SGS Thomson Microelectronics TS487IDT, TS487ID, TS486IST, TS486IDT, TS486ID Datasheet

...
1/31
OPERATING FROM Vcc=2V to 5.5V
STANDBY MODE ACTIVE LO W (TS486) or
HIGH (TS487)
OUTPUT POWER: 102mW @5V, 38mW
@3.3V into 16 with 0.1% THD+N max (1kHz)
LOW CURRENT CONSUMPTION: 2.5mA max
High Crosstalk immunity: 83dB (F=1kHz)
PSRR: 58 dB (F=1kHz), inputs grounded
ON/OFF click reduction circuitry
Unity-Gain S table
SHORT CIRCUIT LIMITATION
Available in SO8, MiniSO8 & DFN 3x3mm
DESCRIPTION
The TS486/7 is a dual audio power amplifier capa­ble of driving, in single-ended mode, either a 16 or a 32 stereo headset. Capable of descending to lo w voltages , it delivers up to 90mW per channel (into 16 loads) of con­tinuous average power with 0.3% THD+N in the audio bandwitdth from a 5V power supply. An externally-controlled standby mode reduces the supply current t o 10nA (typ.). The unity gain stable TS486/7 can be configured by external gain-setting resistors or used in a f ixed gain ver­sion.
APPLICATIONS
Headphone Amplifier
Mobile phone, PDA, computer motherboard
High end TV, portable audio player
ORDER CODE
MiniSO & DFN only available in Tape & Reel with T suffix, SO is available in Tube (D) and in Tape & Reel (DT)
PIN CONNECTIONS (top view)
Part
Number
Temperature
Range: I
Package
Gain Marking
DSQ
TS486
-40, +85°C
external TS486I
TS487
external TS487I
TS486
••
external K86A TS486-1 tba tba x1/0dB K86B TS486-2 tba tba x2/6dB K86C TS486-4 tba tba x4/12dB K86D TS487
••
external K87A TS487-1 tba tba x1/0dB K87B TS487-2 tba tba x2/6dB K87C TS487-4 tba tba x4/12dB K87D
TS487IDT: SO8, TS487IST, TS487-1IST,
TS487-2IST, TS487-4IST: MiniSO8
TS486-IQT, TS486-1IQT, TS486-2IQT, TS486-4IQT:
DFN8
1 2 3 4
5
8 7 6
BYPASS
GND SHUTDOWN
Vcc OUT
(2)
OUT (1)
VIN (2)
VIN (1)
1 2 3 4
5
8 7 6
BYPASS
GND SHUTDOWN
Vcc OUT
(2)
OUT (1)
VIN (2)
VIN (1)
1 2 3 4
5
8 7 6
BYPASS
GND SHUTDOWN
Vcc OUT
(2)
OUT (1)
VIN (2)
VIN (1)
1 2 3 4
5
8 7 6
BYPASS
GND SHUTDOWN
Vcc OUT
(2)
OUT (1)
VIN (2)
VIN (1)
TS487-IQT,
TS487-1IQT, TS487-2IQT, TS487-4IQT: DFN8
TS486IDT: SO8, TS486IST, TS486-1IST,
TS486-2IST, TS486-4IST: MiniSO8
OUT (1)
4
3
2
1
BYPASS
GND
VCC OUT (2) VIN (2)
SHUTDOWN
VIN (1)
5
6
7
8
OUT (1)
4
3
2
1
BYPASS
GND
VCC OUT (2) VIN (2)
SHUTDOWN
VIN (1)
5
6
7
8
OUT (1)
4
3
2
1
BYPASS
GND
VCC OUT (2) VIN (2)
SHUTDOWN
VIN (1)
5
6
7
8
OUT (1)
4
3
2
1
BYPASS
GND
VCC OUT (2) VIN (2)
SHUTDOWN
VIN (1)
5
6
7
8
OUT (1)
4
3
2
1
BYPASS
GND
VCC OUT (2) VIN (2)
SHUTDOWN
VIN (1)
5
6
7
8
TS486 TS487
100mW STEREO HEADPHONE AMPLIFIER WITH STANDBY
MODE
June 2003
TS486-TS487
2/31
ABSOLUTE MAXIMUM RATINGS
OPERATING CONDITIONS
Symbol Parameter Value Unit
V
CC
Supply voltage
1)
6V
V
i
Input Voltage
-0.3v to V
CC
+0.3v
V
T
stg
Storage Temperature -65 to +150 °C
T
j
Maximum Junction Temperature 150 °C
R
thja
Thermal Resistance Junction to Ambient
SO8 MiniSO8 DFN8
175 215
70
°C/W
Pd
Power Dissipation
2)
SO8 MiniSO8 DFN8
0.71
0.58
1.79
W
ESD
Human Body Model (pin to pin): TS486, TS487
3)
1.5 kV
ESD Machine Model - 220pF - 240pF (pin to pin) 100 V
Latch-up Latch-up Immunity (All pins) 200 mA
Lead Temperature (soldering, 10sec ) 250 °C Output Short-Circuit to Vcc or GND
continous
4)
1. All voltage values are measured with respect to the ground pin.
2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C.
3. TS487 stands 1.5KV on all pins except sta ndby pin which st ands 1KV.
4. Attention must be pai d to continou s pow er dissipation (V
DD
x 300mA). Exposure of the IC to a short circuit for an extended time period is
dramatically reducing product lif e expectancy .
Symbol Parameter Value Unit
V
CC
Supply Voltage 2 to 5.5 V
R
L
Load Resistor
16
T
oper
Operating Free Air Temperature Range -40 to + 85 °C
C
L
Load Capacitor
R
L
= 16 to 100
R
L
> 100
400 100
pF
V
STB
Standby Voltage Input
TS486 ACTIVE / TS487 in STANDBY TS486 in STANDBY / TS487 ACTIVE
1.5 ≤ V
STB
≤ V
CC
GND ≤ V
STB
≤ 0.4
1)
V
R
THJA
Thermal Resistance Junction to Ambient
SO8 MiniSO8
DFN8
2)
150 190
41
°C/W
1. The minimum current consumption (I
STANDBY
) is guaranteed at GND (TS486) or VCC (TS487) for the whole temperature range.
2. When mounted on a 4-l ayer PCB.
TS486-TS487
3/31
FIXED GAIN VERSION SPECIFIC ELECTRICAL CHARACTERISTI CS
V
CC
from +5V to +2V, GND = 0V, T
amb
= 25°C (unless otherwise specified)
APPLICATION COMPONENTS INFORMATION
TYPICAL APPLICATION SCHEMATICS
Symbol Parameter Min. Typ. Max. Unit
R
IN 1,2
Input Resistance
1)
1. See figure 30 to establish the value of Cin vs. -3dB cut off frequency.
20 k
G
Gain value for Gain TS486/TS487-1 Gain value for Gain TS486/TS487-2 Gain value for Gain TS486/TS487-4
0dB 6dB
12dB
dB
Components Functional Description
R
IN1,2
Inverting input resistor which sets the closed loop gain in conjunction with R
FEED
. This resistor also
forms a high pass filter with C
IN
(fc = 1 / (2 x Pi x RIN x CIN)) . Not needed in fixed gain versions.
C
IN1,2
Input coupling capacitor which blocks the DC voltage at the amplifier’s input terminal.
R
FEED1,2
Feedback resistor which sets the closed loop gain in conjunction with RIN. A
V
= Closed Loop Gain= -R
FEED/RIN
. Not needed in fixed gain versions.
C
S
Supply Bypass capacitor which provides power supply filtering.
C
B
Bypass capacitor which provides half supply filtering.
C
OUT1,2
Output coupling capacitor which blocks the DC voltage at the load input terminal. This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x R
L
x C
OUT
)).
TS486-TS487
4/31
ELECTRICAL CHARACTERISTICS
V
CC
= +5V, GND = 0V, T
amb
= 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
I
CC
Supply Current
No input signal, no load 1.8 2.5
mA
I
STANDBY
Standby Current
No input signal, V
STANDBY
=GND for TS486, RL=32
No input signal, V
STANDBY
=Vcc for TS487, RL=32
10 1000 nA
V
IO
Input Offset Voltage (V
ICM
= VCC/2)
1mV
I
IB
Input Bias Current (V
ICM
= VCC/2)
1)
1. Only for extern al gai n version.
90 200 nA
P
O
Output Power
THD+N = 0.1% Max, F = 1kHz, R
L
= 32
THD+N = 1% Max, F = 1kHz, R
L
= 32
THD+N = 0.1% Max, F = 1kHz, R
L
= 16
THD+N = 1% Max, F = 1kHz, R
L
= 16
60 95
64
65 102 108
mW
THD + N
Total Harmonic Distortion + Noise (A
v
=-1)
R
L
= 32
Ω,
P
out
= 60mW, 20Hz ≤ F ≤ 20kHz
R
L
= 16
Ω,
P
out
= 90mW, 20Hz ≤ F ≤ 20kHz
0.3
0.3
%
PSRR
Power Supply Rejection Ratio, inputs grounded
2)
(Av=-1), RL>=16Ω, CB=1µF, F = 1kHz, Vripple = 200mVpp
2. Guaranteed by design and evaluation.
53 58 dB
I
O
Max Output Current
THD +N ≤ 1%, R
L
= 16Ω connected between out and VCC/2
106 115 mA
V
O
Output Swing V
OL
: RL = 32
V
OH
: RL = 32
V
OL
: RL = 16
V
OH
: RL = 16
4.45
4.2
0.45
4.52
0.6
4.35
0.5
0.7
V
SNR
Signal-to-Noise Ratio (A weighted, A
v
=-1)
2)
(RL = 32
Ω,
THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz)
80 103 dB
Crosstalk
Channel Separation, R
L
= 32
Ω,
Av=-1
F = 1kHz F = 20Hz to 20kHz Channel Separation, R
L
= 16
Ω,
Av=-1
F = 1kHz F = 20Hz to 20kHz
83
79
80
72
dB
C
I
Input Capacitance 1 pF
GBP
Gain Bandwidth Product (R
L
= 32
Ω)
1.1 MHz
SR
Slew Rate, Unity Gain Inverting (R
L
= 16
Ω)
0.4 V/µs
TS486-TS487
5/31
ELECTRICAL CHARACTERISTICS
V
CC
= +3.3V, GND = 0V, T
amb
= 25°C (unless otherwise specified)
1)
1. All electrical values are guaranted with correlation measurements at 2V and 5V.
Symbol Parameter Min. Typ. Max. Unit
I
CC
Supply Current
No input signal, no load 1.8 2.5
mA
I
STANDBY
Standby Current
No input signal, V
STANDBY
=GND for TS486, RL=32
No input signal, V
STANDBY
=Vcc for TS487, RL=32
10 1000 nA
V
IO
Input Offset Voltage (V
ICM
= VCC/2)
1mV
I
IB
Input Bias Current (V
ICM
= VCC/2)
2)
2. Only for external gai n version.
90 200 nA
P
O
Output Power
THD+N = 0.1% Max, F = 1kHz, R
L
= 32
THD+N = 1% Max, F = 1kHz, R
L
= 32
THD+N = 0.1% Max, F = 1kHz, R
L
= 16
THD+N = 1% Max, F = 1kHz, R
L
= 16
23 36
26
28
38
42
mW
THD + N
Total Harmonic Distortion + Noise (A
v
=-1)
R
L
= 32
Ω,
P
out
= 16mW, 20Hz ≤ F ≤ 20kHz
R
L
= 16
Ω,
P
out
= 35mW, 20Hz ≤ F ≤ 20kHz
0.3
0.3
%
PSRR
Power Supply Rejection Ratio, inputs grounded
3)
(Av=-1), RL>=16Ω, CB=1µF, F = 1kHz, Vripple = 200mVpp
3. Guaranteed by des i gn and evaluation.
53 58 dB
I
O
Max Output Current
THD +N ≤ 1%, R
L
= 16Ω connected between out and VCC/2
64 75 mA
V
O
Output Swing V
OL
: RL = 32
V
OH
: RL = 32
V
OL
: RL = 16
V
OH
: RL = 16
2.85
2.68
0.3 3
0.45
2.85
0.38
0.52
V
SNR
Signal-to-Noise Ratio (A weighted, A
v
=-1) 3)
(R
L
= 32
Ω,
THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz)
80 98 dB
Crosstalk
Channel Separation, R
L
= 32
Ω,
Av=-1
F = 1kHz F = 20Hz to 20kHz Channel Separation, R
L
= 16
Ω,
Av=-1
F = 1kHz F = 20Hz to 20kHz
80 76
77 69
dB
C
I
Input Capacitance 1 pF
GBP
Gain Bandwidth Product (R
L
= 32
Ω)
1.1 MHz
SR
Slew Rate, Unity Gain Inverting (R
L
= 16
Ω)
0.4 V/µs
TS486-TS487
6/31
ELECTRICAL CHARACTERISTICS
V
CC
= +2.5V, GND = 0V, T
amb
= 25°C (unless otherwise specified)
1)
1. All electrical values are guaranted with correlation measurements at 2V and 5V.
Symbol Parameter Min. Typ. Max. Unit
I
CC
Supply Current
No input signal, no load 1.7 2.5
mA
I
STANDBY
Standby Current
No input signal, V
STANDBY
=GND for TS486, RL=32
No input signal, V
STANDBY
=Vcc for TS487, RL=32
10 1000 nA
V
IO
Input Offset Voltage (V
ICM
= VCC/2)
1mV
I
IB
Input Bias Current (V
ICM
= VCC/2)
2)
2. Only for external gai n version.
90 200 nA
P
O
Output Power
THD+N = 0.1% Max, F = 1kHz, R
L
= 32
THD+N = 1% Max, F = 1kHz, R
L
= 32
THD+N = 0.1% Max, F = 1kHz, R
L
= 16
THD+N = 1% Max, F = 1kHz, R
L
= 16
12.5
17.5
13 14 21 22
mW
THD + N
Total Harmonic Distortion + Noise (A
v
=-1)
R
L
= 32
Ω,
P
out
= 10mW, 20Hz ≤ F ≤ 20kHz
R
L
= 16
Ω,
P
out
= 16mW, 20Hz ≤ F ≤ 20kHz
0.3
0.3
%
PSRR
Power Supply Rejection Ratio, inputs grounded
3)
(Av=-1), RL>=16Ω, CB=1µF, F = 1kHz, Vripple = 200mVpp
3. Guaranteed by des i gn and evaluation.
53 58 dB
I
O
Max Output Current
THD +N ≤ 1%, R
L
= 16Ω connected between out and VCC/2
45 56 mA
V
O
Output Swing V
OL
: RL = 32
V
OH
: RL = 32
V
OL
: RL = 16
V
OH
: RL = 16
2.14
1.97
0.25
2.25
0.35
2.15
0.32
0.45
V
SNR
Signal-to-Noise Ratio (A weighted, A
v
=-1)
3)
(RL = 32
Ω,
THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz)
80 95 dB
Crosstalk
Channel Separation, R
L
= 32
Ω,
Av=-1
F = 1kHz F = 20Hz to 20kHz Channel Separation, R
L
= 16
Ω,
Av=-1
F = 1kHz F = 20Hz to 20kHz
80 76
77 69
dB
C
I
Input Capacitance 1 pF
GBP
Gain Bandwidth Product (R
L
= 32
Ω)
1.1 MHz
SR
Slew Rate, Unity Gain Inverting (R
L
= 16
Ω)
0.4 V/µs
TS486-TS487
7/31
ELECTRICAL CHARACTERISTICS
V
CC
= +2V, GND = 0V , T
amb
= 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
I
CC
Supply Current
No input signal, no load 1.7 2.5
mA
I
STANDBY
Standby Current
No input signal, V
STANDBY
=GND for TS486, RL=32
No input signal, V
STANDBY
=Vcc for TS487, RL=32
10 1000 nA
V
IO
Input Offset Voltage (V
ICM
= VCC/2)
1mV
I
IB
Input Bias Current (V
ICM
= VCC/2)
1)
1. Only for extern al gai n version.
90 200 nA
P
O
Output Power
THD+N = 0.1% Max, F = 1kHz, R
L
= 32
THD+N = 1% Max, F = 1kHz, R
L
= 32
THD+N = 0.3% Max, F = 1kHz, R
L
= 16
THD+N = 1% Max, F = 1kHz, R
L
= 16
7
9.5
8 9
12 13
mW
THD + N
Total Harmonic Distortion + Noise (A
v
=-1)
R
L
= 32
Ω,
P
out
= 6.5mW, 20Hz ≤ F ≤ 20kHz
R
L
= 16
Ω,
P
out
= 8mW, 20Hz ≤ F ≤ 20kHz
0.3
0.3
%
PSRR
Power Supply Rejection Ratio, inputs grounded
2)
(Av=-1), RL>=16Ω, CB=1µF, F = 1kHz, Vripple = 200mVpp
2. Guaranteed by design and evaluation.
52 57 dB
I
O
Max Output Current
THD +N ≤ 1%, R
L
= 16Ω connected between out and VCC/2
33 41 mA
V
O
Output Swing V
OL
: RL = 32
V
OH
: RL = 32
V
OL
: RL = 16
V
OH
: RL = 16
1.67
1.53
0.24
1.73
0.33
1.63
0.29
0.41
V
SNR
Signal-to-Noise Ratio (A weighted, A
v
=-1)
2)
(RL = 32
Ω,
THD +N < 0.4%, 20Hz ≤ F ≤ 20kHz)
80 93 dB
Crosstalk
Channel Separation, R
L
= 32
Ω,
Av=-1
F = 1kHz F = 20Hz to 20kHz Channel Separation, R
L
= 16
Ω,
Av=-1
F = 1kHz F = 20Hz to 20kHz
80 76
77 69
dB
C
I
Input Capacitance 1 pF
GBP
Gain Bandwidth Product (R
L
= 32
Ω)
1.1 MHz
SR
Slew Rate, Unity Gain Inverting (R
L
= 16
Ω)
0.4 V/µs
TS486-TS487
8/31
Index of Graphs
Description Figure Page
Common Curves
Open Loop Gain and Phase vs Frequency 1 to 10 9 to 10 Current Consumption vs Power Supply Voltage 11 10 Current Consumption vs Standby Voltage 12 to 17 10 to 11 Output Power vs Power Supply Voltage 18 to19 11 to 12 Output Power vs Load Resistor 20 to 23 12 Power Dissipation vs Output Power 24 to 27 12 to 13 Power Derating vs Ambiant Temperature 28 13 Output Voltage Swing vs Supply Voltage 29 13 Low Frequency Cut Off vs Input Capacitor for fixed gain versions 30 13
Curves With 0dB Gain Setting (Av=-1)
THD + N vs Output Power 31 to 39 14 to 15 THD + N vs Frequency 40 to 42 15 Crosstalk vs Frequency 43 to 48 16 Signal to Noise Ratio vs Power Supply Voltage 49 to 50 17 PSRR vs Frequency 51 to 56 17 to 18
Curves With 6dB Gain Setting (Av=-2)
THD + N vs Output Power 57 to 65 19 to 20 THD + N vs Frequency 66 to 68 20 Crosstalk vs Frequency 69 to 72 21 Signal to Noise Ratio vs Power Supply Voltage 73 to 74 21 PSRR vs Frequency 75 to 79 22
Curves With 12dB Gain Setting (Av=-4)
THD + N vs Output Power 80 to 88 22 to 24 THD + N vs Frequency 89 to 91 24 Crosstalk vs Frequency 92 to 95 24 Signal to Noise Ratio vs Power Supply Voltage 96 to 97 25 PSRR vs Frequency 98 to 102 26
TS486-TS487
9/31
Fig. 1: Open Loop Gain and Phase vs Frequency
Fig. 3: Open Loop Gain and Phase vs Frequency
Fig. 5: Open Loop Gain and Phase vs Frequency
Fig. 2: Open Loop Gain and Phase vs Frequency
Fig. 4: Open Loop Gain and Phase vs Frequency
Fig. 6: Open Loop Gain and Phase vs Frequency
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 5V ZL = 16
Tamb = 25°C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V ZL = 16
Tamb = 25°C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 5V ZL = 32
Tamb = 25°C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 5V ZL = 16Ω+400pF Tamb = 25°C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V ZL = 16Ω+400pF Tamb = 25°C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 5V ZL = 32Ω+400pF Tamb = 25°C
Gain
Phase
Phase (Deg)
TS486-TS487
10/31
Fig. 7: Open Loop Gain and Phase vs Frequency
Fig. 9: Open Loop Gain and Phase vs Frequency
Fig. 11: Current Consumption vs Power Supply Voltage
Fig. 8: Open Loop Gain and Phase vs Frequency
Fig. 10: Open Loop Gain and Phase vs Frequency
Fig. 12: Current Consumption vs Standby Voltage
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V ZL = 32
Tamb = 25°C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 5V RL = 600
Tamb = 25°C
Gain
Phase
Phase (Deg)
012345
0.0
0.5
1.0
1.5
2.0
Ta=85
°C
Ta=25°C
No load
Ta=-40°C
Current Consumption (mA)
Power Supply Voltage (V)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V ZL = 32Ω+400pF Tamb = 25°C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V RL = 600
Tamb = 25°C
Gain
Phase
Phase (Deg)
012345
0.0
0.5
1.0
1.5
2.0
Ta=85
°C
Ta=25°C
TS486 Vcc = 5V No load
Ta=-40°C
Current Consumption (mA)
Standby Voltage (V)
TS486-TS487
11/31
Fig. 13: Current Consumption vs Standby Voltage
Fig. 15: Current Consumption vs Standby Voltage
Fig. 17: Current Consumption vs Standby Voltage
Fig. 14: Current Consumption vs Standby Voltage
Fig. 16: Current Consumption vs Standby Voltage
Fig. 18: Output P owe r vs Power S up pl y Voltage
0123
0.0
0.5
1.0
1.5
2.0
Ta=85°C
Ta=25°C
TS486 Vcc = 3.3V No load
Ta=-40°C
Current Consumption (mA)
Standby Voltage (V)
012345
0.0
0.5
1.0
1.5
2.0
2.5
Ta=85°C
Ta=25°C
TS487 Vcc = 5V No load
Ta=-40°C
Current Consumption (mA)
Standby Voltage (V)
012
0.0
0.5
1.0
1.5
2.0
Ta=85°C
Ta=25°C
TS487 Vcc = 2V No load
Ta=-40°C
Current Consumption (mA)
Standby Voltage (V)
012
0.0
0.5
1.0
1.5
2.0
Ta=85°C
Ta=25°C
TS486 Vcc = 2V No load
Ta=-40°C
Current Consumption (mA)
Standby Voltage (V)
0123
0.0
0.5
1.0
1.5
2.0
Ta=85°C
Ta=25°C
TS487 Vcc = 3.3V No load
Ta=-40°C
Current Consumption (mA)
Standby Voltage (V)
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0
25
50
75
100
125
150
175
200
THD+N=10%
THD+N=0.1%
RL = 16
F = 1kHz BW < 125kHz Tamb = 25°C
THD+N=1%
Output power (mW)
Vcc (V)
TS486-TS487
12/31
Fig. 19: Output P owe r vs Po wer S up pl y Voltage
Fig. 21: Output Power vs Load Resistor
Fig. 23: Output Power vs Load Resistor
Fig. 20: Output Power vs Load Resistor
Fig. 22: Output Power vs Load Resistor
Fig. 24: Power Dissipation vs Output Power
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0
25
50
75
100
THD+N=10%
THD+N=0.1%
RL = 32
F = 1kHz BW < 125kHz Tamb = 25°C
THD+N=1%
Output power (mW)
Vcc (V)
8 16243240485664
0
10
20
30
40
50
60
70
THD+N=10%
THD+N=0.1%
Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25°C
THD+N=1%
Output power (mW)
Load Resistance ( )
8 16243240485664
0
5
10
15
20
25
THD+N=10%
THD+N=0.1%
Vcc = 2V F = 1kHz BW < 125kHz Tamb = 25°C
THD+N=1%
Output power (mW)
Load Resistance ( )
8 16243240485664
0
20
40
60
80
100
120
140
160
180
200
THD+N=10%
THD+N=0.1%
Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C
THD+N=1%
Output power (mW)
Load Resistance ( )
8 16243240485664
0
5
10
15
20
25
30
35
40
45
50
THD+N=10%
THD+N=0.1%
Vcc = 2.5V F = 1kHz BW < 125kHz Tamb = 25°C
THD+N=1%
Output power (mW)
Load Resistance ( )
0 20406080100
0
20
40
60
80
Vcc=5V F=1kHz THD+N<1%
RL=32
RL=16
Power Dissipation (mW)
Output Power (mW)
TS486-TS487
13/31
Fig. 25: Power Dissipation vs Output Power
Fig. 27: Power Dissipation vs Output Power
Fig. 29: Output Voltage Swing vs Power Supply Voltage
Fig. 26: Power Dissipation vs Output Power
Fig. 28: Power Derating vs Ambiant Temperature
Fig. 30: Low Frequency Cut Off vs Input Capacitor for fixed gain versions.
0 10203040
0
10
20
30
40
Vcc=3.3V F=1kHz THD+N<1%
RL=16
RL=32
Power Dissipation (mW)
Output Power (mW)
024681012
0
5
10
15
RL=16
RL=32
Vcc=2V F=1kHz THD+N<1%
Power Dissipation (mW)
Output Power (mW)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
RL=32
RL=16
Tamb=25°C
VOH & VOL (V)
Power Supply Voltage (V)
0 5 10 15 20
0
10
20
Vcc=2.5V F=1kHz THD+N<1%
RL=16
RL=32
Power Dissipation (mW)
Output Power (mW)
TS486-TS487
14/31
Fig. 31: THD + N vs Output Power
Fig. 33: THD + N vs Output Power
Fig. 35: THD + N vs Output Power
Fig. 32: THD + N vs Output Power
Fig. 34: THD + N vs Output Power
Fig. 36: THD + N vs Output Power
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20Hz Av = -1 Cb = 1µF BW < 22kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600Ω, F = 20Hz Av = -1, Cb = 1µF BW < 22kHz Tamb = 25°C
THD + N (%)
Output Voltage (Vrms)
1 10 100
1E-3
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 1kHz Av = -1 Cb = 1µF BW < 125kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 20Hz Av = -1 Cb = 1µF BW < 22kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 1kHz Av = -1 Cb = 1µF BW < 125kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600Ω, F = 1kHz Av = -1, Cb = 1µF BW < 125kHz, Tamb = 25°C
THD + N (%)
Output Voltage (Vrms)
TS486-TS487
15/31
Fig. 37: THD + N vs Output Power
Fig. 39: THD + N vs Output Power
Fig. 41: THD + N vs Frequency
Fig. 38: THD + N vs Output Power
Fig. 40: THD + N vs Frequency
Fig. 42: THD + N vs Frequency
1 10 100
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20kHz Av = -1 Cb = 1µF BW < 125kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600Ω, F = 20kHz Av = -1, Cb = 1µF BW < 125kHz, Tamb = 25°C
THD + N (%)
Output Voltage (Vrms)
100 1000 10000
0.01
0.1
Vcc=2V, Po=6mW
Vcc=5V, Po=55mW
RL=32
Av=-1 Cb = 1µF Bw < 125kHz Tamb=25°C
20k20
THD + N (%)
Frequency (Hz)
1 10 100
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32 F = 20kHz Av = -1 Cb = 1µF BW < 125kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
100 1000 10000
0.01
0.1
Vcc=2V, Po=7.5mW
Vcc=5V, Po=85mW
RL=16
Av=-1 Cb = 1µF Bw < 125kHz Tamb = 25°C
20k20
THD + N (%)
Frequency (Hz)
100 1000 10000
1E-3
0.01
0.1
Vcc=5V, Vo=1.3Vrms
Vcc=2V, Vo=0.5Vrms
RL=600 Av=-1 Cb = 1µF Bw < 125kHz Tamb = 25°C
20k20
THD + N (%)
Frequency (Hz)
TS486-TS487
16/31
Fig. 43: Crosstalk vs Frequency
Fig. 45: Crosstalk vs Frequency
Fig. 47: Crosstalk vs Frequency
Fig. 44: Crosstalk vs Frequency
Fig. 46: Crosstalk vs Frequency
Fig. 48: Crosstalk vs Frequency
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=16
Vcc=5V Pout=85mW Av=-1 Cb = 1µF Bw < 125kHz Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=32
Vcc=5V Pout=55mW Av=-1 Cb = 1µF Bw < 125kHz Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
100 1000 10000
0
20
40
60
80
Cb = 4.7µF
Cb = 1µF
RL=16
Vcc=5V Pout=85mW Av=-1 ChB to ChA Bw < 125kHz Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=16
Vcc=2V Pout=7.5mW Av=-1 Cb = 1µF Bw < 125kHz Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=32
Vcc=2V Pout=6mW Av=-1 Cb = 1µF Bw < 125kHz Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
100 1000 10000
0
20
40
60
80
Cb = 4.7µF
Cb = 1µF
RL=32
Vcc=5V Pout=55mW Av=-1 ChB to ChA Bw < 125kHz Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
TS486-TS487
17/31
Fig. 49: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz)
Fig. 51: PSRR vs Power Supply Voltage
Fig. 53: PSRR vs Input Capacitor
Fig. 50: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A
Fig. 52: PSRR vs Bypass Capacitor
Fig. 54: PSRR vs Output Capacitor
2.0 2.5 3.0 3.5 4.0 4.5 5.0
90
92
94
96
98
100
102
104
Av = -1 Cb = 1µF THD+N < 0.4% Tamb = 25°C
RL=32
RL=16
RL=600
Signal to Noise Ratio (dB)
Power Supply Voltage (V)
100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 200mVpp Av = -1 Input = grounded Cb = 1µF RL >= 16 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-70
-60
-50
-40
-30
-20
-10
0
Cin = 100nF
Cin = 1µF, 220nF
Vripple = 200mVpp Av = -1, Vcc = 5V Input = grounded Cb = 1µF, Rin = 20k RL >= 16 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
90
92
94
96
98
100
102
104
Av = -1 Cb = 1µF THD+N < 0.4% Tamb = 25°C
RL=32
RL=16
RL=600
Signal to Noise Ratio (dB)
Power Supply Voltage (V)
100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
0
Cb = 4.7µF
Cb = 2.2µF
Cb = 1µF
Vripple = 200mVpp Av = -1 Input = grounded Vcc = 5V RL >= 16 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
0
Cout = 220µF
Cout = 470µF
Vripple = 200mVpp Av = -1, Vcc = 5V Input = grounded Cb = 1µF, RL = 16 RL >= 16 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
TS486-TS487
18/31
Fig. 55: PSRR vs Output Capacitor Fig. 56: PSRR vs Power Supply Voltage
100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
0
Cout = 100µF
Cout = 470µF
Vripple = 200mVpp Av = -1, Vcc = 5V Input = grounded Cb = 1µF, RL = 32 RL >= 16 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 200mVpp Av = -1 Input = floating Cb = 1µF RL >= 16 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
TS486-TS487
19/31
Fig. 57: THD + N vs Output Power
Fig. 59: THD + N vs Output Power
Fig. 61: THD + N vs Output Power
Fig. 58: THD + N vs Output Power
Fig. 60: THD + N vs Output Power
Fig. 62: THD + N vs Output Power
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20Hz Av = -2 Cb = 1µF BW < 22kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600Ω, F = 20Hz Av = -2, Cb = 1µF BW < 22kHz Tamb = 25°C
THD + N (%)
Output Voltage (Vrms)
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 1kHz Av = -2 Cb = 1µF BW < 125kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 20Hz Av = -2 Cb = 1µF BW < 22kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 1kHz Av = -2 Cb = 1µF BW < 125kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600Ω, F = 1kHz Av = -2, Cb = 1µF BW < 125kHz, Tamb = 25°C
THD + N (%)
Output Voltage (Vrms)
TS486-TS487
20/31
Fig. 63: THD + N vs Output Power
Fig. 65: THD + N vs Output Power
Fig. 67: THD + N vs Frequency
Fig. 64: THD + N vs Output Power
Fig. 66: THD + N vs Frequency
Fig. 68: THD + N vs Frequency
1 10 100
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20kHz Av = -2 Cb = 1µF BW < 125kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600Ω, F = 20kHz Av = -2, Cb = 1µF BW < 125kHz, Tamb = 25°C
THD + N (%)
Output Voltage (Vrms)
100 1000 10000
0.01
0.1
Vcc=2V, Po=6mW
Vcc=5V, Po=55mW
RL=32
Av=-2 Cb = 1µF Bw < 125kHz Tamb=25°C
20k20
THD + N (%)
Frequency (Hz)
1 10 100
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32 F = 20kHz Av = -2 Cb = 1µF BW < 125kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
100 1000 10000
0.01
0.1
Vcc=2V, Po=7.5mW
Vcc=5V, Po=85mW
RL=16
Av=-2 Cb = 1µF Bw < 125kHz Tamb = 25°C
20k20
THD + N (%)
Frequency (Hz)
100 1000 10000
1E-3
0.01
0.1
Vcc=5V, Vo=1.3Vrms
Vcc=2V, Vo=0.5Vrms
RL=600
Av=-2 Cb = 1µF Bw < 125kHz Tamb = 25°C
20k20
THD + N (%)
Frequency (Hz)
TS486-TS487
21/31
Fig. 69: Crosstalk vs Frequency
Fig. 71: Crosstalk vs Frequency
Fig. 73: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz)
Fig. 70: Crosstalk vs Frequency
Fig. 72: Crosstalk vs Frequency
Fig. 74: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=16
Vcc=5V Pout=85mW Av=-2 Cb = 1µF Bw < 125kHz Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=32
Vcc=5V Pout=55mW Av=-2 Cb = 1µF Bw < 125kHz Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
82
84
86
88
90
92
94
96
98
100
Av = -2 Cb = 1µF THD+N < 0.4% Tamb = 25°C
RL=32
RL=16
RL=600
Signal to Noise Ratio (dB)
Power Supply Voltage (V)
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=16
Vcc=2V Pout=7.5mW Av=-2 Cb = 1µF Bw < 125kHz Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=32 Vcc=2V Pout=6mW Av=-2 Cb = 1µF Bw < 125kHz Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
82
84
86
88
90
92
94
96
98
100
102
104
Av = -2 Cb = 1µF THD+N < 0.4% Tamb = 25°C
RL=32
RL=16
RL=600
Signal to Noise Ratio (dB)
Power Supply Voltage (V)
TS486-TS487
22/31
Fig. 75: PSRR vs Power Supply Voltage
Fig. 77: PSRR vs Input Capacitor
Fig. 79: PSRR vs Output Capacitor
Fig. 76: PSRR vs Bypass Capacitor
Fig. 78: PSRR vs Output Capacitor
Fig. 80: THD + N vs Output Power
100 1000 10000 100000
-70
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 200mVpp Av = -2 Input = grounded Cb = 1µF RL >= 16 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-70
-60
-50
-40
-30
-20
-10
0
Cin = 100nF
Cin = 1µF, 220nF
Vripple = 200mVpp Av = -2, Vcc = 5V Input = grounded Cb = 1µF, Rin = 20k RL >= 16 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-70
-60
-50
-40
-30
-20
-10
0
Cout = 100µF
Cout = 470µF
Vripple = 200mVpp Av = -2, Vcc = 5V Input = grounded Cb = 1µF, RL = 32 RL >= 16 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-70
-60
-50
-40
-30
-20
-10
0
Cb = 4.7µF
Cb = 2.2µF
Cb = 1µF
Vripple = 200mVpp Av = -2 Input = grounded Vcc = 5V RL >= 16 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-70
-60
-50
-40
-30
-20
-10
0
Cout = 220µF
Cout = 470µF
Vripple = 200mVpp Av = -2, Vcc = 5V Input = grounded Cb = 1µF, RL = 16 RL >= 16 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20Hz Av = -4 Cb = 1µF BW < 22kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
TS486-TS487
23/31
Fig. 81: THD + N vs Output Power
Fig. 83: THD + N vs Output Power
Fig. 85: THD + N vs Output Power
Fig. 82: THD + N vs Output Power
Fig. 84: THD + N vs Output Power
Fig. 86: THD + N vs Output Power
1 10 100
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 20Hz Av = -4 Cb = 1µF BW < 22kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 1kHz Av = -4 Cb = 1µF BW < 125kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600Ω, F = 1kHz Av = -4, Cb = 1µF BW < 125kHz, Tamb = 25°C
THD + N (%)
Output Voltage (Vrms)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600Ω, F = 20Hz Av = -4, Cb = 1µF BW < 22kHz Tamb = 25°C
THD + N (%)
Output Voltage (Vrms)
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 1kHz Av = -4 Cb = 1µF BW < 125kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
1 10 100
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20kHz Av = -4 Cb = 1µF BW < 125kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
TS486-TS487
24/31
Fig. 87: THD + N vs Output Power
Fig. 89: THD + N vs Frequency
Fig. 91: THD + N vs Frequency
Fig. 88: THD + N vs Output Power
Fig. 90: THD + N vs Frequency
Fig. 92: Crosstalk vs Frequency
1 10 100
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 20kHz Av = -4 Cb = 1µF BW < 125kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
100 1000 10000
0.1
Vcc=2V, Po=7.5mW
Vcc=5V, Po=85mW
RL=16
Av=-4 Cb = 1µF Bw < 125kHz Tamb = 25°C
20k20
THD + N (%)
Frequency (Hz)
100 1000 10000
1E-3
0.01
0.1
Vcc=5V, Vo=1.3Vrms
Vcc=2V, Vo=0.5Vrms
RL=600
Av=-4 Cb = 1µF Bw < 125kHz Tamb = 25°C
20k20
THD + N (%)
Frequency (Hz)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600Ω, F = 20kHz Av = -4, Cb = 1µF BW < 125kHz, Tamb = 25°C
THD + N (%)
Output Voltage (Vrms)
100 1000 10000
0.01
0.1
Vcc=2V, Po=6mW
Vcc=5V, Po=55mW
RL=32 Av=-4 Cb = 1µF Bw < 125kHz Tamb=25°C
20k20
THD + N (%)
Frequency (Hz)
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=16 Vcc=5V Pout=85mW Av=-4 Cb = 1µF Bw < 125kHz Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
TS486-TS487
25/31
Fig. 93: Crosstalk vs Frequency
Fig. 95: Crosstalk vs Frequency
Fig. 97: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A
Fig. 94: Crosstalk vs Frequency
Fig. 96: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz)
Fig. 98: PSRR vs Power Supply Voltage
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=16 Vcc=2V Pout=7.5mW Av=-4 Cb = 1µF Bw < 125kHz Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=32 Vcc=2V Pout=6mW Av=-4 Cb = 1µF Bw < 125kHz Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
80
82
84
86
88
90
92
94
96
98
100
Av = -4 Cb = 1µF THD+N < 0.4% Tamb = 25°C
RL=32
RL=16
RL=600
Signal to Noise Ratio (dB)
Power Supply Voltage (V)
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=32
Vcc=5V Pout=55mW Av=-4 Cb = 1µF Bw < 125kHz Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
80
82
84
86
88
90
92
94
96
98
100
Av = -4 Cb = 1µF THD+N < 0.4% Tamb = 25°C
RL=32
RL=16
RL=600
Signal to Noise Ratio (dB)
Power Supply Voltage (V)
100 1000 10000 100000
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 200mVpp Av = -4 Input = grounded Cb = 1µF RL >= 16 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
TS486-TS487
26/31
Fig. 99: PSRR vs Input Capacitor
Fig. 101: PSRR vs Output Capacitor
Fig. 100: PSRR vs Bypass Capacitor
Fig. 102: PSRR vs Output Capacitor
100 1000 10000 100000
-60
-50
-40
-30
-20
-10
0
Cin = 100nF
Cin = 1µF, 220nF
Vripple = 200mVpp Av = -4, Vcc = 5V Input = grounded Cb = 1µF, Rin = 20k RL >= 16 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-60
-50
-40
-30
-20
-10
0
Cout = 220µF
Cout = 470µF
Vripple = 200mVpp Av = -4, Vcc = 5V Input = grounded Cb = 1µF, RL = 16 RL >= 16 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-60
-50
-40
-30
-20
-10
0
Cb = 4.7µF
Cb = 2.2µF
Cb = 1µF
Vripple = 200mVpp Av = -4 Input = grounded Vcc = 5V RL >= 16 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-60
-50
-40
-30
-20
-10
0
Cout = 100µF
Cout = 470µF
Vripple = 200mVpp Av = -4, Vcc = 5V Input = grounded Cb = 1µF, RL = 32 RL >= 16 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
TS486-TS487
27/31
APPLICA TI ON NOTE:
TS486/487 GENERAL DESCRIPTION
TS486/487 is a family of dual audio amplifiers able to drive 16
or 32 headsets. Working in the 2V to
5.5V supply voltage range, they deliver 100mW at 5V and 12mW at 2V in a 16
load. An internal
output current limitation, offers protection against short-circuits at the output over a limited time period.
Fixed gain versions of the TS486 and TS487 including the feedback resistor and the input resistors are also proposed to reduce the number of external par ts.
The TS486 and TS487 exhibit a low quiescent current of typically 1.8mA, allowing usage in portable applications.
The standby mode is selected using the SHUTDOWN input. For TS486 (respectively TS487), the device is in sleep mode when PIN 5 is connected at GND (resp. V
CC
).
GAIN SETTING
The gain of each inverter amplifier o f the TS486 and TS487 is set by the resistors R
IN
and R
FEED
.
Gain
LINEAR
= -(R
FEED/RIN
)
Gain
dB
= 20 Log(R
FEED/RIN
)
Fixed gain versions TS486-n and TS487-n including R
IN
and R
FEED
are proposed to reduce
external parts.
LOW FREQUENCY ROLL-OFF WITH INPUT CAPACITORS
The low roll-off frequency of the headphone amplifiers depends on the input capacitors C
IN1
and C
IN2
and the input resistors R
IN1
and R
IN2
.
The C
IN
capacitor in seri es with th e input resist or
R
IN
of the amplifier is equivalent to a first order
high pass filter. Assuming that F
min
is the lowest frequen cy to be amplified (with a 3dB attenuation), the minimum value of C
IN
is:
C
IN
> 1 / (2*π*F
min*RIN
)
The following curve gives directly the low frequency roll-off versus the input capacitor C
IN
TS486-TS487
28/31
and for various values of the input resistor RIN .
The input resistance of the fixed gain version is typically 20k
Ω.
The following curve shows the limits of the roll off frequency depending on the min. and max. values of Rin:
LOW FREQUENCY ROLL OFF WITH OUTPUT CAPACITORS
The DC voltage on the output s of the TS486/487 is blocked by the output capacitors C
OUT1
and
C
OUT2
. Each output capacitor C
OUT
in se r ies wit h
the resistance of the load R
L
is equivalent to a first
order high pass filter. Assuming that F
min
is the lowest frequen cy to be amplified (with a 3dB attenuation), the minimum value of C
OUT
is:
C
OUT
> 1 / (2*π*F
min*RL
)
The following curve gives directly the low roll-off
frequency versus the output capacitor C
OUT
in µF
and for the two typical 16
and 32
impedances:
DECOUPLING CAPACITOR C
B
The internal bias voltage at Vcc/2 is decoupled with the external capacitor C
B
.
The TS486 and TS487 have a specified Power Supply Rejection Ratio parameter with C
B
= 1µF.
A higher value of C
B
improves the PSRR, for example, a 4.7µF improves the P S RR by 15dB at 200Hz (please, ref er to fig. 76 "PSR R vs Bypass Capacitor").
POP PRECAUTIONS
Generally headphones are connected using a connector as a jack. To prevent a pop in the headphones wh en plugged i n the jack, a resistor should be connected in parallel with each headphone output. This allows the capacitors Cout to be charged ev en when no headphone is plugged.
A resistor of 1 k
is high enough to be a negligible
load, and low enough to charge the capacitors Cout in less than one second.
0.01 0.1 1 10
1
10
100
1000
Rin = 100k
Rin = 20kΩ and fixed gain versions
Rin = 10k
Rin = 1k
Low roll−off frequency (Hz)
Cin (µF)
10 100 1000 10000
1
10
100
1000
RL = 16
RL = 32
Low roll-off frequency (Hz)
C
OUT
( F)
TS486-TS487
29/31
PACKAGE MECHANICAL DATA
DIM.
mm. inch
MIN. TYP MAX. MIN. TYP. MAX.
A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065
B 0.33 0.51 0.013 0.020
C 0.19 0.25 0.007 0.010
D 4.80 5.00 0.189 0.197
E 3.80 4.00 0.150 0.157
e 1.27 0.050
H 5.80 6.20 0.228 0.244
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
k ˚ (max.)
ddd 0.1 0.04
SO-8 MECHANICAL DATA
0016023/C
8
TS486-TS487
30/31
PACKAGE MECHANICAL DATA
TS486-TS487
31/31
PACKAGE MECHANICAL DATA
Information furnished is bel ieved to be accurate and reliable. However, STMicroelec tronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No li cense is granted by implicat i on or otherwise under a ny patent or patent righ ts of STMicroelectronics. Specificati ons mentioned in this publica tion are subject to change without notice. Thi s publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - All Rights Reserved
STMicroelectroni cs GROUP OF COMPANIES
Australi a - Brazil - Chi na - Finland - F rance - Germany - Hong Kon g - India - Italy - Japan - Mala ys i a - Malta - Morocco
Singapo re - Spain - Sweden - Switzerland - Un i ted Kingdom
http://www.s t.com
Loading...