The TS482 is a dual audio power amplifier able to
drive a 16 or 32Ω stereo headset down to low voltages.
It’s delivering up to 100mW per channel (into 16Ω
loads) of continuous average power with 0.1%
THD+N from a 5V power supply.
The unity gain stable TS482 can be configured by
external gain-setting resistors.
PIN CONNECTIONS (top view)
TS482ID, TS482IDT - SO8
O
IN- (1)
V
IN+ (1 )
V
UT (1)
G
1
2
ND
TS482IST - MiniSO8
O
IN- (1)
V
IN+ (1 )
V
UT (1)
G
1
2
ND
TS482IQT - DFN8
1
1
OUT (1)
OUT (1)
2
2
VIN - (1)
VIN - (1)
VIN + (1)
VIN + (1)
3
3
4
4
GNDVIN + (2)
GNDVIN + (2)
V
8
O
7
V
6
5
V
V
8
O
7
V
6
5
V
8
8
7
7
6
6
5
5
CC
UT (2)
IN- (2 )
IN+ (2)
CC
UT (2)
IN- (2 )
IN+ (2)
Vcc
Vcc
OUT
OUT
VIN - (2)
VIN - (2)
(2)
(2)
APPLICATIONS
■Stereo Headphone Amplifier
■Optical Storage
■Computer Motherboard
■PDA, organizers & Notebook computers
■High end TV, Set Top Box, DVD Players
■Sound Cards
ORDER CODE
Part Number
Temperature
Range
TS482ID/DT
-40, +85°C
TS482IQT
MiniSO & DFN only available in Tape & Reel with T suffix,
SO is available in Tube (D) and in Tape & Reel (DT))
June 2003
Package
Marking
DSQ
•
•
•
TYPICAL APPLICATION SCHEMATIC
Rfeed1
Rfeed1
Vcc
Vcc
1µF
1µF
+
+
Cs
Cin1
Cin1
2.2µF
2.2µF
2.2µF
2.2µF
Cin2
Cin2
Cs
3.9k
3.9k
+
+
Rin1
Rin1
Rin2
Rin2
+
+
3.9k
3.9k
Right In
Right In
Left In
Left In
482ITS482IST
1µF
1µF
3.9k
3.9k
Rpol
Rpol
Vcc
Vcc
100k
100k
8
8
220µF
220µF
+
+
RL=32Ohms
Cout1
Cout1
+
+
Cout2
Cout2
220µF
220µF
RL=32Ohms
+
+
RL=32Ohms
RL=32Ohms
+
+
2
2
-
-
1
+
+
TS482
TS482
+
+
-
-
4
4
3.9k
3.9k
Rfeed2
Rfeed2
1
7
7
3
3
Cb
Cb
+
+
5
5
6
6
100k
100k
Rpol
Rpol
1/24
TS482
ABSOLUTE MAXIMUM RATINGS
SymbolParameterValueUnit
V
T
T
R
Supply voltage
CC
V
Input Voltage
i
Operating Free Air Temperature Range-40 to + 85°C
oper
Storage Temperature-65 to +150°C
stg
T
Maximum Junction Temperature150°C
j
Thermal Resistance Junction to Ambient
thja
SO8
MiniSO8
DFN8
Power Dissipation
Pd
SO8
MiniSO8
DFN8
ESDHuman Body Model (pin to pin)2kV
ESDMachine Model - 220pF - 240pF (pin to pin)200V
Latch-up Latch-up Immunity (All pins)200mA
Lead Temperature (soldering, 10sec)250°C
Output Short-Circuit Duration
1. All voltages values are measured with respect to the ground pin.
2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C.
3. Attention must be paid to co ntinu ous power dis sipati on. Exp osure of the I C to a short ci rcuit on one or two amp lifi ers simul taneousl y can c ause excessive heating and the destruction of the device.
1)
6V
-0.3 to V
CC
+0.3
V
175
215
°C/W
70
2)
0.71
0.58
W
1.79
see note
3)
OPERATING CONDITIONS
SymbolParameterValueUnit
V
Supply Voltage2 to 5.5V
CC
R
Load Resistor>= 16
L
Load Capacitor
R
C
L
V
Common Mode Input Voltage Range
ICM
= 16 to 100
L
R
> 100
L
Ω
Ω
400
100
to V
G
ND
CC
Thermal Resistance Junction to Ambient
R
THJA
SO8
MiniSO8
DFN8
1. When mounted on a 4-layer PCB.
1)
150
190
41
ComponentsFunctional Description
Rin
Cin
RfeedFeed back resistor which sets the closed loop gain in conjunction with Rin
CsSupply Bypass capacitor which provides power supply filtering
CbBypass capacitor which provides half supply filtering
Cout
RpolThese 2 resistors form a voltage divider which provide a DC biasing voltage (Vcc/2) for the 2 amplifiers.
AvClosed loop gain = -Rfeed / Rin
Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also
forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin))
Input coupling capacitor which blocks the DC voltage at the amplifier input terminal
Output coupling capacitor which blocks the DC voltage at the load input terminal
This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x Cout))
Ω
pF
V
°C/W
2/24
ELECTRICAL CHARACTERISTICS
= +5V, GND = 0V, T
V
CC
SymbolParameterMin.Typ.Max.Unit
= 25°C (unless otherwise specified)
amb
TS482
I
CC
V
I
Supply Current
No input signal, no load5.57.2
Input Offset Voltage (V
IO
Input Bias Current (V
IB
ICM
= VCC/2)
ICM
= VCC/2)
Output Power
THD+N = 0.1% Max, F = 1kHz, R
P
O
THD+N = 1% Max, F = 1kHz, R
THD+N = 0.1% Max, F = 1kHz, R
THD+N = 1% Max, F = 1kHz, R
Total Harmonic Distortion + Noise (A
THD + N
PSRR
I
O
RL = 32
R
= 16
L
P
= 60mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
P
= 90mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
Power Supply Rejection Ratio (A
F = 100Hz, Vripple = 100mVpp
Max Output Current
THD +N < 1%, R
= 16Ω connected between out and VCC/2
L
Output Swing
V
O
SNR
V
V
V
V
Signal-to-Noise Ratio (Filter Type A, A
(R
Channel Separation, R
= 32
L
: RL = 32
OL
: RL = 32
OH
: RL = 16
OL
: RL = 16
OH
THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz)
Ω,
Ω
Ω
Ω
Ω
= 32Ω
L
F = 1kHz
Crosstalk
F = 20Hz to 20kHz
Channel Separation, R
= 16Ω
L
F = 1kHz
F = 20Hz to 20kHz
C
GBP
SR
1. Fig. 68 to 79 show di spersion of these parameters.
Input Capacitance1pF
I
Gain Bandwidth Product (R
= 32
L
Slew Rate, Unity Gain Inverting (R
= 32
Ω
L
= 32
Ω
L
= 16
Ω
L
= 16
Ω
L
1)
=-1)
v
=1), inputs floating
v
=-1)
v
Ω)
= 16
Ω)
L
mA
15mV
200500nA
65
60
67.5
mW
100
95
107
0.03
%
0.03
85dB
106120mA
4.45
4.2
0.4
4.6
0.55
4.4
0.48
V
0.65
95110dB
100
80
dB
100
80
1.352.2MHz
0.450.7V/µs
3/24
TS482
ELECTRICAL CHARACTERISTICS
= +3.3V, GND = 0V, T
V
CC
= 25°C (unless otherwise specified)
amb
SymbolParameterMin.Typ.Max.Unit
I
CC
V
I
Supply Current
No input signal, no load5.37.2
Input Offset Voltage (V
IO
Input Bias Current (V
IB
ICM
= VCC/2)
ICM
= VCC/2)
Output Power
P
O
THD + N
PSRR
I
O
THD+N = 0.1% Max, F = 1kHz, R
THD+N = 1% Max, F = 1kHz, R
THD+N = 0.1% Max, F = 1kHz, R
THD+N = 1% Max, F = 1kHz, R
Total Harmonic Distortion + Noise (A
RL = 32
R
= 16
L
Power Supply Rejection Ratio (A
P
= 16mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
P
= 35mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
v
=1), inputs floating
F = 100Hz, Vripple = 100mVpp
Max Output Current
THD +N < 1%, R
= 16Ω connected between out and VCC/2
L
=-1)
v
L
= 32
L
L
= 16
L
= 32
= 16
1)
Ω
Ω
Ω
Ω
Output Swing
V
O
SNR
V
V
V
V
Signal-to-Noise Ratio (Filter Type A, A
(R
Channel Separation, R
= 32
L
: RL = 32
OL
: RL = 32
OH
: RL = 16
OL
: RL = 16
OH
THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz)
Ω,
Ω
Ω
Ω
Ω
= 32Ω
L
v
=-1)
F = 1kHz
Crosstalk
F = 20Hz to 20kHz
Channel Separation, R
= 16Ω
L
F = 1kHz
F = 20Hz to 20kHz
C
GBP
SR
1. Fig. 68 to 79 show di spersion of these parameters.
Input Capacitance1pF
I
Gain Bandwith Product (R
Slew Rate, Unity Gain Inverting (R
= 32
L
Ω)
= 16
L
Ω)
2)
15mV
200500nA
23
36
6475mA
2.85
2.68
92107dB
1.22MHz
0.450.7V/µs
27
28
38
42
0.03
0.03
80dB
0.3
3
0.45
2.85
100
80
100
80
0.38
0.52
mA
mW
%
V
dB
2.All electrical values are guaranted with correlation measurements at 2V and 5V
4/24
TS482
ELECTRICAL CHARACTERISTICS
= +2.5V, GND = 0V, T
V
CC
= 25°C (unless otherwise specified)
amb
SymbolParameterMin.Typ.Max.Unit
I
CC
V
I
Supply Current
No input signal, no load5.17.2
Input Offset Voltage (V
IO
Input Bias Current (V
IB
ICM
= VCC/2)
ICM
= VCC/2)
Output Power
P
O
THD + N
PSRR
I
O
THD+N = 0.1% Max, F = 1kHz, R
THD+N = 1% Max, F = 1kHz, R
THD+N = 0.1% Max, F = 1kHz, R
THD+N = 1% Max, F = 1kHz, R
Total Harmonic Distortion + Noise (A
RL = 32
R
= 16
L
Power Supply Rejection Ratio (A
P
= 10mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
P
= 16mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
v
=1), inputs floating
F = 100Hz, Vripple = 100mVpp
Max Output Current
THD +N < 1%, R
= 16Ω connected between out and VCC/2
L
=-1)
v
L
= 32
L
L
= 16
L
= 32
= 16
1)
Ω
Ω
Ω
Ω
Output Swing
V
O
SNR
V
V
V
V
Signal-to-Noise Ratio (Filter Type A, A
(R
Channel Separation, R
= 32
L
: RL = 32
OL
: RL = 32
OH
: RL = 16
OL
: RL = 16
OH
THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz)
Ω,
Ω
Ω
Ω
Ω
= 32Ω
L
v
=-1)
F = 1kHz
Crosstalk
F = 20Hz to 20kHz
Channel Separation, R
= 16Ω
L
F = 1kHz
F = 20Hz to 20kHz
C
GBP
SR
1. Fig. 68 to 79 show di spersion of these parameters.
Input Capacitance1pF
I
Gain Bandwidth Product (R
Slew Rate, Unity Gain Inverting (R
= 32
L
Ω)
L
= 16
Ω)
2)
15mV
200500nA
12.5
17.5
4556mA
2.14
1.97
89102dB
1.22MHz
0.450.7V/µs
13.5
14.5
20.5
22
0.03
0.03
75dB
0.25
2.25
0.35
2.15
100
80
100
80
0.325
0.45
mA
mW
%
V
dB
2. All electrical values are guaranted with correlation measurements at 2V and 5V
5/24
TS482
ELECTRICAL CHARACTERISTICS
V
= +2V, GND = 0V, T
CC
SymbolParameterMin.Typ.Max.Unit
= 25°C (unless otherwise specified)
amb
I
CC
V
I
Supply Current
No input signal, no load57.2
Input Offset Voltage (V
IO
Input Bias Current (V
IB
ICM
= VCC/2)
ICM
= VCC/2)
Output Power
THD+N = 0.1% Max, F = 1kHz, R
P
O
THD+N = 1% Max, F = 1kHz, R
THD+N = 0.1% Max, F = 1kHz, R
THD+N = 1% Max, F = 1kHz, R
Total Harmonic Distortion + Noise (A
THD + N
PSRR
I
O
RL = 32
R
= 16
L
P
= 6.5mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
P
= 8mW, 20Hz ≤ F ≤ 20kHz
Ω,
out
Power Supply Rejection Ratio (A
F = 100Hz, Vripple = 100mVpp
Max Output Current
THD +N < 1%, R
= 16Ω connected between out and VCC/2
L
Output Swing
= 32
L
: RL = 32
OL
: RL = 32
OH
: RL = 16
OL
: RL = 16
OH
THD +N < 0.2%, 20Hz ≤ F ≤ 20kHz)
Ω,
Ω
Ω
Ω
Ω
= 32Ω
L
V
O
SNR
V
V
V
V
Signal-to-Noise Ratio (Filter Type A, A
(R
Channel Separation, R
F = 1kHz
Crosstalk
F = 20Hz to 20kHz
Channel Separation, R
= 16Ω
L
F = 1kHz
F = 20Hz to 20kHz
C
GBP
SR
1. Fig. 68 to 79 show di spersion of these parameters.
Input Capacitance1pF
I
Gain Bandwith Product (R
= 32
L
Slew Rate, Unity Gain Inverting (R
= 32
L
= 32
Ω
L
= 16
L
= 16
Ω
L
1)
=-1)
v
=1), inputs floating
v
=-1)
v
Ω)
= 16
Ω)
L
mA
15mV
200500nA
Ω
7
Ω
9.5
8
9
11.5
13
0.02
mW
%
0.025
75dB
3341.5mA
1.67
1.53
0.24
1.73
0.33
1.63
0.295
V
0.41
88101dB
100
80
dB
100
80
1.22MHz
0.420.65V/µs
6/24
Index of Graphs
DescriptionFigurePage
Open Loop Gain1 to 108, 9
Phase and Gain Margin vs Power Supply Voltage11 to 209 to 11
Output Power vs Power Supply Voltage21 to 2311
Output Power vs Load Resistance23 to 2711, 12
Power Dissipation vs Output Power28 to 3112, 13
Power Derating Curves3213
Current Consumption vs Power Supply Voltage3313
PSRR vs Frequency3413
THD + N vs Output Power35 to 4913 to 16
THD + N vs Frequency50 to 5416
Signal to Noise Ratio vs Power Supply Voltage55 to 5817
Equivalent Input Noise voltage vs Frequency5917
Output Voltage Swing vs Supply Voltage6017
Crosstalk vs Frequency 61 to 6518
Lower Cut Off Frequency Curves66, 6718, 19
Statistical Results on THD+N68 to 7919 to 21
TS482
7/24
TS482
0.1110100100010000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V
RL = 8
Ω
Tamb = 25°C
Gain
Phase
Phase (Deg)
0.1110100100010000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V
RL = 16
Ω
Tamb = 25°C
Gain
Phase
Phase (Deg)
0.1110100100010000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V
RL = 32
Ω
Tamb = 25°C
Gain
Phase
Phase (Deg)
Fig. 1 : Open Loop Gain and Phase vs
Frequency
80
60
40
Phase
20
Gain (dB)
0
-20
-40
0.1110100100010000
Gain
Frequency (kHz)
Vcc = 5V
RL = 8
Ω
Tamb = 25°C
Fig. 3 : Open Loop Gain and Phase vs
Frequency
80
60
40
20
Gain (dB)
0
-20
-40
0.1110100100010000
Phase
Gain
Frequency (kHz)
Vcc = 5V
RL = 16
Ω
Tamb = 25°C
180
160
140
120
100
80
60
40
20
0
-20
180
160
140
120
100
80
60
40
20
0
-20
Fig. 2 : Open Loop Gain and Phase vs
Frequency
Phase (Deg)
Fig. 4 : Open Loop Gain and Phase vs
Frequency
Phase (Deg)
Fig. 5 : Open Loop Gain and Phase vs
Frequency
80
60
40
20
Gain (dB)
0
-20
-40
0.1110100100010000
8/24
Phase
Gain
Frequency (kHz)
Vcc = 5V
RL = 32
Ω
Tamb = 25°C
180
160
140
120
100
80
60
40
20
0
-20
Fig. 6 : Open Loop Gain and Phase vs
Frequency
Phase (Deg)
Loading...
+ 16 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.