
Operating Free Air Temperature Range -40 to + 85 °C
oper
Storage Temperature -65 to +150 °C
stg
T
Maximum Junction Temperature 150 °C
j
Thermal Resistance Junction to Ambient
thja
Pd Power Dissipation
ESD Human Body Model 2 kV ESD Machine Model 200 V
Latch-up Latch-up Immunity Class A
Lead Temperature (soldering, 10sec ) 250 °C
1. All voltages values are measured with respect to the ground pin.
2. The magnitude of input signal must never exceed V
3. Device is protected in case of over temperature by a thermal shutdown active @ 150°C.
4. Exceeding the power derating curves during a long period, involves abnormal operating condition.
OPERATING CONDITIONS
Symbol Parameter Value Unit
V
V
V
R
1. With Heat Sink Surface = 125mm2
Supply Voltage 2.5 to 5.5 V
CC
Common Mode Input Voltage Range
ICM
Standby Voltage Input :
STB
Device ON Device OFF
R
Load Resistor 4 - 32
L
Thermal Resistance Junction to Ambient
thja
1)
2)
3)
Internally Limited
+ 0.3V / GND - 0.3V
CC
G
G
V
- 0.5V ≤ V
CC
1)
6V
GND to V
CC
200 °C/W
4)
to VCC - 1.2V
ND
≤ V
STB
≤ 0.5V
≤ V
STB
CC
ND
90 °C/W
V
V
V
2/28
TS4972
ELECTRICAL CHARACTERISTICS
V
= +5V, GND = 0V , T
CC
Symbol Parameter Min. Typ. Max. Unit
= 25°C (unless otherwise specified)
amb
I
CC
I
STANDBY
Voo
Po
THD + N
PSRR
Φ
GM
GBP
1. Standby mode i s actived when Vstdby is tied to Vcc
2. Dynamic mea surements - 20*log(rms(Vout )/ rms(Vri ppl e)). Vripple is an added sinus signal to Vcc @ f = 217Hz
V
= +3.3V, GND = 0V, T
CC
Supply Current
No input signal, no load
Standby Current
1)
No input signal, Vstdby = Vcc, RL = 8
Output Offset Voltage
No input signal, RL = 8
Output Power
THD = 1% Max, f = 1kHz, RL = 8
Total Harmonic Distortion + Noise
Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8
Power Supply Rejection Ratio
f = 217Hz, RL = 8
Phase Margin at Unity Gain
M
R
= 8Ω, CL = 500pF
L
Gain Margin R
= 8Ω, CL = 500pF
L
Gain Bandwidth Product R
= 8
L
amb
2)
RFeed = 22K
Ω,
Vripple = 200mV rms
Ω,
= 25°C (unless otherwise specified)3)
68mA
10 1000 nA
520mV
1.2 W
0.1 %
75 dB
70 Degrees
20 dB
2MHz
Symbol Parameter Min. Typ. Max. Unit
I
CC
I
STANDBY
Voo
Po
THD + N
PSRR
Φ
GM
GBP
1. Standby mode i s actived when Vstdby is tied to Vcc
2. Dynamic mea surements - 20*log(rms(Vout )/ rms(Vri ppl e)). Vripple is an added sinus signal to Vcc @ f = 217Hz
3. All electrical values are made by correlation between 2.6V and 5V measurements
Supply Current
No input signal, no load
Standby Current
1)
No input signal, Vstdby = Vcc, RL = 8
Output Offset Voltage
No input signal, RL = 8
Output Power
THD = 1% Max, f = 1kHz, RL = 8
Total Harmonic Distortion + Noise
Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8
Power Supply Rejection Ratio
f = 217Hz, RL = 8
Phase Margin at Unity Gain
M
R
= 8Ω, CL = 500pF
L
Gain Margin R
= 8Ω, CL = 500pF
L
Gain Bandwidth Product R
= 8
L
2)
RFeed = 22K
Ω,
Vripple = 200mV rms
Ω,
5.5 8 mA
10 1000 nA
520mV
500 mW
0.1 %
75 dB
70 Degrees
20 dB
2MHz
3/28
TS4972
ELECTRICAL CHARACTERISTICS
V
= 2.6V, GND = 0V, T
CC
Symbol Parameter Min. Typ. Max. Unit
= 25°C (unless otherwise specified)
amb
I
CC
I
STANDBY
Voo
Po
THD + N
PSRR
Φ
GM
GBP
1. Standby mode i s actived when Vstdby is tied to Vcc
2. Dynamic mea surements - 20*log(rms(Vout )/ rms(Vri ppl e)). Vripple is an added sinus signal to Vcc @ f = 217Hz
Supply Current
No input signal, no load
Standby Current
1)
No input signal, Vstdby = Vcc, RL = 8
Output Offset Voltage
No input signal, RL = 8
Output Power
THD = 1% Max, f = 1kHz, RL = 8
Total Harmonic Distortion + Noise
Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8
Power Supply Rejection Ratio
f = 217Hz, RL = 8
Phase Margin at Unity Gain
M
R
= 8Ω, CL = 500pF
L
Gain Margin R
= 8Ω, CL = 500pF
L
Gain Bandwidth Product R
= 8
L
2)
RFeed = 22K
Ω,
Vripple = 200mV rms
Ω,
5.5 8 mA
10 1000 nA
520mV
300 mW
0.1 %
75 dB
70 Degrees
20 dB
2MHz
Components Functional Description
Rin
Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin))
Cin Input coupling capacitor which blocks the DC voltage at the amplifier input terminal
Rfeed Feed back resistor which sets the closed loop gain in conjunction with Rin
Cs Supply Bypass capacitor which provides power supply filtering
Cb Bypass pin capacitor which provides half supply filtering
Cfeed
Low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off frequency 1 / (2 x Pi x Rfeed x Cfeed))
Rstb Pull-up resistor which fixes the right supply level on the standby pin
Gv Closed loop gain in BTL configuration = 2 x (Rfeed / Rin)
REMARKS
1. All measurements, except PSRR measurements, are made with a supply bypass capacitor Cs = 100µF.
2. External resistors are not needed for having better stability when supply @ Vcc down to 3V. By the way,
the quiescent current remains the same.
3. The standby response time is about 1µs.
4/28
TS4972
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
Gain (dB)
Frequency (kHz)
Vcc = 5V ZL = 8Ω + 560pF Tamb = 25°C
Gain
Phase
Phase (Deg)
Fig. 1 : Open Loop Frequency Response
0
60
Gain
40
Vcc = 5V RL = 8
Tamb = 25°C
Phase
20
Gain (dB)
0
-20
-40
-60
-80
-100
-120
-140
-160
-20
-180
-200
-40
0.3 1 10 100 1000 10000
Frequency (kHz)
-220
Fig. 3 : Open Loop Frequency Response
80
60
40
Phase
20
Gain (dB)
0
-20
-40
0.3 1 10 100 1000 10000
Gain
Frequency (kHz)
Vcc = 33V RL = 8
Tamb = 25°C
0
-20
-40
-60
-80
-100
-120
-140
-160
-180
-200
-220
-240
Phase (Deg)
Phase (Deg)
Fig. 2 : Open Loop Frequency Response
Fig. 4 : Open Loop Frequency Response
80
Vcc = 3.3V ZL = 8Ω + 560pF Tamb = 25°C
60
40
20
Gain (dB)
0
-20
-40
0.3 1 10 100 1000 10000
Gain
Phase
Frequency (kHz)
0
-20
-40
-60
-80
-100
-120
-140
-160
-180
-200
-220
-240
Phase (Deg)
Fig. 5 : Open Loop Frequency Response
80
60
40
Phase
20
Gain (dB)
0
-20
-40
0.3 1 10 100 1000 10000
Gain
Frequency (kHz)
Vcc = 2.6V RL = 8 Tamb = 25°C
Fig. 6 : Open Loop Frequency Response
0
-20
-40
-60
-80
-100
-120
-140
-160
Phase (Deg)
-180
-200
-220
-240
80
Vcc = 2.6V ZL = 8Ω + 560pF Tamb = 25°C
60
40
20
Gain (dB)
0
-20
-40
0.3 1 10 100 1000 10000
Gain
Phase
Frequency (kHz)
0
-20
-40
-60
-80
-100
-120
-140
-160
-180
-200
-220
-240
Phase (Deg)
5/28
TS4972
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
100
-240
-220
-200
-180
-160
-140
-120
-100
-80
Gain (dB)
Frequency (kHz)
Vcc = 3.3V CL = 560pF Tamb = 25°C
Gain
Phase
Phase (Deg)
Fig. 7 : Open Loop Frequency Response
100
80
60
Gain
40
20
Gain (dB)
0
Vcc = 5V CL = 560pF
-20
Tamb = 25°C
-40
0.3 1 10 100 1000 10000
Phase
Frequency (kHz)
-80
-100
-120
-140
-160
-180
-200
-220
Fig. 9 : Open Loop Frequency Response
100
80
60
Gain
40
20
Gain (dB)
0
Vcc = 2.6V
-20
CL = 560pF Tamb = 25°C
-40
0.3 1 10 100 1000 10000
Phase
Frequency (kHz)
-80
-100
-120
-140
-160
-180
-200
-220
-240
Fig. 8 : Open Loop Frequency Response
Phase (Deg)
Phase (Deg)
6/28
TS4972
10 100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
Cfeed=680pF
Cfeed=330pF
Cfeed=150pF
Cfeed=0
Vcc = 5, 3.3 & 2.6V Cb = 1µF & 0.1µF Rfeed = 22k Vripple = 200mVrms Input = floating RL = 8 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
Fig. 10 : Power Supply Rejection Ratio (PSRR) vs Power supply
-30
Vripple = 200mVrms Rfeed = 22
-40
Input = floating RL = 8 Tamb = 25°C
-50
PSRR (dB)
-60
-70
-80
Vcc = 5V, 3.3V & 2.6V Cb = 1µF & 0.1µF
10 100 1000 10000 100000
Frequency (Hz)
Fig. 12 : Power Supply Rejection Ratio (PSRR) vs Bypass Capacitor
-10
-20
-30
-40
-50
PSRR (dB)
-60
-70
Cb=100µF
-80
10 100 1000 10000 100000
Cb=1µF
Cb=10µF
Vcc = 5, 3.3 & 2.6V Rfeed = 22k Rin = 22k, Cin = 1µF Rg = 100Ω, RL = 8 Tamb = 25°C
Cb=47µF
Frequency (Hz)
Fig. 11 : Power Supply Rejection Ratio (PSRR) vs Feedback Capacitor
Fig. 13 : Power Supply Rejectio n Ratio (PSRR) vs Input Capacitor
-10
Cin=1µF
-20
-30
-40
PSRR (dB)
-50
-60
Cin=330nF
Cin=220nF
Cin=100nF
Cin=22nF
10 100 1000 10000 100000
Vcc = 5, 3.3 & 2.6V Rfeed = 22kΩ, Rin = 22k Cb = 1µF Rg = 100Ω, RL = 8 Tamb = 25°C
Frequency (Hz)
Fig. 14 : Power Supply Rejection Ratio (PSRR) vs Feedback Resistor
-10
Vcc = 5, 3.3 & 2.6V
-20
Cb = 1µF & 0.1µF Vripple = 200mVrms
-30
Input = floating RL = 8
-40
Tamb = 25°C
-50
PSRR (dB)
-60
-70
-80
10 100 1000 10000 100000
Rfeed=110k
Rfeed=47k
Rfeed=22k
Rfeed=10k
Frequency (Hz)
7/28
TS4972
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0
0.1
0.2
0.3
0.4
0.5
0.6
RL=4
RL=8
Vcc=3.3V F=1kHz THD+N<1%
RL=16
Power Dissipation (W)
Output Power (W)
Fig. 15 : Pout @ THD + N = 1% vs Supply Voltage vs RL
1.6
Gv = 2 & 10
1.4
Cb = 1µF F = 1kHz
1.2
BW < 125kHz Tamb = 25°C
1.0
0.8
0.6
0.4
0.2
Output power @ 1% THD + N (W)
0.0
2.5 3.0 3.5 4.0 4.5 5.0
4
Power Supply (V)
8
6
16
32
Fig. 17 : Power Dissipation vs Pout
1.4
Vcc=5V F=1kHz
1.2
THD+N<1%
1.0
0.8
0.6
0.4
Power Dissipation (W)
0.2
0.0
0.0 0.2 0. 4 0.6 0.8 1.0 1.2 1.4 1.6
RL=16
Output Power (W)
RL=4
RL=8
Fig. 16 : Pout @ THD + N = 10% vs Supply Voltage vs RL
2.0
Gv = 2 & 10
1.8
Cb = 1µF F = 1kHz
1.6
BW < 125kHz
1.4
Tamb = 25°C
1.2
1.0
0.8
0.6
0.4
Output power @ 10% THD + N (W)
0.2
0.0
2.5 3.0 3.5 4.0 4.5 5.0
4
Power Supply (V)
8
6
16
32
Fig. 18 : Power Dissipation vs Pout
Fig. 19 : Power Dissipation vs Pout
0.40
Vcc=2.6V
0.35
F=1kHz THD+N<1%
0.30
0.25
0.20
0.15
0.10
Power Dissipation (W)
0.05
0.00
8/28
0.0 0.1 0.2 0.3 0. 4
RL=16
RL=8
Output Power (W)
Fig. 20 : Power Derating Curves
1.4
Heat sink surface = 125mm (See demoboard)
RL=4
1.2
1.0
0.8
0.6
0.4
0.2
Flip-Chip Package Power Dissipation (W)
0.0
No Heat sink
0 25 50 75 100 125 150
Ambiant Temperature ( C)
2
TS4972
1E-3 0.01 0.1 1
0.01
0.1
1
10
RL = 4Ω, Vcc = 5V Gv = 10 Cb = Cin = 1µF BW < 125kHz, Tamb = 25°C
20kHz
20Hz
1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1
0.01
0.1
1
10
RL = 4Ω, Vcc = 2.6V Gv = 10 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C
20kHz
20Hz
1kHz
THD + N (%)
Output Power (W)
Fig. 21 : THD + N vs Output Power
10
RL = 4
Vcc = 5V Gv = 2 Cb = Cin = 1µF
1
BW < 125kHz Tamb = 25°C
THD + N (%)
0.1
0.01 1E-3 0.01 0.1 1
20kHz
20Hz
Output Power (W)
1kHz
Fig. 23 : THD + N vs Output Power
10
RL = 4Ω, Vcc = 3.3V Gv = 2 Cb = Cin = 1µF BW < 125kHz
1
Tamb = 25°C
Fig. 22 : THD + N vs Output Power
Fig. 24 : THD + N vs Output Power
10
RL = 4Ω, Vcc = 3.3V Gv = 10 Cb = Cin = 1µF BW < 125kHz
1
Tamb = 25°C
20kHz
20kHz
THD + N (%)
0.1
20Hz
0.01 1E-3 0.01 0.1 1
Output Power (W)
1kHz
Fig. 25 : THD + N vs Output Power
10
RL = 4Ω, Vcc = 2.6V Gv = 2 Cb = Cin = 1µF BW < 125kHz
1
Tamb = 25°C
THD + N (%)
0.1
0.01 1E-3 0.01 0.1
20kHz
20Hz
1kHz
Output Power (W)
THD + N (%)
0.1
0.01 1E-3 0.01 0.1 1
Output Power (W)
20Hz
1kHz
Fig. 26 : THD + N vs Output Power
9/28
Loading...
+ 19 hidden pages