SGS Thomson Microelectronics TS482IST, TS482IDT, TS482ID, TS482 Datasheet

4
3
4
3
TS482
100mW STEREO HEADPHONE AMPLIFIER
Operating from Vcc=2V to 5.5V
100mW into 16 at 5V
38mW into 16 at 3.3V
11.5mW into 16 at 2V
Switch ON/OFF click reduction circuitry
High Power Supply Rejection Ratio: 85dB at
5V
High Crosstalk immunity: 100dB (F=1kHz)
Rail to Rail input and output
Unity-Gain S table
Available in SO8, MiniSO8 & DFN8
DESCRIPTION
The TS482 is a dual audio power amplifier able to drive a 16 or 32 stereo headset down to low volt­ages.
It’s delivering up to 100mW per channel (into 16 loads) of continuous average power with 0.1% THD+N from a 5V power supply.
The unity gain stable TS482 can be configured by external gain-setting resistors.
PIN CONNECTIONS (top view)
TS482ID, TS482IDT - SO8
O
IN- (1)
V
IN+ (1 )
V
UT (1)
G
1 2
ND
TS482IST - MiniSO8
O
IN- (1)
V
IN+ (1 )
V
UT (1)
G
1 2
ND
TS482IQT - DFN8
1
1
OUT (1)
OUT (1)
2
2
VIN - (1)
VIN - (1)
VIN + (1)
VIN + (1)
3
3 4
4
GND VIN + (2)
GND VIN + (2)
V
8
O
7
V
6 5
V
V
8
O
7
V
6 5
V
8
8 7
7 6
6
5
5
CC
UT (2)
IN- (2 ) IN+ (2)
CC
UT (2)
IN- (2 ) IN+ (2)
Vcc
Vcc OUT
OUT
VIN - (2)
VIN - (2)
(2)
(2)
APPLICATIONS
Stereo Headphone Amplifier
Optical Storage
Computer Motherboard
PDA, organizers & Notebook computers
High end TV, Set Top Box, DVD Players
Sound Cards
ORDER CODE
Part Number
Temperature
Range
TS482ID/DT
-40, +85°C
TS482IQT
MiniSO & DFN only available in Tape & Reel with T suffix, SO is available in Tube (D) and in Tape & Reel (DT))
June 2003
Package
Marking
DSQ
TYPICAL APPLICATION SCHEMATIC
Rfeed1
Rfeed1
Vcc
Vcc
1µF
1µF
+
+
Cs
Cin1
Cin1
2.2µF
2.2µF
2.2µF
2.2µF
Cin2
Cin2
Cs
3.9k
3.9k
+
+
Rin1
Rin1
Rin2
Rin2
+
+
3.9k
3.9k
Right In
Right In
Left In
Left In
482ITS482IST
1µF
1µF
3.9k
3.9k
Rpol
Rpol
Vcc
Vcc
100k
100k
8
8
220µF
220µF
+
+
RL=32Ohms
Cout1
Cout1
+
+
Cout2
Cout2
220µF
220µF
RL=32Ohms
+
+
RL=32Ohms
RL=32Ohms
+
+
2
2
-
-
1
+
+
TS482
TS482
+
+
-
-
4
4
3.9k
3.9k
Rfeed2
Rfeed2
1
7
7
3
3
Cb
Cb
+
+
5
5
6
6
100k
100k Rpol
Rpol
1/24
TS482
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
T
T
R
Supply voltage
CC
V
Input Voltage
i
Operating Free Air Temperature Range -40 to + 85 °C
oper
Storage Temperature -65 to +150 °C
stg
T
Maximum Junction Temperature 150 °C
j
Thermal Resistance Junction to Ambient
thja
SO8 MiniSO8 DFN8
Power Dissipation
Pd
SO8 MiniSO8
DFN8 ESD Human Body Model (pin to pin) 2 kV ESD Machine Model - 220pF - 240pF (pin to pin) 200 V
Latch-up Latch-up Immunity (All pins) 200 mA
Lead Temperature (soldering, 10sec) 250 °C Output Short-Circuit Duration
1. All voltages values are measured with respect to the ground pin.
2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C.
3. Attention must be paid to co ntinu ous power dis sipati on. Exp osure of the I C to a short ci rcuit on one or two amp lifi ers simul taneousl y can c ause exces­sive heating and the destruction of the device.
1)
6V
-0.3 to V
CC
+0.3
V
175 215
°C/W
70
2)
0.71
0.58
W
1.79
see note
3)
OPERATING CONDITIONS
Symbol Parameter Value Unit
V
Supply Voltage 2 to 5.5 V
CC
R
Load Resistor >= 16
L
Load Capacitor
R
C
L
V
Common Mode Input Voltage Range
ICM
= 16 to 100
L
R
> 100
L
400 100
to V
G
ND
CC
Thermal Resistance Junction to Ambient
R
THJA
SO8 MiniSO8
DFN8
1. When mounted on a 4-layer PCB.
1)
150 190
41
Components Functional Description
Rin
Cin
Rfeed Feed back resistor which sets the closed loop gain in conjunction with Rin
Cs Supply Bypass capacitor which provides power supply filtering Cb Bypass capacitor which provides half supply filtering
Cout Rpol These 2 resistors form a voltage divider which provide a DC biasing voltage (Vcc/2) for the 2 amplifiers.
Av Closed loop gain = -Rfeed / Rin
Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin))
Input coupling capacitor which blocks the DC voltage at the amplifier input terminal
Output coupling capacitor which blocks the DC voltage at the load input terminal This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x Cout))
pF
V
°C/W
2/24
ELECTRICAL CHARACTERISTICS
= +5V, GND = 0V, T
V
CC
Symbol Parameter Min. Typ. Max. Unit
= 25°C (unless otherwise specified)
amb
TS482
I
CC
V
I
Supply Current
No input signal, no load 5.5 7.2
Input Offset Voltage (V
IO
Input Bias Current (V
IB
ICM
= VCC/2)
ICM
= VCC/2)
Output Power
THD+N = 0.1% Max, F = 1kHz, R
P
O
THD+N = 1% Max, F = 1kHz, R THD+N = 0.1% Max, F = 1kHz, R THD+N = 1% Max, F = 1kHz, R
Total Harmonic Distortion + Noise (A
THD + N
PSRR
I
O
RL = 32 R
= 16
L
P
= 60mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
P
= 90mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
Power Supply Rejection Ratio (A
F = 100Hz, Vripple = 100mVpp
Max Output Current
THD +N < 1%, R
= 16Ω connected between out and VCC/2
L
Output Swing
V
O
SNR
V V V V
Signal-to-Noise Ratio (Filter Type A, A (R
Channel Separation, R
= 32
L
: RL = 32
OL
: RL = 32
OH
: RL = 16
OL
: RL = 16
OH
THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz)
Ω,
= 32Ω
L
F = 1kHz
Crosstalk
F = 20Hz to 20kHz Channel Separation, R
= 16Ω
L
F = 1kHz F = 20Hz to 20kHz
C
GBP
SR
1. Fig. 68 to 79 show di spersion of these parameters.
Input Capacitance 1 pF
I
Gain Bandwidth Product (R
= 32
L
Slew Rate, Unity Gain Inverting (R
= 32
L
= 32
L
= 16
L
= 16
L
1)
=-1)
v
=1), inputs floating
v
=-1)
v
Ω)
= 16
Ω)
L
mA
15mV
200 500 nA
65
60
67.5
mW
100
95
107
0.03
%
0.03
85 dB
106 120 mA
4.45
4.2
0.4
4.6
0.55
4.4
0.48 V
0.65
95 110 dB
100
80
dB
100
80
1.35 2.2 MHz
0.45 0.7 V/µs
3/24
TS482
ELECTRICAL CHARACTERISTICS
= +3.3V, GND = 0V, T
V
CC
= 25°C (unless otherwise specified)
amb
Symbol Parameter Min. Typ. Max. Unit
I
CC
V
I
Supply Current
No input signal, no load 5.3 7.2
Input Offset Voltage (V
IO
Input Bias Current (V
IB
ICM
= VCC/2)
ICM
= VCC/2)
Output Power
P
O
THD + N
PSRR
I
O
THD+N = 0.1% Max, F = 1kHz, R THD+N = 1% Max, F = 1kHz, R THD+N = 0.1% Max, F = 1kHz, R THD+N = 1% Max, F = 1kHz, R
Total Harmonic Distortion + Noise (A
RL = 32 R
= 16
L
Power Supply Rejection Ratio (A
P
= 16mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
P
= 35mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
v
=1), inputs floating
F = 100Hz, Vripple = 100mVpp
Max Output Current
THD +N < 1%, R
= 16Ω connected between out and VCC/2
L
=-1)
v
L
= 32
L
L
= 16
L
= 32
= 16
1)
Output Swing
V
O
SNR
V V V V
Signal-to-Noise Ratio (Filter Type A, A (R
Channel Separation, R
= 32
L
: RL = 32
OL
: RL = 32
OH
: RL = 16
OL
: RL = 16
OH
THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz)
Ω,
= 32Ω
L
v
=-1)
F = 1kHz
Crosstalk
F = 20Hz to 20kHz Channel Separation, R
= 16Ω
L
F = 1kHz F = 20Hz to 20kHz
C
GBP
SR
1. Fig. 68 to 79 show di spersion of these parameters.
Input Capacitance 1 pF
I
Gain Bandwith Product (R Slew Rate, Unity Gain Inverting (R
= 32
L
Ω)
= 16
L
Ω)
2)
15mV
200 500 nA
23 36
64 75 mA
2.85
2.68
92 107 dB
1.2 2 MHz
0.45 0.7 V/µs
27 28 38 42
0.03
0.03
80 dB
0.3 3
0.45
2.85
100
80
100
80
0.38
0.52
mA
mW
%
V
dB
2. All electrical values are guaranted with correlation measurements at 2V and 5V
4/24
TS482
ELECTRICAL CHARACTERISTICS
= +2.5V, GND = 0V, T
V
CC
= 25°C (unless otherwise specified)
amb
Symbol Parameter Min. Typ. Max. Unit
I
CC
V
I
Supply Current
No input signal, no load 5.1 7.2
Input Offset Voltage (V
IO
Input Bias Current (V
IB
ICM
= VCC/2)
ICM
= VCC/2)
Output Power
P
O
THD + N
PSRR
I
O
THD+N = 0.1% Max, F = 1kHz, R THD+N = 1% Max, F = 1kHz, R THD+N = 0.1% Max, F = 1kHz, R THD+N = 1% Max, F = 1kHz, R
Total Harmonic Distortion + Noise (A
RL = 32 R
= 16
L
Power Supply Rejection Ratio (A
P
= 10mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
P
= 16mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
v
=1), inputs floating
F = 100Hz, Vripple = 100mVpp
Max Output Current
THD +N < 1%, R
= 16Ω connected between out and VCC/2
L
=-1)
v
L
= 32
L
L
= 16
L
= 32
= 16
1)
Output Swing
V
O
SNR
V V V V
Signal-to-Noise Ratio (Filter Type A, A (R
Channel Separation, R
= 32
L
: RL = 32
OL
: RL = 32
OH
: RL = 16
OL
: RL = 16
OH
THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz)
Ω,
= 32Ω
L
v
=-1)
F = 1kHz
Crosstalk
F = 20Hz to 20kHz Channel Separation, R
= 16Ω
L
F = 1kHz F = 20Hz to 20kHz
C
GBP
SR
1. Fig. 68 to 79 show di spersion of these parameters.
Input Capacitance 1 pF
I
Gain Bandwidth Product (R Slew Rate, Unity Gain Inverting (R
= 32
L
Ω)
L
= 16
Ω)
2)
15mV
200 500 nA
12.5
17.5
45 56 mA
2.14
1.97
89 102 dB
1.2 2 MHz
0.45 0.7 V/µs
13.5
14.5
20.5 22
0.03
0.03
75 dB
0.25
2.25
0.35
2.15
100
80
100
80
0.325
0.45
mA
mW
%
V
dB
2. All electrical values are guaranted with correlation measurements at 2V and 5V
5/24
TS482
ELECTRICAL CHARACTERISTICS
V
= +2V, GND = 0V, T
CC
Symbol Parameter Min. Typ. Max. Unit
= 25°C (unless otherwise specified)
amb
I
CC
V
I
Supply Current
No input signal, no load 5 7.2
Input Offset Voltage (V
IO
Input Bias Current (V
IB
ICM
= VCC/2)
ICM
= VCC/2)
Output Power
THD+N = 0.1% Max, F = 1kHz, R
P
O
THD+N = 1% Max, F = 1kHz, R THD+N = 0.1% Max, F = 1kHz, R THD+N = 1% Max, F = 1kHz, R
Total Harmonic Distortion + Noise (A
THD + N
PSRR
I
O
RL = 32 R
= 16
L
P
= 6.5mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
P
= 8mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
Power Supply Rejection Ratio (A
F = 100Hz, Vripple = 100mVpp
Max Output Current
THD +N < 1%, R
= 16Ω connected between out and VCC/2
L
Output Swing
= 32
L
: RL = 32
OL
: RL = 32
OH
: RL = 16
OL
: RL = 16
OH
THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz)
Ω,
= 32Ω
L
V
O
SNR
V V V V
Signal-to-Noise Ratio (Filter Type A, A (R
Channel Separation, R F = 1kHz
Crosstalk
F = 20Hz to 20kHz Channel Separation, R
= 16Ω
L
F = 1kHz F = 20Hz to 20kHz
C
GBP
SR
1. Fig. 68 to 79 show di spersion of these parameters.
Input Capacitance 1 pF
I
Gain Bandwith Product (R
= 32
L
Slew Rate, Unity Gain Inverting (R
= 32
L
= 32
L
= 16
L
= 16
L
1)
=-1)
v
=1), inputs floating
v
=-1)
v
Ω)
= 16
Ω)
L
mA
15mV
200 500 nA
7
9.5
8 9
11.5 13
0.02
mW
%
0.025
75 dB
33 41.5 mA
1.67
1.53
0.24
1.73
0.33
1.63
0.295 V
0.41
88 101 dB
100
80
dB
100
80
1.2 2 MHz
0.42 0.65 V/µs
6/24
Index of Graphs
Description Figure Page
Open Loop Gain 1 to 10 8, 9 Phase and Gain Margin vs Power Supply Voltage 11 to 20 9 to 11 Output Power vs Power Supply Voltage 21 to 23 11 Output Power vs Load Resistance 23 to 27 11, 12 Power Dissipation vs Output Power 28 to 31 12, 13 Power Derating Curves 32 13 Current Consumption vs Power Supply Voltage 33 13 PSRR vs Frequency 34 13 THD + N vs Output Power 35 to 49 13 to 16 THD + N vs Frequency 50 to 54 16 Signal to Noise Ratio vs Power Supply Voltage 55 to 58 17 Equivalent Input Noise voltage vs Frequency 59 17 Output Voltage Swing vs Supply Voltage 60 17 Crosstalk vs Frequency 61 to 65 18 Lower Cut Off Frequency Curves 66, 67 18, 19 Statistical Results on THD+N 68 to 79 19 to 21
TS482
7/24
TS482
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V RL = 8
Tamb = 25°C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V RL = 16
Tamb = 25°C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V RL = 32
Tamb = 25°C
Gain
Phase
Phase (Deg)
Fig. 1 : Open Loop Gain and Phase vs Frequency
80
60
40
Phase
20
Gain (dB)
0
-20
-40
0.1 1 10 100 1000 10000
Gain
Frequency (kHz)
Vcc = 5V RL = 8
Tamb = 25°C
Fig. 3 : Open Loop Gain and Phase vs Frequency
80
60
40
20
Gain (dB)
0
-20
-40
0.1 1 10 100 1000 10000
Phase
Gain
Frequency (kHz)
Vcc = 5V RL = 16
Tamb = 25°C
180 160 140 120 100 80 60 40 20 0
-20
180 160 140 120 100 80 60 40 20 0
-20
Fig. 2 : Open Loop Gain and Phase vs Frequency
Phase (Deg)
Fig. 4 : Open Loop Gain and Phase vs Frequency
Phase (Deg)
Fig. 5 : Open Loop Gain and Phase vs Frequency
80
60
40
20
Gain (dB)
0
-20
-40
0.1 1 10 100 1000 10000
8/24
Phase
Gain
Frequency (kHz)
Vcc = 5V RL = 32
Tamb = 25°C
180 160 140 120 100 80 60 40 20 0
-20
Fig. 6 : Open Loop Gain and Phase vs Frequency
Phase (Deg)
TS482
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V RL = 600
Tamb = 25°C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V RL = 5k
Tamb = 25°C
Gain
Phase
Phase (Deg)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
0
10
20
30
40
50
CL=0 to 500pF
RL=8
Tamb=25°C
Gain Margin (dB)
Power Supply Voltage (V)
Fig. 7 : Open Loop Gain and Phase vs Frequency
80
60
40
20
Gain (dB)
0
-20
-40
0.1 1 10 100 1000 10000
Phase
Gain
Frequency (kHz)
Vcc = 5V RL = 600 Tamb = 25°C
Fig. 9 : Open Loop Gain and Phase vs Frequency
80
60
40
20
Gain (dB)
0
-20
-40
0.1 1 10 100 1000 10000
Phase
Gain
Frequency (kHz)
Vcc = 5V RL = 5k
Tamb = 25°C
180 160 140 120 100 80 60 40 20 0
-20
180 160 140 120 100 80 60 40 20 0
-20
Fig. 8 : Open Loop Gain and Phase vs Frequency
Phase (Deg)
Fig. 10 : Open Loop Gain and Phase vs Frequency
Phase (Deg)
Fig. 11 : Phase Margin vs Power Supply Voltage
50
RL=8
Tamb=25°C
40
30
20
Phase Margin (Deg)
10
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0
CL= 0 to 500pF
Power Supply Voltage (V)
Fig. 12 : Gain Margin vs Power Supply Voltage
9/24
TS482
2.0 2.5 3.0 3.5 4.0 4.5 5.0
0
10
20
30
40
50
CL=0 to 500pF
RL=16
Tamb=25°C
Gain Margin (dB)
Power Supply Voltage (V)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
0
10
20
30
40
50
CL=0 to 500pF
RL=32
Tamb=25°C
Gain Margin (dB)
Power Supply Voltage (V)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
0
10
20
CL=500pF
CL=200pF
CL=100pF
CL=0pF
RL=600
Tamb=25°C
Gain Margin (dB)
Power Supply Voltage (V)
Fig. 13 : Phase Margin vs Power Supply Voltage
50
40
30
20
Phase Margin (Deg)
10
RL=16
Tamb=25°C
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0
Power Supply Voltage (V)
CL= 0 to 500pF
Fig. 15 : Phase Margin vs Power Supply Voltage
50
40
30
CL= 0 to 500pF
Fig. 14 : Gain Margin vs Power Supply Voltage
Fig. 16 : Gain Margin vs Power Supply Voltage
20
Phase Margin (Deg)
10
RL=32
Tamb=25°C
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0
Power Supply Voltage (V)
Fig. 17 : Phase Margin vs Power Supply Voltage
70
60
50
40
30
20
Phase Margin (Deg)
10
10/24
0
CL=0pF
RL=600
Tamb=25°C
2.0 2.5 3.0 3.5 4.0 4.5 5.0
Power Supply Voltage (V)
Fig. 18 : Gain Margin vs Power Supply Voltage
CL=500pF
TS482
2.0 2.5 3.0 3.5 4.0 4.5 5.0
0
10
20
CL=500pF
CL=200pF
CL=100pF
CL=0pF
RL=5k
Tamb=25°C
Gain Margin (dB)
Power Supply Voltage (V)
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0
25
50
75
100
125
150
175
200
THD+N=10%
THD+N=0.1%
Av = -1 RL = 16
F = 1kHz BW < 125kHz Tamb = 25°C
THD+N=1%
Output power (mW)
Vcc (V)
8 16243240485664
0
20
40
60
80
100
120
140
160
180
200
THD+N=10%
THD+N=0.1%
Av = -1 Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C
THD+N=1%
Output power (mW)
Load Resistance ( )
Fig. 19 : Phase Margin vs Power Supply Voltage
70
60
50
CL=0pF
40
30
20
Phase Margin (Deg)
10
RL=5k Tamb=25°C
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0
CL=300pF CL=500pF
Power Supply Voltage (V)
Fig. 21 : Output Power vs Power Supply Voltage
250
Av = -1
225
RL = 8
F = 1kHz
200
BW < 125kHz
175
Tamb = 25°C
150 125 100
75
Output power (mW)
50 25
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
THD+N=10%
THD+N=1%
THD+N=0.1%
Vcc (V)
Fig. 20 : Gain Margin vs Power Supply Voltage
Fig. 22 : Output Power vs Power Supply Voltage
Fig. 23 :Output Power vs Power Supply Voltage
Av = -1 RL = 32
100
75
50
Output power (mW)
25
0
F = 1kHz BW < 125kHz Tamb = 25°C
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
THD+N=10%
Fig. 24 : Output Power vs Load Resistance
THD+N=1%
THD+N=0.1%
Vcc (V)
11/24
TS482
0 20 40 60 80 100 120 140
0
20
40
60
80
100
120
140
160
Vcc=5V F=1kHz THD+N<1%
RL=32
RL=16
RL=8
Power Dissipation (mW)
Output Power (mW)
Fig. 25 : Output Power vs Load Resistance
70
60
50
40
30
Output power (mW)
20
10
0
8 16243240485664
THD+N=1%
THD+N=0.1%
Load Resistance (ohm)
Av = -1 Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25°C
THD+N=10%
Fig. 27 : Output Power vs Load Resistance
25
20
15
10
Output power (mW)
5
0
8 16243240485664
THD+N=1%
THD+N=0.1%
Load Resistance (ohm)
Av = -1 Vcc = 2V F = 1kHz BW < 125kHz Tamb = 25°C
THD+N=10%
Fig. 26 : Output Power vs Load Resistance
50 45 40 35 30 25 20 15
Output power (mW)
10
5 0
8 16243240485664
THD+N=1%
THD+N=0.1%
Load Resistance (ohm)
Av = -1 Vcc = 2.6V F = 1kHz BW < 125kHz Tamb = 25°C
THD+N=10%
Fig. 28 : Power Dissipation vs Output Power
Fig. 29 : Power Dissipation vs Output Power
70
Vcc=3.3V F=1kHz
60
THD+N<1%
50
40
30
20
Power Dissipation (mW)
10
0
0 102030405060
12/24
RL=32
Output Power (mW)
RL=16
Fig. 30 : Power Dissipation vs Output Power
Vcc=2.6V
40
F=1kHz
RL=8
THD+N<1%
30
20
RL=16
10
Power Dissipation (mW)
RL=32
0
0 5 10 15 20 25 30
Output Power (mW)
RL=8
TS482
1 10 100
1E-3
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.6V
Vcc=2V
RL = 16
F = 20Hz Av = -1 BW < 125kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
Fig. 31 : Power Dissipation vs Output Power
25
Vcc=2V F=1kHz THD+N<1%
20
15
10
Power Dissipation (mW)
5
RL=32
0
02468101214
Output Power (mW)
RL=8
RL=16
Fig. 33 : Current Consumption vs Power Supply Voltage
6
No load
5
4
Ta=85°C
3
Ta=25°C
2
Current Consumption (mA)
1
0
012345
Power Supply Voltage (V)
Ta=-40°C
Fig. 32 : Power Derating vs Ambiant Temperature
Fig. 34 : Power Supply Rejection Ration vs Frequency
Vcc=5V
100
80
Vcc=3.3V
60
PSRR (dB)
Vripple=100mVpp
40
Vpin3,5=Vcc/2 (forced bias) RL >= 8 0db=70mVrms
20
Tamb=25°C
0
20
100 1000 10000 100000
Vcc=2.6V & 2V
Frequency (Hz)
Fig. 35 : THD + N vs Output Power
10
RL = 8
F = 20Hz Av = -1 BW < 125kHz
1
Tamb = 25°C
THD + N (%)
0.1
0.01 1 10 100
Vcc=2V
Vcc=2.6V
Vcc=3.3V
Fig. 36 : THD + N vs Output Power
Vcc=5V
Output Power (mW)
13/24
TS482
1 10 100
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.6V
Vcc=2V
RL = 8
F = 1kHz Av = -1 BW < 125kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
1 10 100
1E-3
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.6V
Vcc=2V
RL = 32
F = 1kHz Av = -1 BW < 125kHz Tamb = 25°C
THD + N (%)
Output Power (mW)
Fig. 37 : THD + N vs Output Power
10
RL = 32
F = 20Hz Av = -1
1
BW < 125kHz Tamb = 25°C
0.1
THD + N (%)
0.01
1E-3
1 10 100
Vcc=2V
Vcc=2.6V
Vcc=5VVcc=3.3V
Output Power (mW)
Fig. 39 : THD + N vs Output Power
10
RL = 5k
THD + N (%)
0.01
0.1
F = 20Hz Av = -1
1
BW < 125kHz Tamb = 25°C
Vcc=2V
Vcc=2.6V
Vcc=3.3V
Vcc=5V
Fig. 38 : THD + N vs Output Power
10
RL = 600
F = 20Hz Av = -1
1
BW < 125kHz Tamb = 25°C
0.1
THD + N (%)
0.01
1E-3
0.01 0.1 1
Output Voltage (Vrms)
Vcc=2V
Vcc=2.6V
Vcc=3.3V
Vcc=5V
Fig. 40 : THD + N vs Output Power
1E-3
0.01 0.1 1
Fig. 41 : THD + N vs Output Power
10
RL = 16
F = 1kHz Av = -1
1
BW < 125kHz Tamb = 25°C
Vcc=2V
Vcc=2.6V
0.1
THD + N (%)
0.01
1E-3
1 10 100
14/24
Output Voltage (Vrms)
Fig. 42 : THD + N vs Output Power
Vcc=5VVcc=3.3V
Output Power (mW)
TS482
0.01 0.1 1
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.6V
Vcc=2V
RL = 600
F = 20kHz Av = -1 BW < 125kHz Tamb = 25°C
THD + N (%)
Output Voltage (Vrms)
Fig. 43 : THD + N vs Output Power
10
RL = 600
F = 1kHz Av = -1
1
BW < 125kHz Tamb = 25°C
0.1
THD + N (%)
0.01
1E-3
0.01 0.1 1
Output Voltage (Vrms)
Vcc=2V
Vcc=2.6V
Vcc=3.3V
Vcc=5V
Fig. 45 : THD + N vs Output Power
10
RL = 8
F = 20kHz Av = -1 BW < 125kHz
1
Tamb = 25°C
Vcc=2V
THD + N (%)
0.1
Vcc=2.6V
Fig. 44 : THD + N vs Output Power
10
RL = 5k
F = 1kHz Av = -1
1
BW < 125kHz Tamb = 25°C
0.1
THD + N (%)
0.01
1E-3
0.01 0.1 1
Output Voltage (Vrms)
Vcc=2V
Vcc=2.6V
Vcc=3.3V
Vcc=5V
Fig. 46 : THD + N vs Output Power
10
RL = 16
F = 20kHz Av = -1 BW < 125kHz
1
Tamb = 25°C
Vcc=2V
THD + N (%)
0.1
Vcc=2.6V
0.01 1 10 100
Vcc=3.3V
Output Power (mW)
Vcc=5V
Fig. 47 : THD + N vs Output Power
10
RL = 32
F = 20kHz Av = -1 BW < 125kHz
1
Tamb = 25°C
Vcc=2V
THD + N (%)
0.1
0.01
1 10 100
Vcc=2.6V
Vcc=5VVcc=3.3V
Output Power (mW)
0.01 1 10 100
Output Power (mW)
Vcc=5VVcc=3.3V
Fig. 48 : THD + N vs Output Power
15/24
TS482
100 1000 10000
0.01
0.1
Vcc=2V, Po=10mW Vcc=2.6V, Po=20mW Vcc=3.3V, Po=40mW Vcc=5V, Po=100mW
RL=8 Av=-1 Bw < 125kHz Tamb=25°C
20k20
THD + N (%)
Frequency (Hz)
100 1000 10000
0.01
0.1
Vcc=2V, Po=6.5mW
Vcc=5V, Po=60mW
Vcc=3.3V, Po=16mW
Vcc=2.6V, Po=12mW
RL=32 Av=-1 Bw < 125kHz Tamb=25°C
20k20
THD + N (%)
Frequency (Hz)
Fig. 49 : THD + N vs Output Power
10
RL = 5k
F = 20kHz Av = -1 BW < 125kHz
1
Tamb = 25°C
0.1
THD + N (%)
0.01
0.01 0.1 1
Output Voltage (Vrms)
Vcc=2V
Vcc=2.6V
Vcc=3.3V
Vcc=5V
Fig. 51 : THD + N vs Frequency
0.1
Vcc=2V, Po=8mW
Vcc=2.6V, Po=18mW
Vcc=3.3V, Po=35mW
THD + N (%)
Vcc=5V, Po=90mW
RL=16 Av=-1 Bw < 125kHz Tamb=25°C
Fig. 50 : THD + N vs Frequency
Fig. 52 : THD + N vs Frequency
Fig. 53 : THD + N vs Frequency
16/24
0.01
0.1
0.01
THD + N (%)
1E-3
100 1000 10000
Frequency (Hz)
RL=600 Av=-1 Bw < 125kHz Tamb=25°C
Vcc=2.6V, Vo=0.75Vrms
Vcc=2V, Vo=0.55Vrms
Vcc=5V, Vo=1.4Vrms
Vcc=3.3V, Vo=1Vrms
100 1000 10000
Frequency (Hz)
20k20
Fig. 54 : THD + N vs Frequency
0.1
RL=5k
Av=-1 Bw < 125kHz Tamb=25°C
Vcc=2.6V, Vo=0.75Vrms
0.01
Vcc=2V, Vo=0.55Vrms
THD + N (%)
20k20
1E-3
Vcc=5V, Vo=1.4Vrms
Vcc=3.3V, Vo=1Vrms
100 1000 10000
Frequency (Hz)
20k20
TS482
2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
RL=32
RL=16
RL=8
Tamb=25°C
VOH & VOL (V)
Power Supply Voltage (V)
Fig. 55 : Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz)
110
Av = -1
108
THD+N < 0.2% Tamb = 25°C
106 104 102
RL=32
100
98 96 94
Signal to Noise Ratio (dB)
92 90
RL=8
RL=16
2.0 2.5 3.0 3.5 4.0 4.5 5.0
Power Supply (V)
Fig. 57 : Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A
120
Av = -1 THD+N < 0.2%
115
Tamb = 25°C
110
105
100
Signal to Noise Ratio (dB)
95
RL=32
RL=16
RL=8
Fig. 56 : Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz)
110
Av = -1
108
THD+N < 0.2% Tamb = 25°C
106 104 102 100
98 96 94
Signal to Noise Ratio (dB)
92 90
2.0 2.5 3.0 3.5 4.0 4.5 5.0
RL=5k
Power Supply (V)
RL=600
Fig. 58 : Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A
120
Av = -1 THD+N < 0.2%
115
Tamb = 25°C
110
105
100
Signal to Noise Ratio (dB)
95
RL=5k
RL=600
90
2.0 2.5 3.0 3.5 4.0 4.5 5.0
Fig. 59 : Equivalent Input Noise Voltage vs Frequency
25
20
15
10
Equivalent Input Noise Voltage (nv/ Hz)
5
0.02 0.1 1 10
Power Supply (V)
Frequency (kHz)
Vcc=5V Rs=100 Tamb=25°C
90
2.0 2.5 3.0 3.5 4.0 4.5 5.0
Power Supply (V)
Fig. 60 : Output Voltage Swing vs Power Supply Voltage
17/24
TS482
100 1000 10000
20
40
60
80
100
ChB to ChA
ChA to ChB
RL=16
Vcc=5V Pout=90mW Av=-1 Bw < 125kHz Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
100 1000 10000
0
20
40
60
80
100
120
ChB to ChA & ChA to Chb
RL=600
Vcc=5V Vout=1.4Vrms Av=-1 Bw < 125kHz Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
200 400 600 800 1000 12001400 160018002000 2200
1
10
100
1000
RL=32
RL=16
RL=8
-3dB Cut Off Frequency (Hz)
Output Capacitor Cout ( F)
Fig. 61 : Crosstalk vs Frequency
100
80
60
40
Crosstalk (dB)
20
100 1000 10000
ChB to ChA
Frequency (Hz)
ChA to ChB
RL=8 Vcc=5V Pout=100mW Av=-1 Bw < 125kHz Tamb=25°C
Fig. 63 : Crosstalk vs Frequency
100
80
60
40
Crosstalk (dB)
20
ChB to ChA & ChA to Chb
100 1000 10000
Frequency (Hz)
RL=32
Vcc=5V Pout=60mW Av=-1 Bw < 125kHz Tamb=25°C
Fig. 62 : Crosstalk vs Frequency
20k20
Fig. 64 : Crosstalk vs Frequency
20k20
Fig. 65 : Crosstalk vs Frequency
120
100
80
60
40
Crosstalk (dB)
20
0
18/24
100 1000 10000
ChB to ChA & ChA to Chb
Frequency (Hz)
RL=5k
Vcc=5V Vout=1.5Vrms Av=-1 Bw < 125kHz Tamb=25°C
Fig. 66 : Lower Cut Off Frequency vs Output Capacitor
20k20
TS482
Fig. 67 : Lower Cut Off Frequency vs Input Capacitor
1000
Rin=3.9k
Rin=10k
100
10
-3dB Cut Off Frequency (Hz)
1
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Input Capacitor Cin ( F)
Rin=22k
Fig. 69 : Best Case Distribution of THD+N
40 36 32 28 24 20 16
Number of Units
12
8 4 0
0.012 0.018 0.024 0.030 0.036 0.042 0.048
THD+N (%)
Vcc=5V RL=16
Av=-1 Pout=90mW 20Hz≤F≤20kHz Tamb=25°C
Fig. 68 : Typical Distribution of THD+N
40 36 32 28 24 20 16
Number of Units
12
8 4 0
0.012 0.018 0.024 0.030 0.036 0.042 0.048
THD+N (%)
Vcc=5V RL=16
Av=-1 Pout=90mW 20Hz≤F≤20kHz Tamb=25°C
Fig. 70 : Worst Case Distribution of THD+N
40 36 32 28 24 20 16
Number of Units
12
8 4 0
0.012 0.018 0.024 0.030 0.036 0.042 0.048
THD+N (%)
Vcc=5V RL=16
Av=-1 Pout=90mW 20Hz≤F≤20kHz Tamb=25°C
Fig. 71 : Typical Distribution of THD+N
40 36 32 28 24 20 16
Number of Units
12
8 4 0
0.012 0.018 0.024 0.030 0.036 0.042 0.048
THD+N (%)
Vcc=2V RL=16
Av=-1 Pout=8mW 20Hz≤F≤20kHz Tamb=25°C
Fig. 72 : Best Case Distribution of THD+N
40 36 32 28 24 20 16
Number of Units
12
8 4 0
0.012 0.018 0.024 0.030 0.036 0.042 0.048
THD+N (%)
Vcc=2V RL=16
Av=-1 Pout=8mW 20Hz≤F≤20kHz Tamb=25°C
19/24
TS482
Fig. 73 : Worst Case Distribution of THD+N
40 36 32 28 24 20 16
Number of Units
12
8 4 0
0.012 0.018 0.024 0.030 0.036 0.042 0.048
THD+N (%)
Vcc=2V RL=16
Av=-1 Pout=8mW 20Hz≤F≤20kHz Tamb=25°C
Fig. 75 : Best Case Distribution of THD+N
20 18 16 14 12 10
8
Number of Units
6 4 2 0
0.012 0.018 0.024 0.030 0.036 0.042 0.048
THD+N (%)
Vcc=5V RL=32 Av=-1 Pout=60mW 20HzF20kHz Tamb=25°C
Fig. 74 : Typical Distribution of THD+N
20 18 16 14 12 10
8
Number of Units
6 4 2 0
0.012 0.018 0.024 0.030 0.036 0.042 0.048
THD+N (%)
Vcc=5V RL=32
Av=-1 Pout=60mW 20Hz≤F≤20kHz Tamb=25°C
Fig. 76 : Worst Case Distribution of THD+N
20
Vcc=5V
18
RL=32 Av=-1 Pout=60mW 20Hz≤F≤20kHz Tamb=25°C
8 6 4 2 0
THD+N (%)
16 14 12 10
Number of Units
0.012 0.018 0.024 0.030 0.036 0.042 0.048
Fig. 77 : Typical Distribution of THD+N
20/24
40 36 32 28 24 20 16
Number of Units
12
8 4 0
0.012 0.018 0.024 0.030 0.036 0.042 0.048
THD+N (%)
Vcc=2V RL=32
Av=-1 Pout=6.5mW 20Hz≤F≤20kHz Tamb=25°C
Fig. 78 : Best Case Distribution of THD+N
40 36 32 28 24 20 16
Number of Units
12
8 4 0
0.012 0.018 0.024 0.030 0.036 0.042 0.048
THD+N (%)
Vcc=2V RL=32
Av=-1 Pout=6.5mW 20Hz≤F≤20kHz Tamb=25°C
Fig. 79 : Worst Case Distribution of THD+N
TS482
40 36 32 28 24 20 16
Number of Units
12
8 4 0
0.012 0.018 0.024 0.030 0.036 0.042 0.048
THD+N (%)
Vcc=2V RL=32 Av=-1 Pout=6.5mW 20Hz≤F≤20kHz Tamb=25°C
21/24
TS482
PACKAGE MECHANICAL DATA
SO-8 MECHANICAL DATA
DIM.
A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065
B 0.33 0.51 0.013 0.020
C 0.19 0.25 0.007 0.010
D 4.80 5.00 0.189 0.197
E 3.80 4.00 0.150 0.157
e 1.27 0.050
H 5.80 6.20 0.228 0.244
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
k ˚ (max.)
ddd 0.1 0.04
MIN. TYP MAX. MIN. TYP. MAX.
mm. inch
8
22/24
0016023/C
PACKAGE MECHANICAL DATA
TS482
23/24
TS482
PACKAGE MECHANICAL DATA
Information furnished is belie ved to be accurate and reliable. However, STMicroelec tronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publicat ion are subject to change without notice. Thi s publication supersedes and replaces all information previously supplied. STMicro electronics products are not a uthorized for use as critical c omponents in life support de vices or systems without express written approval of STMicroelectronics.
Australi a - Brazil - Canada - China - F in l and - France - Germany - Hong K ong - India - Is rael - Italy - Ja pan - Malaysia
The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROU P OF COMPANIES
24/24
Loading...