SGS Thomson Microelectronics TS482IST, TS482IDT, TS482ID, TS482 Datasheet

4
3
4
3
TS482
100mW STEREO HEADPHONE AMPLIFIER
Operating from Vcc=2V to 5.5V
100mW into 16 at 5V
38mW into 16 at 3.3V
11.5mW into 16 at 2V
Switch ON/OFF click reduction circuitry
High Power Supply Rejection Ratio: 85dB at
5V
High Crosstalk immunity: 100dB (F=1kHz)
Rail to Rail input and output
Unity-Gain S table
Available in SO8, MiniSO8 & DFN8
DESCRIPTION
The TS482 is a dual audio power amplifier able to drive a 16 or 32 stereo headset down to low volt­ages.
It’s delivering up to 100mW per channel (into 16 loads) of continuous average power with 0.1% THD+N from a 5V power supply.
The unity gain stable TS482 can be configured by external gain-setting resistors.
PIN CONNECTIONS (top view)
TS482ID, TS482IDT - SO8
O
IN- (1)
V
IN+ (1 )
V
UT (1)
G
1 2
ND
TS482IST - MiniSO8
O
IN- (1)
V
IN+ (1 )
V
UT (1)
G
1 2
ND
TS482IQT - DFN8
1
1
OUT (1)
OUT (1)
2
2
VIN - (1)
VIN - (1)
VIN + (1)
VIN + (1)
3
3 4
4
GND VIN + (2)
GND VIN + (2)
V
8
O
7
V
6 5
V
V
8
O
7
V
6 5
V
8
8 7
7 6
6
5
5
CC
UT (2)
IN- (2 ) IN+ (2)
CC
UT (2)
IN- (2 ) IN+ (2)
Vcc
Vcc OUT
OUT
VIN - (2)
VIN - (2)
(2)
(2)
APPLICATIONS
Stereo Headphone Amplifier
Optical Storage
Computer Motherboard
PDA, organizers & Notebook computers
High end TV, Set Top Box, DVD Players
Sound Cards
ORDER CODE
Part Number
Temperature
Range
TS482ID/DT
-40, +85°C
TS482IQT
MiniSO & DFN only available in Tape & Reel with T suffix, SO is available in Tube (D) and in Tape & Reel (DT))
June 2003
Package
Marking
DSQ
TYPICAL APPLICATION SCHEMATIC
Rfeed1
Rfeed1
Vcc
Vcc
1µF
1µF
+
+
Cs
Cin1
Cin1
2.2µF
2.2µF
2.2µF
2.2µF
Cin2
Cin2
Cs
3.9k
3.9k
+
+
Rin1
Rin1
Rin2
Rin2
+
+
3.9k
3.9k
Right In
Right In
Left In
Left In
482ITS482IST
1µF
1µF
3.9k
3.9k
Rpol
Rpol
Vcc
Vcc
100k
100k
8
8
220µF
220µF
+
+
RL=32Ohms
Cout1
Cout1
+
+
Cout2
Cout2
220µF
220µF
RL=32Ohms
+
+
RL=32Ohms
RL=32Ohms
+
+
2
2
-
-
1
+
+
TS482
TS482
+
+
-
-
4
4
3.9k
3.9k
Rfeed2
Rfeed2
1
7
7
3
3
Cb
Cb
+
+
5
5
6
6
100k
100k Rpol
Rpol
1/24
TS482
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
T
T
R
Supply voltage
CC
V
Input Voltage
i
Operating Free Air Temperature Range -40 to + 85 °C
oper
Storage Temperature -65 to +150 °C
stg
T
Maximum Junction Temperature 150 °C
j
Thermal Resistance Junction to Ambient
thja
SO8 MiniSO8 DFN8
Power Dissipation
Pd
SO8 MiniSO8
DFN8 ESD Human Body Model (pin to pin) 2 kV ESD Machine Model - 220pF - 240pF (pin to pin) 200 V
Latch-up Latch-up Immunity (All pins) 200 mA
Lead Temperature (soldering, 10sec) 250 °C Output Short-Circuit Duration
1. All voltages values are measured with respect to the ground pin.
2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C.
3. Attention must be paid to co ntinu ous power dis sipati on. Exp osure of the I C to a short ci rcuit on one or two amp lifi ers simul taneousl y can c ause exces­sive heating and the destruction of the device.
1)
6V
-0.3 to V
CC
+0.3
V
175 215
°C/W
70
2)
0.71
0.58
W
1.79
see note
3)
OPERATING CONDITIONS
Symbol Parameter Value Unit
V
Supply Voltage 2 to 5.5 V
CC
R
Load Resistor >= 16
L
Load Capacitor
R
C
L
V
Common Mode Input Voltage Range
ICM
= 16 to 100
L
R
> 100
L
400 100
to V
G
ND
CC
Thermal Resistance Junction to Ambient
R
THJA
SO8 MiniSO8
DFN8
1. When mounted on a 4-layer PCB.
1)
150 190
41
Components Functional Description
Rin
Cin
Rfeed Feed back resistor which sets the closed loop gain in conjunction with Rin
Cs Supply Bypass capacitor which provides power supply filtering Cb Bypass capacitor which provides half supply filtering
Cout Rpol These 2 resistors form a voltage divider which provide a DC biasing voltage (Vcc/2) for the 2 amplifiers.
Av Closed loop gain = -Rfeed / Rin
Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin))
Input coupling capacitor which blocks the DC voltage at the amplifier input terminal
Output coupling capacitor which blocks the DC voltage at the load input terminal This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x Cout))
pF
V
°C/W
2/24
ELECTRICAL CHARACTERISTICS
= +5V, GND = 0V, T
V
CC
Symbol Parameter Min. Typ. Max. Unit
= 25°C (unless otherwise specified)
amb
TS482
I
CC
V
I
Supply Current
No input signal, no load 5.5 7.2
Input Offset Voltage (V
IO
Input Bias Current (V
IB
ICM
= VCC/2)
ICM
= VCC/2)
Output Power
THD+N = 0.1% Max, F = 1kHz, R
P
O
THD+N = 1% Max, F = 1kHz, R THD+N = 0.1% Max, F = 1kHz, R THD+N = 1% Max, F = 1kHz, R
Total Harmonic Distortion + Noise (A
THD + N
PSRR
I
O
RL = 32 R
= 16
L
P
= 60mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
P
= 90mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
Power Supply Rejection Ratio (A
F = 100Hz, Vripple = 100mVpp
Max Output Current
THD +N < 1%, R
= 16Ω connected between out and VCC/2
L
Output Swing
V
O
SNR
V V V V
Signal-to-Noise Ratio (Filter Type A, A (R
Channel Separation, R
= 32
L
: RL = 32
OL
: RL = 32
OH
: RL = 16
OL
: RL = 16
OH
THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz)
Ω,
= 32Ω
L
F = 1kHz
Crosstalk
F = 20Hz to 20kHz Channel Separation, R
= 16Ω
L
F = 1kHz F = 20Hz to 20kHz
C
GBP
SR
1. Fig. 68 to 79 show di spersion of these parameters.
Input Capacitance 1 pF
I
Gain Bandwidth Product (R
= 32
L
Slew Rate, Unity Gain Inverting (R
= 32
L
= 32
L
= 16
L
= 16
L
1)
=-1)
v
=1), inputs floating
v
=-1)
v
Ω)
= 16
Ω)
L
mA
15mV
200 500 nA
65
60
67.5
mW
100
95
107
0.03
%
0.03
85 dB
106 120 mA
4.45
4.2
0.4
4.6
0.55
4.4
0.48 V
0.65
95 110 dB
100
80
dB
100
80
1.35 2.2 MHz
0.45 0.7 V/µs
3/24
TS482
ELECTRICAL CHARACTERISTICS
= +3.3V, GND = 0V, T
V
CC
= 25°C (unless otherwise specified)
amb
Symbol Parameter Min. Typ. Max. Unit
I
CC
V
I
Supply Current
No input signal, no load 5.3 7.2
Input Offset Voltage (V
IO
Input Bias Current (V
IB
ICM
= VCC/2)
ICM
= VCC/2)
Output Power
P
O
THD + N
PSRR
I
O
THD+N = 0.1% Max, F = 1kHz, R THD+N = 1% Max, F = 1kHz, R THD+N = 0.1% Max, F = 1kHz, R THD+N = 1% Max, F = 1kHz, R
Total Harmonic Distortion + Noise (A
RL = 32 R
= 16
L
Power Supply Rejection Ratio (A
P
= 16mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
P
= 35mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
v
=1), inputs floating
F = 100Hz, Vripple = 100mVpp
Max Output Current
THD +N < 1%, R
= 16Ω connected between out and VCC/2
L
=-1)
v
L
= 32
L
L
= 16
L
= 32
= 16
1)
Output Swing
V
O
SNR
V V V V
Signal-to-Noise Ratio (Filter Type A, A (R
Channel Separation, R
= 32
L
: RL = 32
OL
: RL = 32
OH
: RL = 16
OL
: RL = 16
OH
THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz)
Ω,
= 32Ω
L
v
=-1)
F = 1kHz
Crosstalk
F = 20Hz to 20kHz Channel Separation, R
= 16Ω
L
F = 1kHz F = 20Hz to 20kHz
C
GBP
SR
1. Fig. 68 to 79 show di spersion of these parameters.
Input Capacitance 1 pF
I
Gain Bandwith Product (R Slew Rate, Unity Gain Inverting (R
= 32
L
Ω)
= 16
L
Ω)
2)
15mV
200 500 nA
23 36
64 75 mA
2.85
2.68
92 107 dB
1.2 2 MHz
0.45 0.7 V/µs
27 28 38 42
0.03
0.03
80 dB
0.3 3
0.45
2.85
100
80
100
80
0.38
0.52
mA
mW
%
V
dB
2. All electrical values are guaranted with correlation measurements at 2V and 5V
4/24
TS482
ELECTRICAL CHARACTERISTICS
= +2.5V, GND = 0V, T
V
CC
= 25°C (unless otherwise specified)
amb
Symbol Parameter Min. Typ. Max. Unit
I
CC
V
I
Supply Current
No input signal, no load 5.1 7.2
Input Offset Voltage (V
IO
Input Bias Current (V
IB
ICM
= VCC/2)
ICM
= VCC/2)
Output Power
P
O
THD + N
PSRR
I
O
THD+N = 0.1% Max, F = 1kHz, R THD+N = 1% Max, F = 1kHz, R THD+N = 0.1% Max, F = 1kHz, R THD+N = 1% Max, F = 1kHz, R
Total Harmonic Distortion + Noise (A
RL = 32 R
= 16
L
Power Supply Rejection Ratio (A
P
= 10mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
P
= 16mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
v
=1), inputs floating
F = 100Hz, Vripple = 100mVpp
Max Output Current
THD +N < 1%, R
= 16Ω connected between out and VCC/2
L
=-1)
v
L
= 32
L
L
= 16
L
= 32
= 16
1)
Output Swing
V
O
SNR
V V V V
Signal-to-Noise Ratio (Filter Type A, A (R
Channel Separation, R
= 32
L
: RL = 32
OL
: RL = 32
OH
: RL = 16
OL
: RL = 16
OH
THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz)
Ω,
= 32Ω
L
v
=-1)
F = 1kHz
Crosstalk
F = 20Hz to 20kHz Channel Separation, R
= 16Ω
L
F = 1kHz F = 20Hz to 20kHz
C
GBP
SR
1. Fig. 68 to 79 show di spersion of these parameters.
Input Capacitance 1 pF
I
Gain Bandwidth Product (R Slew Rate, Unity Gain Inverting (R
= 32
L
Ω)
L
= 16
Ω)
2)
15mV
200 500 nA
12.5
17.5
45 56 mA
2.14
1.97
89 102 dB
1.2 2 MHz
0.45 0.7 V/µs
13.5
14.5
20.5 22
0.03
0.03
75 dB
0.25
2.25
0.35
2.15
100
80
100
80
0.325
0.45
mA
mW
%
V
dB
2. All electrical values are guaranted with correlation measurements at 2V and 5V
5/24
TS482
ELECTRICAL CHARACTERISTICS
V
= +2V, GND = 0V, T
CC
Symbol Parameter Min. Typ. Max. Unit
= 25°C (unless otherwise specified)
amb
I
CC
V
I
Supply Current
No input signal, no load 5 7.2
Input Offset Voltage (V
IO
Input Bias Current (V
IB
ICM
= VCC/2)
ICM
= VCC/2)
Output Power
THD+N = 0.1% Max, F = 1kHz, R
P
O
THD+N = 1% Max, F = 1kHz, R THD+N = 0.1% Max, F = 1kHz, R THD+N = 1% Max, F = 1kHz, R
Total Harmonic Distortion + Noise (A
THD + N
PSRR
I
O
RL = 32 R
= 16
L
P
= 6.5mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
P
= 8mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
Power Supply Rejection Ratio (A
F = 100Hz, Vripple = 100mVpp
Max Output Current
THD +N < 1%, R
= 16Ω connected between out and VCC/2
L
Output Swing
= 32
L
: RL = 32
OL
: RL = 32
OH
: RL = 16
OL
: RL = 16
OH
THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz)
Ω,
= 32Ω
L
V
O
SNR
V V V V
Signal-to-Noise Ratio (Filter Type A, A (R
Channel Separation, R F = 1kHz
Crosstalk
F = 20Hz to 20kHz Channel Separation, R
= 16Ω
L
F = 1kHz F = 20Hz to 20kHz
C
GBP
SR
1. Fig. 68 to 79 show di spersion of these parameters.
Input Capacitance 1 pF
I
Gain Bandwith Product (R
= 32
L
Slew Rate, Unity Gain Inverting (R
= 32
L
= 32
L
= 16
L
= 16
L
1)
=-1)
v
=1), inputs floating
v
=-1)
v
Ω)
= 16
Ω)
L
mA
15mV
200 500 nA
7
9.5
8 9
11.5 13
0.02
mW
%
0.025
75 dB
33 41.5 mA
1.67
1.53
0.24
1.73
0.33
1.63
0.295 V
0.41
88 101 dB
100
80
dB
100
80
1.2 2 MHz
0.42 0.65 V/µs
6/24
Index of Graphs
Description Figure Page
Open Loop Gain 1 to 10 8, 9 Phase and Gain Margin vs Power Supply Voltage 11 to 20 9 to 11 Output Power vs Power Supply Voltage 21 to 23 11 Output Power vs Load Resistance 23 to 27 11, 12 Power Dissipation vs Output Power 28 to 31 12, 13 Power Derating Curves 32 13 Current Consumption vs Power Supply Voltage 33 13 PSRR vs Frequency 34 13 THD + N vs Output Power 35 to 49 13 to 16 THD + N vs Frequency 50 to 54 16 Signal to Noise Ratio vs Power Supply Voltage 55 to 58 17 Equivalent Input Noise voltage vs Frequency 59 17 Output Voltage Swing vs Supply Voltage 60 17 Crosstalk vs Frequency 61 to 65 18 Lower Cut Off Frequency Curves 66, 67 18, 19 Statistical Results on THD+N 68 to 79 19 to 21
TS482
7/24
TS482
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V RL = 8
Tamb = 25°C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V RL = 16
Tamb = 25°C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V RL = 32
Tamb = 25°C
Gain
Phase
Phase (Deg)
Fig. 1 : Open Loop Gain and Phase vs Frequency
80
60
40
Phase
20
Gain (dB)
0
-20
-40
0.1 1 10 100 1000 10000
Gain
Frequency (kHz)
Vcc = 5V RL = 8
Tamb = 25°C
Fig. 3 : Open Loop Gain and Phase vs Frequency
80
60
40
20
Gain (dB)
0
-20
-40
0.1 1 10 100 1000 10000
Phase
Gain
Frequency (kHz)
Vcc = 5V RL = 16
Tamb = 25°C
180 160 140 120 100 80 60 40 20 0
-20
180 160 140 120 100 80 60 40 20 0
-20
Fig. 2 : Open Loop Gain and Phase vs Frequency
Phase (Deg)
Fig. 4 : Open Loop Gain and Phase vs Frequency
Phase (Deg)
Fig. 5 : Open Loop Gain and Phase vs Frequency
80
60
40
20
Gain (dB)
0
-20
-40
0.1 1 10 100 1000 10000
8/24
Phase
Gain
Frequency (kHz)
Vcc = 5V RL = 32
Tamb = 25°C
180 160 140 120 100 80 60 40 20 0
-20
Fig. 6 : Open Loop Gain and Phase vs Frequency
Phase (Deg)
Loading...
+ 16 hidden pages