SGS Thomson Microelectronics TEA2164 Datasheet

SWITCH MODE POWER SUPPLY PRIMARYCIRCUIT
.
POSITIVE AND NEGATIVE OUTPUT CUR­RENTUP TO 1.2AAND – 1.7A
.
A TWO LEVEL COLLECTOR CURRENT LIMI­TATION
.
COMPLETETURN OFF AFTERLONG DURA­TIONOVERLOADS
.
UNDERANDOVER VOLTAGELOCK-OUT
.
SOFT START BY PROGRESSIVE CURRENT LIMITATION
.
DOUBLEPULSESUPPRESSION
.
BURST MODE OPERATION UNDER STAND­BY CONDITIONS
DESCRIPTION
In amasterslave architecture,theTEA2164control IC achieves the slave function.Primarilydesigned for TV receivers and monitors applications, this circuitprovidesaneasy synchronizationand smart solutionfor low powerstand by operation.
Located at the primary side the TEA2164 Control IC ensures:
- the powersupply start-up
- the power supply control under stand-by condi­tions
- the process of the regulation signalssent by the mastercircuitlocated at the secondaryside
- directbasedriveofthebipolarswitchingtransistor
- the protection of the transistor and the power supplyunder abnormalconditions.
For more details, refer toapplicationnote AN409.
TEA2164
POWERDIP16
(Plastic Package)
ORDER CODE : TEA2164
PINCONNECTIONS
LONG CAPACITOR OVERLOAD CAPACITOR
OSCILLATOR TIMING RESISTOR
OSCILLATOR TIMING CAPACITOR
December 1992
GROUND
I COPY
PULSE INPUT
V SUPPLY VOLTAGE
1 2 3 4 5 6 7 8
16
CC
OUTPUT STAGE POSITIVE SUPPLY VOLTAGE
15
OUTPUT (BASE CURRENT)
14
13
12
I SENSE
11
C (max.)
LOW FREQUENCY OSCILLATOR CAPACITOR
10
FEEDBACK INPUT IS BURST MODE
9
2164-01.EPS
1/15
TEA2164
BLOCK DIAGRAM
2/15
2164-02.EPS
TEA2164
Figure 1 : SimplifiedApplication Diagram
ABSOLUTEMAXIMUM RATINGS
Symbol Parameter Value Unit
V
CC
V+ Positive Power Supply of the Output Stage V15-V1 18 V V– Negative Power Supply V4, 5, 12, 13-V1 – 5 V
-V–
V
CC
V+ - V–
I
out+
I
out–
T
T
stag
Positive Power Supply V16-V1 18 V
Total Power Supply V16-V4, 5, 12, 13 or V15-V4, 5, 12, 13 20 V
Positive Output Current 1.5 A Negative Output Current 2 A Operating Junction Temperature 150 °
j
Storage Temperature Range –40, + 150 °
2164-03.EPS
C C
2164-01.TBL
THERMALDATA
Symbol Parameter Value Unit
R
th(j-c)
Junction Case Thermal Resistance 11 °
MAXIMUMPOWER DISSIPATION
2164-04.EPS
C/W
3/15
2164-02.TBL
TEA2164
RECOMMANDED OPERATING CONDITIONS
Symbol Parameter Min. Typ. Max. Unit
V
CC
V– Negative Power Supply (absolute value) (note 1) 0 5 V
V
– V– Total Power Supply 18 V
CC
I
out+
I
out–
Fsw Switching Frequency 50 khz
Ro Oscillator Resistor Range 30 150 Co Oscillator Capacitor Range 470 2700 pF
C1 StartingOscillator Capacitor Range 0.1 4.7 µ C2 Repetitive Overload Protection Capacitor 1 22
V
in
T
oper
Positive Power Supply 10 14 V
Positive Output Current 1.2 A Negative Output Current 1.7 A
Input Pulses Amplitude (peak) (derivated pulses - time constant = 1 µs)
0.5 1 V
Operating Ambiant Temperature – 20 70 °
-
V
CC
I>0
14
<0
B
<0
I
B
1312
TEA2164
5
4
I
I
B I
14
1
capacitive
<0
B
coupling
12 13
TEA2164
45 1
-
V
CC
I
B
k
µF
F
C
2164-03.TBL
2164-05.EPS
ELECTRICAL OPERATING CHARACTERISTICS
=25oC, VCC=10V, V
T
amb
= 0V, potentialsreferencedto ground (Pin 1)
CC-
(unlessotherwise specified)
Symbol Parameter Min. Typ. Max. Unit
POWER SUPPLY
(start) Starting Voltage (VCCincreasing) 8 9 9.6 V
V
CC
V
(stop) Stopping Voltage (VCCdecreasing) 5 6.2 7.4 V
CC
V
CC
V
ccmax
I
ccstart
CURRENT LIMITATION AND PROTECTION (pin 11)
VCM1 Pulse by Pulse Current Limitation Threshold 720 840 970 mVVCM2 Current Monitoring 2nd Threshold 1200 1350 1500 mV
VCM VCM = VCM2VCM1
REPETITIVEOVERCURRENT PROTECTION
VCM3 Repetitive OvercurrentThreshold (pin 11) 700 900 1100 mV
VCM3-VCM1 (VCM3-VCM1) – 20 50 130 mV
VC2 Lock-out Voltage on Pin 3 2.4 3 3.6 V
I3 disch Capacitor C2 Discharge Current (synchronizedmode) 10 20 30 µ
I3 ch. Capacitor C2 Charge Current 50 80 110 µ
OSCILLATOR, MAX DUTY CYCLE, SYNCHRONIZATION
T
o
T
on(max)
Hysteresis (VCCstart – VCCstop) 2 2.8 3.5 V Overvoltage Lock-out 14.8 15.5 16.2 V Starting Positive Supply Current 0.5 0.8 1.5 mA
300 500 700 mV
Oscillator Initial Accuracy RT = 50 K, CT = 1 nF 19.3 21 22.7 Maximum Duty Cycle (T
= 1.05 To)607085%
syn
A A
µs
2164-04.TBL
4/15
ELECTRICAL OPERATINGCHARACTERISTICS (continued)
Symbol Parameter Min. Typ. Max. Unit
OSCILLATOR, MAX DUTY CYCLE, SYNCHRONIZATION (continued)
T
syn
T
O
OUTPUT STAGE
I
14/I2
I
BON
VERY LOW FREQUENCY OSCILLATOR
Synchronization Window 1.0 1.5
IcCopy CurrentGain 1000 Base Current Starting Pulse 300 mA
Burst Duty Cycle 13 %
TEA2164
2164-05.TBL
I. FIELD OF APPLICATION
The TEA2164 control circuit has been designed primarily for discontinuousmode flybackbuilt with a master-slave architecture, whatever the field of application. Butdue to its capabilityto synchronizethe transis­tor switching-off with an external signal (line fly­back)and dueto an adaptedburst-modeoperation for a low power stand-by operation, the TEA2164 offers a smart solution for monitors and TV sets applications. Powersupply main features:
- maximumoutput power 140W (transistorforced gain : 3.5)
Figure 2 : MasterSlave PowerSupplyArchitecture
R
MAINS INPUT
P
C
V
CC
2
- stand-bymode output power (1W Psb 6W ; efficiency > 50%)
- operatingfrequencyup to 50kHz
- power-switch : bipolar transistor
Adaptedmaster-circuit : Monitorapplication TEA5170 Standard TV application TEA2028B
TEA2029C TEA2128 TEA5170
Digital TV application TEA5170 (TEA2028B,TEA2029Cand TEA2128 are deflec-
tion processorswith built-in PWM generator).
Muting Control
Remote
Stand-by
Remote
Stand-by
P
1
Synchronization
AUDIO
OUTPUT
STAGE
SCANNING
DEVICE
VOLTAGE
REGULATOR
TEA2164
P : Output voltage adjustement in normal mode
1
P : Output voltage adjustement in stand-by
2
TEA5170
PWM
µP
V
CC
INFRA-RED
RECEIVER
Small signal primary ground Power primary ground Secondary ground (isolated from mains)
2164-06.EPS
5/15
TEA2164
II. GENERALDESCRIPTION
In a masterslave architecture,the TEA2164 Con­trol IC, located at the primary side of an off line powersupplyachievestheslavefunction;whereas
Figure 3 : SystemDescription Waveforms
the mastercircuitis locatedat the secondaryside. The linkbetweenboth circuitsis realizedbyasmall pulse transformer(Figure 3).
6/15
2164-07.EPS
TEA2164
In the operation of the master-slave architecture, four majors casesmustbe considered :
- normaloperating
- stand-bymode
- powersupplystart-up
- abnormalconditions : off load,short circuit,... II.1.Normal Operating (master slave mode)
In this configuration,themastercircuit generatesa pulsewidthmodulatedsignalissuedfromthemoni­toring of the output voltage which needs the best accuracy(inTVapplications:thehorizontaldeflec­tionstagesupplyvoltage).Themastercircuitpower supplycan be suppliedby another output.
The PWM signalare sent towards the primary side through small differentiating transformer. For the TEA2164 positive pulses are transistor switching­on commands; and negative pulsesare transistor switching-offcommands(Figure 4). In this configu­ration,only by synchronizingthe masteroscillator, the switchingtransistor may be synchronizedwith an externalsignal.
II.2.Stand-byMode
In this configuration the master circuit no longer Figure 4 : MasterSlave Mode Waveforms
sends PWM signals, the structure is not synchro­nized ; and the TEA2164 operates in burst mode. The averagepower consumptionat the secondary side may be very low 1W P 6W (as it is consumedin TV set during stand by).
By action on the maximum duty cycle control, a primary loop maintains a semi-regulation of the outputvoltages.Voltageonfeed-backisappliedon Pin 9.
Burstperiodis externallyprogrammedbycapacitor C1.
II.3.Power Supply Start-up
After the mains have been switched-on, the V
CC
storage capacitor of the TEA2164 is charged through a high value resistor connected to the rectifiedhigh voltage.When VccreachesV
CC
start threshold(9V typ), theTEA2164startsoperatingin burst mode. Sinceavailable outputpower islow in burst mode the output power consumption must remain low before complete setting-up of output voltage. In TV application it can be achieved by maintaining the TV in stand-by mode duringstart­up (Figure 6).
SLAVE
CIRCUIT
Synchro.
MASTER CIRCUIT
Sync. Pulses
PWM Signal
Pulse Input
Base Current
2164-08.EPS
7/15
TEA2164
Figure 5 : BurstMode Waveforms
Figure 6 : PowerSupplyStart-up
2164-09.EPS
Tch 1s (typ) T1 0.3s (typ)
T
start-up
= Tch + T1
T1 :necessary time for voltagesetting-up
d) Abnormalconditions: safetyfunctions OvervoltageProtection
When V
exceeds VCCmax, an internal flip-flop
CC
stops output conduction signals. The circuit will start again after the capacitor C1 discharge ; it means : after loss of synchronizationor after Vcc stopcrossing (Figure7).
In flyback converters, this function protects the powersupply against outputvoltagerunaway.
Under Voltage Lock-out
The TEA2164 controlcircuitstops operatingwhen
goes under VCCstop.
V
CC
8/15
Power Limitation,Current Protection, Long Duration OverloadProtection
- Output power limitation : by a pulse by pulse
collectorcurrentlimitation the TEA2164 limits the maximum output power. V
isthe correspond-
CM1
ing voltagethreshold,its detection is memorized up to the next period.
- Currentprotection(transistorprotection)
Under particular conditions a hard overload or short circuit may induce a fluxrunawayin spiteof the currentlimitation (V
CM1
). The TEA2164 control circuit features a second current protection, V
. When this thresholdis
CM2
reached an internal flip-flop memorizes it and
2164-10.EPS
TEA2164
output conduction signals are inhibited. The cir­cuitwill sendbasedrivesagainaftercapacitorC1 discharge(Figure7).
- Longdurationoverloadprotection : (Figure 8) An overload is detectedwhen thesense-voltage on Pin 11 reachesV
before a negativepulse
CM3
hasbeenappliedto Pin 6. In thiscasethe capaci­tor C2 (connectedto Pin3) is charged with I up to theendof the period and discharged with I disch until a next V
detector. By this way in
CM3
ch
3
3
case of long duration overload, the capacitor
Figure 7 : OvervoltagesLock-out
Figure 8 : LongDuration Overload Monitoring Circuit
keeps charging at each period and its voltage encreasesgradually. When the voltage on Pin3 exceeds V
, the TEA2164 control circuit stops
C2
sending base drives and memorizes this event. No restart is allowed as long as V than V
andVCChigherthan 4.8V.
C2
pin 3
is higher
* Remark:
- The harder is the overload the faster is the pro­tection
- The capacitorkeeps chargingbetween two burst after V
CM2
detection.
2164-11.EPS
Figure 9 : LongDuration Overload Detection
2164-11.EPS
2164-13.EPS
9/15
TEA2164
Figure 10 : RepetitiveOver-current Protection
III. SWITCHINGOSCILLATOR AND SYNCHRONIZATION III.1. Switchingoscillator
Whenthe TEA2164controlcircuitoperatesin burst mode, the switching frequencyis fixed by the free frequency oscillator. The period is determined by two external componentsC
andRO.
O
III.2. Synchronization
Whenthe master-circuitstarts to send pulsesboth Figure 11 : Free Frequency Running
oscillators are not synchonuous. In order to avoid any erratic conductionof the power transistor,the firstsynchronizationpulse will arrive simultanously with thesawtoothreturn of the TEA2164oscillator.
Toget synchronizationthe free frequency must be higher than the synchronizationfrequency.
T
O<Tsync.
< 1.50 T
2164-14.EPS
O
Figure 12 : SynchronizationPulse Shaperand Synchronization
10/15
2164-15.EPS
2164-16.EPS
Operationafter synchronization
TEA2164
(1) NORMAL OPERATION
T :synchronization window
Operationafter synchronization
(3) ERRATIC POSITIVE PULSES
P1 and P2 are masked due to the synchronization window
Cases (2) (3) (4) donot occur in normal operating.
IV - MAXIMUM DUTY CYCLE LIMITATION
Burstmode :Themaximum dutycycleiscontrolled by the voltage on Pin 9 (Figure13).
Synchronizedmode : Normallythe maximum duty cycle is set by the master circuit. Oowever the maximum conducting time will never exceed the value given by the comparison of the oscillator wave-formwith the 2.5Vinternal threshold.
V - OUTPUTSTAGE
TEA2164output stage has beendesignedto drive switchingbipolar transistor.
- Eachbase drive beginswitha positivepulseI
BON
(2) NEGATIVE PULSE MISSING
Transistor turn-off is ensured by VCM1 current limitation cross­ing or byan internaltON (max.) limitation set by a 2.5V threshold
(4) Fsynchro < 0.65 Fo
Signal S1 triggers burst oscillator capacitor discharge. The TEA2164 restarts in burst-mode
thatrealizesan efficienttransistorturn-on.
- After the starting pulse I
, the base currentis
BON
proportionalto the collector current. The current gain is easily fixed by a resistorR (Figure14).
- A fast and safetransistor turn-off is realized by a fastpositivebase currentcut-off and by applying a negativebase drive which draws stored carri­ers.A typical 0.7sdelaypreventsfromcross-con­ductionof positiveand negative outputstages.
Remark : In order to reducepower dissipationon the positiveoutput stage with the lowgain transis­tors,forhighbasecurrentsthepositiveoutputstage operatesin saturated mode (Figure 15). This can be achievedby using a resistorbetween V
CC
and
V+.
2164-17.EPS / 2164-18.EPS
2164-19.EPS
11/15
TEA2164
Figure 13 : MaximumDuty Cycle Limitation
Figure 14 : OutputStage Architectureand Base Drive
2164-20.EPS
V
4-5-12-13
V
I
14
B
R
S
R
B
I
C
The energy of the starting burst must be high enough to ensure start-up, then the capacitor C1 must be higher in these applicationsthan on TV application(typ. : 1µF).
16 15
V
CC
CURRENT
MIRROR
Virtual
Ground
2
I
COPY
VI - MONITOR APPLICATIONS
In most of monitor applications, the power supply must start-up under full load conditions and the stand-by mode is no longer useful.
Figure 15 : PowerSupply Start-up andNormal Operation
I
Cmax
I
I
B
C
I
BON
I
C
GF
I
B
I
C
GF = =
I
B
R
S
R
B
1000 x R
t
t
V
CM1
=
I
Cmax
S
2164-21.EPS
12/15
2164-22.EPS
COMPLETE APPLICATION DIAGRAM(SMPS + DEFLECTION) (with stand-by function)
+24V
+200V
Frame
Adjust
60
ESM
4.7µF
BA157
740
220
220
220
100 BA159
4
18
1N4444
390
Amplitude
33
820
6
+24V
4.7
220
220
6.8k
3.3k
3.3k
6.8k
100nF
1k
820
2.7M
3
1
2
200V
1kΩ
82k
Adjust
FramePhase
E/W
470nF
220k
2.2k
5
10k
28
11
SUPER
SANDCASTLE
LINE
4.7nF
100nF
TEA2029C
220nF
100nF
VIDEO
15 27 26 25 12
7
22
19
1.5nF
220
15nF4.7
3.9k
503
kHz
F
µ
F
µ
10
24
20
1N4148
MUTEOUT
8.2k
330
15k
5.6k
5.6k
AGC
CC
V
0.27
100
330
1nF
PrimaryGround(connectedtomains)
Secondaryground(isolatedfrom mains)
OREGA
FUSE1.6A
EHT
TRANSFORMER
220pF
150k
33k
+135V / 0.6A
100µF
BY218
G.4173.04
313
2x 47µF
4 x 1N4007
AC
220V
MAINSINPUT
220pF
SMPS
100k
(385V)
300k
OutputVoltage
2N1711
27
BY218
20
(2W)
LINEFLYBACK
100k
1k1k
Adjust
680
1000µF
19
6
2.2
BA157
V
13V
9
FRAME
YOKE
120mH
1nF
LINE
YOKE
500µH
0.47µF
390
47nF
1k
10
21
1k
98
1.5k
CC
F
µ
220
22nF
14132316
3.32kΩ (1%)
3.3nF
100nF
VCR
Switch
22nF
+25V
10k
470µF
CC
V
17
470k
1.8k
Adjust
150pF
HorizontalPhase
BY218
21
22
CC
V
470
7
1
2
2.2nF
BU508A
2.2
47µF
BA157
3 x 1N404
10
2µH
220µF
16
15
6.8
1
470k
45
9
12k
7
110k
14
6
2
1110
3
TEA2164
13
12
8
1.2nF
2.2µF
CORRECTION
OUTPUT
FLYBACK
INPUT
&
50/60Hz
IDENTIFICATION
PULSE
TEA2164
2164-23.EPS
13/15
TEA2164
STAND-ALONE 32kHz POWER SUPPLY ELECTRICALDIAGRAM
135V
Sync.
Input
BY218-600
13
G4453-02
3
P1
100µF
100k
(250V)
PLR811
2.2k
100k
7.5V
Stand-by
Control
47nF
75k
TEA5170
16V
81
7
560
3
470
(8W)
BA159
pF
2.7nF
1kV
10k
560
pF
65
4
2
BC550C
25V
1000µF
22
(40V)
BY218-100
21
10µF
SGSF344
1000µF
14
9
(25V)
BY218-100
7 17
470µF
(25V)
20
19
6
150pF
1N4148
270
6.8k100k
Pulse
Transformer
100
14/15
4 x 1N4007
20%= 220
AC
V
IN
V
150µF
120k
(385V)
(2W)
68k
1nF
BA157
4.7(2W)
P2
47µF
220µF
25V
BZX85C-3V0
18
2.2µF
5.6
(1W)
14
15
12 13 16
22k
5
4
2
11
3
1
TEA2164
6
µF
4.7
1N4148
330
16V
0.24(1W)
330
1nF
560pF2%
9
10
100nF
8
7
1%
100k
: 120WP
OUT
f : 32kHz
2164-24.EPS
PACKAGE MECHANICALDATA
16 PINS- PLASTICPOWERDIP
TEA2164
I
L
b1
E
Dimensions
a1
Z
b
16
18
B
e3
D
e
9
F
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
a1 0.51 0.020
B 0.85 1.4 0.033 0.055
b 0.5 0.020
b1 0.38 0.5 0.015 0.020
D 20 0.787 E 8.8 0.346
e 2.54 0.100
e3 17.78 0.700
F 7.1 0.280
i 5.1 0.201
L 3.3 0.130
Z 1.27 0.050
PMDIP16W.EPS
DIP16PW.TBL
Information furnished is believed to be accurate andreliable.However, SGS-THOMSONMicroelectronics assumes no responsibility for the consequences of use of such information norfor any infringement ofpatents or other rights of third partieswhich may result from itsuse. Nolicence isgranted by implication orotherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics productsare not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
1994 SGS-THOMSON Microelectronics - All Rights Reserved
Purchase of I
2
I
C Patent. Rights to use these components in a I2C system, is granted provided that the system conforms to
Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
2
C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips
2
the I
C Standard Specificationsas defined by Philips.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
15/15
Loading...