Datasheet TDA9105 Datasheet (SGS Thomson Microelectronics)

TDA9105
DEFLECTIONPROCESSOR FOR MULTISYNC MONITORS
PRELIMINARY DATA
HORIZONTAL
DUALPLLCONCEPT
150kHz MAXIMUMFREQUENCY
SELF-ADAPTATIVE
X-RAYPROTECTION INPUT
DC ADJUSTABLEDUTY-CYCLE
1stPLLLOCK /UNLOCKINFORMATION
WIDE RANGE DC CONTROLLED H-POSI­TION
ON/OFF SWITCH (FOR PWR MANAGE­MENT)
TWOH-DRIVEPOLARITIES
MOIRE OUTPUT
VERTICAL
VERTICALRAMP GENERATOR
50 TO165Hz AGC LOOP
DCCONTR OLLED V-AMP,V-POS,S-AMP &C-C OR
.
ON/OFF SWITCH
EWPCC
VERTICAL PARABOLA GENERATOR WITH DC CONTROLLED KEYSTONE & AMPLITUDE
.
AUTOTRACKING WITH V-POS& V-AMP
GEOMETRY
WAVE FORM GENERATOR FOR PARALEL­LOGRAM& SIDE PIN BALANCECONTROL
AUTOTRACKING WITH V-POS& V-AMP
DYNAMICFOCUS
VERTICALPARABOLAOUTPUTFOR VERTI­CALDYNAMIC FOCUS
AUTOTRACKING WITH V-POS& V-AMP
GENERAL
ACCEPT POSITIVE OR NEGATIVE HORI­ZONTAL& VERTICAL SYNC POLARITIES
SEPARATE H & V TTLINPUT
COMPOSITEBLANKINGOUTPUT
DESCRIPTION
The TDA9105 is a monolithic integrated circuit assembled in a 42 pins shrink dual in line plastic package.
This IC controls all the functions related to the horizontaland vertical deflectionin multimodesor multisyncmonitors. This IC, combined with TDA9205 (RGB preamp), STV942x(OSDprocessor),ST727x(microcontrol­ler) and TDA817x(vertical booster), allowsto real­ize very simple and high quality multimodes or multisyncmonitors.
SHRINK42
(Plastic Package)
ORDER CODE : TDA9105
PIN CONNECTIONS
V-FOCUS
H-LOCKOUT
PLL2C
H-DUTY
H-FLY
H-GND
H-REF
FC2 FC1
C0 R0
PLL1F
H-LOCKCAP
PLL1INHIB
H-POS
XRAY-IN
H-SYNC
V
GND
H-OUTEM
H-OUTCOL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
CC
19 20 21
42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22
SPINBAL KEYBAL GEOMOUT EWAMP KEYST EWOUT V-FLY VDCIN V-SYNC V-POS VDCOUT V-AMP V-OUT C-CORR VS-AMP V-CAP V-REF V-AGCCAP V-GND MOIRE BLK-OUT
9105-01.EPS
June 1996
This is advance informationon anewproduct now in development or undergoingevaluation. Details are subject to change without notice.
1/32
TDA9105
PINDESCRIPTION
Pin Name Function
1 V-FOCUS Vertical Dynamic Focus Output 2 H-LOCKOUT First PLL Lock/UnlockOutput 3 PLL2C Second PLL Loop Filter 4 H-DUTY DC ControlofHorizontalDrive Output PulseDuty-cycle.If thisPinisgrounded, the Horizontal
5 H-FLY Horizontal Flyback Input (positive polarity) 6 H-GND Horizontal Section Ground 7 H-REF Horizontal Section Reference Voltage, must be filtered 8 FC2 VCO Low Threshold Filtering Capacitor
9 FC1 VCO High ThresholdFiltering Capacitor 10 C0 Horizontal OscillatorCapacitor 11 R0 Horizontal OscillatorResistor 12 PLL1F First PLL Loop Filter 13 H-LOCKCAP First PLL Lock/UnlockTime Constant Capacitor. When Frequency ischanging, a Blanking
14 PLL1INHIB TTL-Compatible Inputfor PLL1 Output Current Inhibition 15 H-POS DC Control for HorizontalCentering 16 XRAY-IN X-RAY protectionInput (withinternal latchfunction) 17 H-SYNC TTL compatible Horizontal Sync Input 18 V
CC
19 GND Ground 20 H-OUTEM Horizontal Drive Output (emiter of internal transistor) 21 H-OUTCOL Horizontal Drive Output (open collector of internal transistor) 22 BLKOUT Blanking Output, activated during frequency changes, when X-RAYInput istriggered,when
23 MOIRE Moire Output 24 V-GND Vertical Section SignalGround 25 V-AGCCAP Memory Capacitor forAutomatic Gain Control Loop in Vertical Ramp Generator 26 V-REF Vertical Section ReferenceVoltage 27 V-CAP Vertical Sawtooth GeneratorCapacitor 28 VS-AMP DC Control of VerticalS-Shape Amplitude 29 C-CORR DC Control of VerticalC-Correction 30 V-OUT Vertical Ramp Output (with frequency independantamplitude and S-Correction) 31 V-AMP DC Control of VerticalAmplitude Adjustment 32 VDCOUT Vertical Position ReferenceVoltage Output 33 V-POS DC Control of VerticalPosition Adjustment 34 V-SYNC TTL-Compatible VerticalSync Input 35 VDCIN Geometric CorrectionReference Voltage Input 36 V-FLY Vertical Flyback Input (positive polarity) 37 EWOUT East /WestPincushion Correction Parabola Output 38 KEYST DC Control of KeystoneCorrection 39 EWAMP DC Control East/West PincushionCorrection Amplitude 40 GEOMOUT Side PinBalance & Parallelogram Correction Parabola Output 41 KEYBAL DC Control of ParallelogramCorrection 42 SPINBAL DC Control ofSide Pin Correction Amplitude
and VerticalOutputs are inhibited.By connecting a Capacitor onthis Pin aSoft-start function may berealized on H-drive Output.
Pulse isgenerated on Pin23, the duration of this Pulse is proportionnel to the Capacitoron Pin 13.
Supply Voltage(12V Typ.)
VS istoolow, orwhenDevice isin stand-bymode (throughH-DUTY Pin2)and duringH-FLY, V-FLY, V-SYNC, VSawth retrace.
9105-01.TBL
2/32
BLOCK DIAGRAM
TDA9105
H-OUTEM
H-OUTCOL
H-DUTY
XRAY-IN H-LOCKOUT
PLL2C
H-FLY FC1 FC2 R0 C0
PLL1F
H-POS
MOIRE
23
GND18V
19
CC
V-FOCUS
1
KEYST
38
EWOUT
37
EWAMP
39
KEYBAL
41
GEOMOUT
SPINBAL
40
42
MOIRE
VDCIN
V-Sync
H-Sync
20
2
X
35
H
21
4
16 2
3
5
9
8
11 10
12
15
BUFFER
OUTPUT
PULSE
SHAPER
PHASE
SHIFTER
COMP
PHASE
VCO
COMP
PHASE
FREQUENCY
SAFETY
PROCESSOR
VS
VIDEO UNLOCK
LOCK
IDENT
UNLOCK
V-MID
V-REF
BLK
GEN
H-FLY
RAMP
VERT OSC
GENERATOR
S
CORR
V-SYNC
22
36
32
33
30
31
25
27
29
28
BLK-OUT
V-FLY
VDCOUT
V-PO S
V-OUT
V-AMP
VAGCCAP
VCAP
C-CORR
VS-AMP
V-REF
PULSE
SHAPER
POL
DETECT
PLL1
INHIB
PULSE
SHAPER
POL
DETECT
7
H-REF
6
H-GND
17
H-SYNC
14
13
PLL1INHIB
H-LOCKCAP
26
V-REF
24
V-GND
34
V-SYNC
TDA9105
9105-02.EPS
3/32
TDA9105
QUICK REFERENCE DATA
Parameter Value Unit
Horizontal Frequency 15 to 150 kHz Autosynch Frequency (forGiven R0, C0) 1 to 3.7 FH ± Hor Sync Polarity Input YES Compatibility with Composite Sync on H-SYNC Input YES (see note 1) Lock/Unlock Identification on 1 DC Control forH-Position YES X-RAY Protection YES Hor DUTY Adjust YES Stand-by Function YES Two Polarities H-Drive Outputs YES SupplyVoltage Monitoring YES PLL1 Inhibition Input YES Composite Blanking Output YES Horizontal Moire Output YES Vertical Frequency 35 to 200 Hz Vertical Autosync (for 150nF) 50 to 165 Hz Vertical S-Correction YES Vertical C-Correction YES Vertical Amplitude Adjustment YES Vertical Position Adjustment YES East/West Parabola Output YES PCC (Pin CushionCorrection) Amplitude Adjustment YES Keystone Adjustment YES Dynamic Horizontal Phase Control Output YES Side Pin Balance Amplitude Adjustment YES Parallelogram Adjustment YES Tracking of Geometric Corrections with V-AMP and V-POS YES Reference Voltage YES (see note 2) Mode Detection NO Vertical Dynamic Focus YES
Notes : 1. Provided PLL inhibition input is used, see application diagram on page 27.
2. One for Horizontal section and one for Vertical section.
st
PLL YES
9105-02.TBL
4/32
TDA9105
ABSOLUTEMAXIMUM RATINGS
Symbol Parameter Value Unit
V
CC
V
IN
VESD ESD Succeptibility
T
stg
T
T
oper
THERMALDATA
Symbol Parameter Value Unit
R
th (j-a)
HORIZONTAL SECTION
OperatingConditions
Symbol Parameter Test Conditions Min. Typ. Max. Unit
VCO
R0min Oscillator Resistor Min Value (Pin 11) 6 k C0min Oscillator Capacitor Min Value (Pin 10) 390 pF
Fmax Maximum Oscillator Frequency 150 kHz HsVR Horizontal Sync InputVoltage (Pin 17) 0 5.5 V
INPUT SECTION
MinD Minimum Input Pulses Duration (Pin 17) 0.7 µS
Mduty Maximum Input Signal Duty Cycle (Pin 17) 25 %
OUTPUT SECTION
I5m Maximum Input Peak Current (Pin 5) 5 mA
HOI1 HOI2
DC CONTROL VOLTAGES
DCadj DC Voltageon DC Controls (Pins 4-15) V
Supply Voltage (Pin18) 13.5 V Max Voltageon Pins 4, 15, 28, 29, 31, 33, 38, 39,41, 42
Pin 5 Pins 17, 34 Pin 16
Human Body Model, 100pFDischarge through 1.5k EIAJ Norm, 200pF Dischargethrough 0
8
1.8 6
12
2
300 Storage Temperature -40, +150 °C Max OperatingJunction Temperature 150 °C
j
Operating Temperature 0, +70 °C
Junction-Ambient Thermal Resistance Max. 65 °C/W
Horizontal Drive Output Max Current
Pin 20 Pin 21
Sourced current Sink current
=8V 2 6 V
REF-H
20 20
V
kV
V
9105-03.TBL
9105-04.TBL
mA mA
9105-05.TBL
5/32
TDA9105
HORIZONTAL SECTION (continued)
ElectricalCharacteristics (V
= 12V,T
CC
Symbol Parameter Test Conditions Min. Typ. Max. Unit
SUPPLY AND REFERENCE VOLTAGES
V
V
REF-H
I
REF-H
V
I
REF-V
Supply Voltage (Pin18) 10.8 12 13.2 V
CC
Supply Current (Pin18) See Figure 1 40 60 mA
I
CC
Reference Voltage forHorizontal Section (Pin 7) I = 2mA 7.4 8 8.6 V Max SourcedCurrent on V Reference Voltage forVertical Section (Pin 26) I = 2mA 7.4 8 8.6 V
REF-V
Max SourcedCurrent on V
(Pin 7) 5 mA
REF-H
(Pin 26) 5 mA
REF-V
INPUT SECTION/PLL1
V
V
V
Horizontal Input Threshold Voltage (Pin 17) Low level voltage
INTH
VCO ControlVoltage (Pin 12) V
VCO
VCO Gain,dF/dV (Pin 12) R0 = 6.49k, C0 = 680pF 17 kHz/V
COG
Hph Horizontal Phase Adjust (Pin 15) % of Horizontalperiod ±12.5 %
f0 Free Running Frequency (adjustable b y changing R0) R0 = 6.49k, C0 = 680pF 25 27 29 kHz
CR PLL1 Capture Range
PLLinh PLL 1 Inhibition (Pin 14) PLL ON
(Typ. Threshold = 1.6V) PLL OFF
I
HLock0
V
HLock0
Max OutputCurrent on HLock Output I Low Level Voltage on HLock Output V2with I2= 10mA 0.25 0.5 V
SECOND PLL AND HORIZONTAL OUTPUT SECTION
FBth Flyback Input Threshold Voltage(Pin 5) See Figure 14 0.65 0.75 V
Hjit Horizontal Jitter See Application Diagram
Horizontal Drive OutputDuty-cycle (Pin 20 or 21) (see Note)
HDmin
HDmax
Minimum Maximum
HDvd Horizontal Drive Low Level Output Voltage Pin 20 to GND,
HDem Horizontal Drive High Level Output Voltage
(output on Pin 20)
XRAYth X-RAYProtection Input Threshold Voltage(Pin 16) TBD 8 TBD V
ISblkO Maximum Output Current on Composite
Blanking Output
VSblkO Low-Level Voltage on Composite Blanking
Output (Blanking ON)
ISmoiO Maximum Output Current on Moire Output I
VSmoiO Low-Level Voltage on Moire Output V
Vphi2 Internal Clamping Voltage on 2nd PLL Loop
Filter Output (Pin3)
V
Threshold Voltage to Stop H-out, V-out and to
OFF
Activate BLKout (OFF Mode when V (Pin 4)
VSCinh Supply Voltage toStop H-out, V-out when
< VSCinh (Pin18)
V
CC
Note : IfH-drive is taken on Pin20 (Pin 21 connectedto supply), H-D is the ratio of low level duration to horizontal period.
IfH-drive is taken on Pin21 (Pin 20 grounded), H-D isthe ratio of high level duration to horizontal period. In both cases, H-D period drivinghorizontal scanning transistor off.
amb
Fh Min Fh Max
4<VOFF
=25°C)
)
Highlevel voltage 2
= 8V 1.6 to 6.2 V
REF-H
R0 = 6.49kΩ, C0 = 680pF See conditions on Fig. 1
f0
3.7 x f0
V
14
V
14
2
2
80 ppm
(Pins8-9)
=2V
V
4
=6V
V
4
V
4=VREF
- 100mV
32
53.5
57.5
34 56 60
58.5
62.5
1.1 1.7 V
V
21-V20,IOUT
Pin 21 to V
= 20mA
I
OUT
I
22
with I22= 10mA 0.25 0.5 V
V
22
23
with I23= 10mA 0.25 0.5 V
23
Vmin Vmax
V
4
= 20mA ,
CC
9.5 10 V
1.6
3.2
TBD 7.5 V
0.8 V
0.8 V
10 mA
36
10 mA
10 mA
1V
kHz kHz
V
% % %
V V
9105-06.TBL
6/32
TDA9105
VERTICALSECTION
OperatingConditions
Symbol Parameter Min. Typ. Max. Unit
VSVR Vertical Sync Input Voltage (Pin 34) 0 5.5 V
VEWM Maximum EW OutputVoltage (Pin 37) 6.5 V VDHPCM Maximum Dynamic Horizontal Phase Control OutputVoltage (Pin 40) 6.5 V VDHPCm Minimum Dynamic Horizontal Phase Control Output Voltage (Pin 40) 0.9 V
VDFm Minimum Vertical Dynamic Focus Output Voltage (Pin 1) 0.9 V
Rload Minimum Load for less than 1% Vertical Amplitude Drift (Pin 25) 65 M
9105-07.TBL
ElectricalCharacteristics (VCC=12V, T
amb
=25°C)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
I
BIASP
I
BIASN
VSth Vertical Sync Input Threshold Voltage(Pin 34) High-level
VSBI Vertical Sync InputBias Current
V V
V
Bias Current (current sourced by PNP Base) (Pins 28-29)
For V
=2V 2 µA
28-29
Bias Current (Pin31) (sinkedby NPN base) For V31= 6V 0.5 µA
2 Low-level V
= 0.8V 1 µA
(Current Sourced by PNP Base) Voltage at Ramp Bottom Point (Pin 27) 2/8 V
RB
Voltage atRampTop Point (with Sync)(Pin27) 5/8 V
RT
Voltage at Ramp Top Point (without Sync) (Pin
RTF
27)
34
VRT-0.1 V
0.8
V V
REF-V REF-V
VSW Minimum Vertical Sync Pulse Width (Pin 34) 5 µS
VSmDut Vertical Sync Input Maximum Duty-cycle
15 %
(Pin 34)
VSTD Vertical Sawtooth Discharge Time Duration
With 150nF cap 70 µS
(Pin 27)
VFRF Vertical Free Running Frequency V
= 2V, V29grounded,
28
Measured on Pin27
100 Hz
Cosc (Pin27) = 150nF
ASFR AUTO-SYNC Frequency (see Note 1) With C RAFD Ramp Amplitude Drift Versus Frequency V
50Hz < f< 165Hz
Rlin Ramp Linearity onPin 30 V
Vpos Vertical Position Adjustment Voltage (Pin 32) V
V V
I
VPOS
V
Max Currenton VerticalPosition Control Output (Pin 32)
Vertical Output Voltage (Pin 30)
OR
(peak-to-peak voltage on Pin30)
V31=2V V V
V
OUTDC
DC Voltage on Vertical Output (Pin30) See Note 2 7/16 V
= 150nF 50 165 Hz
27
= 6V, C27= 150nF
31
grounded 0.5 %
28,V29
=2V
33
=4V
33
= 6V 3.65
33
100 ppm/Hz
3.2
3.5
3.8 ±2mA
2
=4V
31
= 6V 3.75
31
3 4
3.3 V V V
2.2 V V V
REF-V
V0I Vertical Output Maximum Current (Pin 30) ±5mA
dVS Max VerticalS-Correction Amplitude
= 2Vinhibits S-CORR
V
28
= 6Vgives maximum S-CORR
V
28
Ccorr Max VerticalC-Correction Amplitude V
V/VV/V
V V
at T/4
30pp
at 3T/4 TBD-4+4
30pp
=2V
29
=4V
29
= 6V TBD
29
-5 0
+5
TBD %
%
TBD %
% %
VFly Th Vertical Flyback Threshold (Pin 36) 1 TBD V
VFly Inh Inhibitionof VerticalFlyback Input (Pin 36) See Note 1 V
I
BIAS DCIN
Notes : 1. It is the frequency range for which theVERTICAL OSCILLATOR will automatically synchronize, using a single capacitor value on
Bias Current (Pin35) (sourced by PNP base) For V35=V
Pin 27 and with a constantramp amplitude.
2. Typically 3.5Vfor Vertical reference voltage typical value (8V).
32
- 0.5 V
REF
2 µA
9105-08.TBL
7/32
TDA9105
VERTICALSECTION (continued)
East/WestFunction
Symbol Parameter Test conditions Min. Typ. Max. Unit
EW
TDEW
EW
EW
KeyAdj Keystone AdjustmentCapability :
Keytrack Keystone versus V-POS control
Notes : 1. When Pin36 >V
DC Output Voltage (see Figure 2) V33=4V,V35=V32,V38= 4V 2.5 V
DC
DC Output Voltage Thermal Drift See Note 2 100 ppm/°C
DC
Parabola Amplitude V28= 2V, V29grounded,
para
Parabola Amplitude versus V-AMP
track
Control (tracking between V-AMP and E/W)
A/B Ratio (seeFigure 2) B/A Ratio
(tracking between V-POS and EW)
A/B Ratio B/A Ratio
-0.5V, Vfly input is inhibitedand vertical blanking on composite blankingoutputis replaced byvertical sawtooth
discharge time.
2. These parameters are not tested on each unit. They are measured during our internal qualification procedure which includes characterization on batches comming from corners of our processes and also temperature characterization.
REF
= 6V, V33= 4V,
V
31
V
35=V32,V38
V
39
V
39
= 2V, V29grounded
V
28
= 4V, V35=V32,
V
33
= 4V, V39=4V
V
38
V
31
V
31
V
31
= 2V, V29grounded,
V
28
= 6V, V33= 4V,
V
31
V
35=V32,V39
V
38
V
38
= 2V, V29grounded,
V
28
= 6V, V38= 4V,V39=6V
V
31
= 2V, V35=V
V
33
V33= 6V, V35=V
= 4V, =6V =2V
=2V =4V =6V
=4V =6V =2V
32 32
TBD 2.9
0
0.36
0.82
1.45
TBD
0.48
TBD
0.48
0.54
0.54
V V
V V V
9105-09.TBL
Dynamic Horizontal PhaseControl Function
Symbol Parameter Test Conditions Min. Typ. Max. Unit
DHPC
TDDHPC
SPBpara Side Pin BalanceParabola
SPBtrack Side Pin balance Parabola
ParAdj Parallelogram Adjustment Capability
Partrack Parallelogram versus V-pos Control
DC Ouput Voltage (see Figure 3) V33= 4V,V35=V32,V41=4V 4 V
DC
DC Output Voltage Thermal Drift See Note 100 ppm/°C
DC
= 2V,V29grounded,
V
28
= 6V,V33= 4V,
Amplitude (see Figure3)
Amplitude versus V-amp Control (tracking between V-ampand SPB )
A/B ratio (see Figure.3) B/A ratio
(tracking between V-posand DHPC)
A/B ratio B/A ratio
V
31
V
35=V32,V41
V
42
V
42
= 2V,V29grounded,
V
28
= 4V,V35=V32,
V
33
= 4V,V42=6V
V
41
V
31
V
31
V
31
= 2V,V29grounded,
V
28
= 6V,V33= 4V,
V
31
V
35=V32,V42
V
41
V
41
= 2V,V29grounded,
V
28
= 6V,V41= 4V, V42=6V
V
31
= 2V,V35=V32,
V
33
= 6V,V35=V
V
33
=4V =6V =2V
=2V =4V =6V
=6V =6V =2V
32
TBD +1.45
- 1.45 TBD
0.36
0.82
1.45
TBD TBD
0.12
0.12
0.53
0.53
V V
V V V
9105-10.TBL
8/32
TDA9105
VERTICALSECTION (continued)
VerticalDynamic Focus Function
Symbol Parameter Test Conditions Min. Typ. Max. Unit
VDF
TDVDF
VDFAMP Parabola Amplitude versus V-amp
VDFKEY Parabola Assymetry versus V-pos
Note : These parameters are not tested on each unit. They are measured during our internal qualification procedure which includes
characterization on batches commingfrom corners of our processes andalso temperature characterization.
DC Output Voltage (see Figure 4) V33= 4V,V35=V
DC
DC Output Voltage Thermal Drift See Note 100 ppm/C
DC
= 2V,V29grounded,
V
28
= 4V,V35=V32,
(tracking between V-ampand VDF) (see Figure 4)
Control (tracking between V-pos and VDF)
A/B ratio B/A ratio
V
33
=2V
V
31
=4V
V
31
=6V
V
31
= 2V,V29grounded,
V
28
= 6V,
V
31
V
= 2V, V35=V32,
33
= 6V, V35=V
V
33
32
-0.84
-1.78
-3.14
0.42
32
0.48
6V
-0.72
-1.57
-2.85
0.52
0.58
-0.6
-1.36
-2.56
0.62
0.68
V V V
9105-11.TBL
9/32
TDA9105
Figure 1 : Testing Circuit
10k
CC
V
23
19
10k
1
38
10k
37
41
39
10k
100nF
40
42
10k
V
2.2µF
CC12V
CC
V
MOIRE
18
V-Sync
H-Sync
20
1k
CC
V
21
H
OUTPUT
BUFFER
2
X
35
SAFETY
416
CC
V
2
10k
22nF
47nF
53
47nF
PULSE
SHAPER
PHASE
SHIFTER
COMP
PHASE
PROCESSOR
VS
BLK
GEN
H-FLY
36 22
V-SYNC
10/32
6.49k0.1%
VIDEOUNLOCK
10 11 8 9
680pF 1%
µ
4.7
F
1.8k
10nF
15 12
1µF
VCO
COMP
PHASE
FREQUENCY
LOCK
IDENT
UNLOCK
V-MID
V-REF
RAMP
VERT OSC
GENERATOR
S
CORR
470nF
1%
27 25 31 30 33 32
1%
150nF
28
V-REF
POL
PULSE
SHAPER
7
6
F
µ
17
DETECT
PLL1
INHIB
14
13
262924
220nF
2.2
F
µ
2.2
PULSE
SHAPER
34
POL
DETECT
TDA9105
9105-03.EPS
TDA9105
Figure2 : E/WOutput
EW
A
EW
DC
PARA
Figure 4 : VerticalDynamic Focus Function
A
VDF
B
DC
Figure3 : DynamicHorizontal Phase Control
Output
V
=6V
42
V41=6V
B
A
SPB
9105-04.EPS
AMP
PARA
=2V
V
42
BVDF
DHPC
V33=2V
DC
9105-05.EPS
9105-06.EPS
11/32
TDA9105
TYPICAL VERTICALOUTPUTWAVEFORMS
Function
Control
Pin
Output
Pin
Control Voltage
Specification Picture Image
Vertical Size 31 30
Vertical
Position
DC
33 32
Control
Vertical
DC
In/Out
35
37 40
Vertical
S
25 30
Linearity
2V
6V
2V 4V 6V
3.2V
3.5V
3.8V
2V
4V
This terminal is a Pin
1
controlling the centerposition of geometric correction signals. When connected to Pin 32, ”Autotracking” occurs.
2V
V
12/32
Vertical
C
Linearity
29 30
6V
2V
6V
V
V
V
V
V
V
V
PP
V
PP
PP
=4%
=5%
=5%
9105-13.TBL/ 9105-07.EPS TO 9105-13.EPS
V
PP
V
PP
V
PP
TYPICAL GEOMETRYOUTPUT WAVEFORMS
Function
Control
Pin
Output
Pin
Control Voltage
=4V
V
39
2V
TDA9105
Specification Picture Image
4.95V
2.95V
Trapezoid
Control
Pin Cushion
Control
Parrallelogram
Control
Side Pin Balance
Control
38 37
39 37
41
40
42 40
2.5V
6V
=4V
V
38
2V
2.95V
2.5V
2.5V
4.95V
0V
2.9V
6V
=4V
V
42
2V
6V
V
=4V
41
2V
4V
3V4V
3V4V
1.45V
1.45V
6V
Vertical
Dynamic
1
Focus
Note : The specification of Output voltage is indicated on 4VPPvertical sawtooth output condition.The output voltage depends on vertical
sawtooth output voltage.
6V
3V
13/32
9105-14.TBL/ 9105-14.EPS TO 9105-22.EPS
TDA9105
OPERATINGDESCRIPTION
GENERALCONSIDERATIONS Power Supply
The typicalvalue of the powersupply voltage V is 12V.Perfectoperationis obtainedif VCCismain­tained in the limits : 10.8V 13.2V.
In order to avoid erratic operation of the circuit during thetransientphase of V switchingoff,the valueof V
CC
outputs of thecircuitare inhibited if V
switchingon, or
CC
ismonitoredandthe
<7.6 typi-
CC
cally. Inordertohaveaverygoodpowersupplyrejection,
the circuitis internallypoweredby severalinternal voltage references (The unique typical value of which is 8V). Two of these voltage referencesare externallyaccessible, one for the verticalpart and one for the horizontal part. These voltage refer­ences can be used for the DC control voltages applied onthe concernedpinsby thewayof poten­tiometers or digital to analog converters(DAC’s). Furthermoreit isnecessaryto filterthea.m.voltage references by the use of external capacitor con­nected to ground, in order to minimize the noise and consequentlythe ”jitter” on vertical and hori­zontal output signals.
DC Control Adjustments
The circuithas10adjustmentcapabilities: 2forthe horizontal part, 2 for the E/Wcorrection, 4 for the vertical part, 2 for the Dynamic Horizontal phase control.
The corresponding inputs of the circuit has to be driven with a DC voltage typically comprised be­tween 2 and 6V for a value of the internal voltage referenceof 8V.
CC
In order to have a good tracking with the voltage reference value, it’s better to maintainthe control voltagesbetween V
/4 and 3/4V
REF
REF
. The input current of the DC control inputs is typi­callyvery low (about a few µA).Dependingon the internalstructure of the inputs, itcan be positiveor negative(sink or source).
HORIZONTAL PART Input section
The horizontal input is designed to be sensitiveto TTLsignalstypically comprisedbetween 0and 5V. Thetypicalthresholdof this inputis1.6V.Thisinput stageuses an NPN differentialstage and the input currentis very low.
Figure6 : InputStructure
H-SYNC 1.6V
Concerningthe duty cycle of the input signal, the followingsignals may be appliedto the circuit.
Using internal integration,both signalsare recog­nizedon conditionthatZ/T25%.Synchronisation occurs on the leading edge of the internal sync signal. The minimum value of Z is 0.7µs.
Figure7
9105-24.EPS
Figure 5 : Exampleof PracticalDC Control
VoltageGeneration
V
REF
DCControl
PWM
DAC
Output
14/32
Voltage
PLL1
ThePLL1 is composedof aphase comparator, an external filter and a VoltageControlled Oscillator (VCO). Thephasecomparatorisa”phasefrequency”type, designedin CMOStechnology.This kind of phase detector avoids locking on false frequencies. It is followedby a ”charge pump”, composed of 2 cur­rent sourcessink and source(I =1mAtyp.)
9105-23.EPS
9105-25.EPS
OPERATINGDESCRIPTION (continued)
Figure 8 : Principle Diagram
13
LOCKDET
COMP1
E2
H-LOCKOUT
2
H-LOCKCAP
H-SYNC
17
INPUT
INTERFACE
The dynamic behaviour of the PLL is fixed by an external filter which integrates the current of the charge pump. A ”CRC” filter is generally used(see Figure 9).
PLL1is inhibited byapplying a high level on Pin 14 (PLLinhib )whi chisa TTLcompatibl einput.Theinhibi ­tion results fr om the openingof a switc hlocated be­tweenthechargepumpandthefilter(see Figure8).
The VCOuses an externalRC network. It delivers a linear sawtooth obtained by charge and dis­charge of the capacitor,bya currentproportionnal to the current in the resistor. typical thresholds of sawtoothare 1.6Vand 6.4V(see Figure10).
The control voltage of the VCO is typically com­prised between 1.6V and 6V (see Figure 10). The theoreticalfrequencyrangeofthis VCOisintheratio 1 3.75, but due to spread and thermal drift of externalcomponentsand thecircuititself,the effec-
Figure 10 : Details of VCO
High
Low
CHARGE
PUMP
PLL1INHIB
INHIBITION
H-POS
PHASE
ADJUST
14
PLL
15
PLL1F R0 C0
12 11 10
VCO
OSC
3.2V
tivefrequencyrange has tobe smaller (e.g.30kHz 85kHz).In theabsenceofsynchronisationsignal thecontrolvoltageisequalto1.6Vtyp.andtheVCO oscillates on its lowestfrequency(free frequency). Thesynchrofrequencyhastobealwayshigherthan thefreefrequencyanda marginhas tobe taken.As an example for a synchro range from 30kHz to 85kHz,the suggestedfree frequencyis 27kHz.
Figure9
PLL1F
12
TDA9105
9105-26.EPS
9105-27.EPS
Loop
12
Filter
(1.6V < V < 6V)
12
11
R0
I
0
2
I
0
4I
0
2
C0
10
6.4V
1.6V
6.4V
1.6V 0 0.75T T
RS
FLIPFLOP
9105-28.EPS
15/32
TDA9105
OPERATINGDESCRIPTION (continued)
The PLL1 ensures the coincidence between the leading edge of the synchro signal and a phase reference obtained by comparison between the sawtooth of the VCO and an internal DC voltage adjustablebetween 2.4V and 4V (byPin 15). So a ±45°phase adjustmentis possible(seeFigure 11).
Figure11 : PLL1 Timing Diagram
H Osc Sawtooth
Phase REF1
H Synchro
Phase REF1 isobtainedby comparisonbetween thesawtoothand a DCvoltage adjustable between 2.4V and 4V. The PLL1 ensures the exact coincidence between the signals phase REF and HSYNS.A ± T/8phase adjustment is possible.
0.75T
The twoVCO threshold canbe filteredby connect­ing capacitoron Pins8-9.
The TDA9103 also includes a LOCK/UNLOCK identification block which senses in real-time
0.25T
6.4V
2.4V<Vb<4V Vb
1.6V
whetherthePLLis lockedon the incominghorizon­tal sync signal or not. The resulting informationis availableon HLOCKOUToutput (Pin 2). The block diagram of the LOCK/UNLOCK function is de­scribedin Figure 12.
TheNOR1 gateis receivingthe phasecomparator output pulses (which alsodrive the chargepump).
Whenthe PLL is locked,on point A there is a very small negative pulse (100ns) at each horizontal cycle, so after R-C filter, there is a high level on Pin13 whichforce HLOCKOUTto high level(pro­videdthat HLOCKOUTis pulled up to V
CC
).
When the PLL is unlocked, the 100ns negative pulseonA becomesmuchlargerandconsequently the average level on Pin13 willdecrease.When it reaches 6.5V, point B goes to low level forcing HLOCKOUToutput to ”0”.
Thestatusof Pin13 isapproximatelythe following :
- Near 0Vwhen there is no H-SYNC,
- Between0 and4V withH-SYNCfrequencydiffer­ent from VCO,
- Between 4 and8Vwhen H-SYNC frequency
9105-29.EPS
= VCOfrequency butnot in phase,
- Near to8Vwhen PLL is locked.
It is important to notice thatPin 13is notanoutput pinand mustonly beused forfilteringpurpose(see Figure12).
Figure 12 : LOCK/UNLOCKBlock Diagram
From Phase Comparator
NOR1
A
20k
220nF
H-Lock CAP
13
6.5V
2
B
HLOCKOUT
9105-30.EPS
16/32
TDA9105
OPERATINGDESCRIPTION (continued)
PLL2 The PLL2 ensures a constant position of the Figure 13 : PLL2 TimingDiagram
H Osc Sawtooth
0.75T
0.25T
6.4V 4V
1.6V
shaped flyback signalin comparison with the saw­toothof theVCO (seeFigure 13).
The phase comparator of PLL2 is followed by a chargepump witha ±0.5mA(typ.) outputcurrent.
TheflybackinputiscomposedofanNPNtransistor. This input has tobe currentdriven.
Themaximumrecommanded inputcurrentis 2mA (seeFigures 14 and 15).
Flyback Internally
Shaped
Flyback
H Drive
Ts
Duty Cycle
The duty cycle of H-driveis adjustable between 30% and 50%.
Figure 15 : Dual PLL Block Diagram
Horizontal
Input
17
C Lockdet
INPUT
INTERFACE
Adjust
Rapcyc
43
RAP
CYC
VBVA
HLOCKOUT
13 14 12 11 10
2
LOCKDET
High
COMP1
LowE2
Cap
PHi2
CHARGE
PUMP
High
Low
Figure14 : Flyback Input Electrical Diagram
400
5
HFLY
20k
9105-31.EPS
CHARGE
PUMP
COMP2
PLL1INHIB
INHIBITION
Horizontal
PHASE
ADJUST
4V
EN
PLL
Adjust
15
R0 C0Filter
VCO
3.2V
GND 0V
OSC
FLYBACK
Q1
Flyback
5
9105-32.EPS
PWM
LOGI PWM
BUFFER
21 20
SortCOLL SortEM
17/32
9105-33.AI
TDA9105
OPERATINGDESCRIPTION (continued)
Output Section
The H-drive signal is transmitted to the output through a shaping block ensuring a duty cycle adjustable from 30% to 50%. In order to ensure a reliable operation of the scanningpower part, the output is inhibitedin the followingcircumstances:
-V
too low,
CC
- Xray protectionactivated,
- During thehorizontal flyback,
- Outputvoluntarily inhibited throughPin 4. The outputstage iscomposedofa DarlingtonNPN
bipolartransistor.Boththecollectorand theemitter are accessible(see Figure 16).
TheoutputDarlingtonis inoff-statewhenthepower scanning transistoris alsoin off-state.
The maximum output current is 20mA, and the correspondingvoltagedropofthe outputdarlington is 1.1Vtypically.
It is evident that the power scanning transistor cannot be directly driven by the integratedcircuit. An interfacehasto bedesignedbetweenthe circuit and the power transistorwhich can be ofbipolaror MOS type.
X-RAY PROTECTION : the activation of the X-ray protectionis obtained by applicationof ahigh level on the X-ray input (>8V). Consequences of X-ray protectionare :
- Inhibition of H drive output,
- Activationof compositeblanking output.
The reset of this protection is obtained by V
CC
switchoff (see Figure 17). Figure16 : Output stagesimplifieddiagram,
showingthe two possibilitiesof connection
V
21
CC
20
V
CC
21
H-DRIVE
H-DRIVE
Outputs inhibition
The applicationof a voltagelower than1V (typ.) on Pin 4(duty cycle adjust) inhibitsthe horizontaland vertical outputs. Thisis not memorised.
Figure 17 : Safety FunctionsBlock Diagram
Checking
V
CC
V
CC
REF
XRAY Protection
1V
0.7V
S R
Inhibition
LOGIC
BLOCK
Q
XRAY
V
CC off
H-Duty cycle
Flyback
V-fly
Vsync
V sawtooth
retracetime
H-fly
20
9105-34.EPS
H OUTPUT INHIBITION
V OUTPUT INHIBITION
COMPOSITE BLANKING
to 2ND PLL
9105-35.EPS
18/32
OPERATINGDESCRIPTION (continued)
Moire Function Figure 18 : Moire Function Block Diagram
TDA9105
H-SYNC
V-SYNC
Figure 19 : Moire Output Waveform
EVEN FRAME H
V
MOIRE
ODD FRAME H
Monosta ble
Ck D
Ck D
Rst
Q Q
Q Q
23
9105-36.EPS
V
MOIRE
Geometric Corrections
The principle isrepresentedin Figure20. Starting from the verticalramp, aparabolashaped
is generatedfor E/Wcorrection,dynamichorizontal phase control correction, and verticaldynamicFo­cus correction.
The core of the parabola generator is an analog multiplier. The output currentof whichis equalto :
2
.
is a vertical DC
Where V
I=k(V
is the vertical ramp, typically com-
RAMP
RAMP-VDCIN)
prised between 2 and 5V, V
DCIN
input adjustablein the range 3.2V 3.8V in order to generate a dissymmetric parabola if required (keystoneadjustment).
In order to keep good screengeometryforany end user preferencesadjustment we implemented the
possibilityto have”geometry tracking”. To enable the ”tracking” function, the V nectedto V
It is possible to inhibitV fixedDC voltageon theV
DCIN
.
POS
DCIN
DCOUT
trackingby applying a
must be con-
Pin.
This DC voltage in that case must be taken from the verticalreference and adjustedto 3.5Vwith an externalbridge resistor.
Due to large output stages voltage range (E/W, BALANCE, FOCUS), the combination of tracking function with maximum vertical amplitudemax. or min.vertical positionand maximumgainonthe DC controlinputsmay leads to theoutputstagessatu­ration. This must be avoided by limitingthe output voltageby apropriateDC controlvoltages.
19/32
9105-37.EPS
TDA9105
OPERATINGDESCRIPTION (continued)
Geometric Corrections(continued) Figure 20 : GeometricCorrectionsPrinciple
ANALOG MULTIPLIER
VERTICALRAMP
2
VERT.DYN. FOCUS OUT
VDCIN
VDCIN
VDCIN
ForE/WpartandDynamicHorizontalphasecontrol part, a sawtooth shaped differentialcurrent in the followingformisgenerated:I’= k’(V
RAMP-VDCIN
Then Iand∆I’are added together and converted into voltage.
These two parabola are respectively available on Pin 37 andPin40 bythe way of an emitter follower which has to be biased by an external resistor (10k). They can be DC coupled with external circuitry.
EW V
= 2.5V+ K1’(V
OUT
+K
RAMP-VDCIN
1(VRAMP-VDCIN
2
)
K1isadjustableby EW amp control (Pin 39)
’ is adjustableby KEYST control (Pin 38)
K
1
EW AMP
EW OUT
KEYSTONE
SIDEPIN AMP
SIDE PIN BAL. OUT
KEY BALANCE
Dyn. Hor. PhaseControl
).
K2is adjustableby SPBamp control (Pin 42)
’is adjustableby KEYBALcontrol (Pin 41)
K
2
V
OUT
=4V+K2’(V
+K
2(VRAMP-VDCIN
RAMP-VDCIN
For vertical dynamic focus part, only a constant amplitudeparabolais generated in the form :
=6V - 0.75x (V
V
OUT
AMP-VDCIN
Theoutputconnectionisthesame asthe twoother corrections(Pins 37-40).
)
It is important to note that the parasitic parabola during the discharge of the vertical oscillator ca­pacitoris suppressed.
)2.
9105-38.EPS
)
2
)
20/32
OPERATINGDESCRIPTION (continued)
VERTICALPART Figure 21 : VerticalPart Block Diagram
DISCH.
V_SYNC
34
SYNCHRO OSCILLATOR
POLARITY
TDA9105
TRANSCONDUCTANCE
AMPLIFIERCHARGE CURRENT
REF
27
OSC CAP
SAMPLING
25
SAMP. CAP
S CORRECTION
28
VS_AMP
29
COR_C
PARABOLA GENERATOR
38
EW_CENT
41 42
SPB_CENT
SPB_AMP
The verticalpart generatesa fixed amplitude ramp which can be affected by a S and C correction shape.Then,the amplitude ofthisrampis adjusted to drivean externalpower stage.
The internalreference voltageused forthe vertical part isavailablebetween Pin 26 andPin24. Itcan be usedasvoltagereferenceforany DCadjusment
C CORRECTION
30
31
VERT_OUT
39
EW_AMP
37
EW_OUT
40
SPB_OUT
1
V_FOCUS
Vlow
Sawth.
Disch.
VERT_AMP
to keep a high accuracy to each adjustment. Its typicalvalue is :
V26=V
REF
= 8V.
The charge of the external capacitor on Pin 27
) generates a fixedamplitude ramp between
(V
CAP
the internal voltages, V (VH=5/8 V
REF
).
L(VL
=V
REF
/4) and V
9105-39.EPS
H
21/32
TDA9105
OPERATINGDESCRIPTION (continued)
VERTICALPART (continued) Function
When the synchronisationpulse is not present, an internal current source sets the free running fre­quency.For an external capacitor,C the typicalfree running frequencyis 100Hz.
Typical free running frequency can be calculated by :
f0(Hz)=1.5 10−5⋅
1
C
OSC
A negative or positive TTL level pulse applied on Pin 34 (VSYNC) can synchronise the ramp in the frequencyrange [fmin,fmax].This frequencyrange depends on the external capacitor connected on Pin 27. A capacitor in the range [150nF, 220nF] is recommanded for application in the following range: 50Hz to 120Hz.
Typical maximumandminimumfrequency,at 25°C and without any correction (S correction or C cor­rection), can becalculated by :
=2.5 f0and f
f
max
min
=0.33 f
0
If S or C corrections are applied,these values are slighty affected.
If an externalsynchronisationpulse is applied, the internal oscillator is automaticaly caught but the amplitude is no more constant. An internalcorrec­tion is activated to adjust it in less than half a second: the highest voltage of theramp onPin27 is sampledon thesamplingcapacitorconnectedon Pin 25 (VAGCCAP) at each clock pulse and a transconductance amplifier generates the charge current of the capacitor. The ramp amplitude be­comes again constant.
It is recommandedto usea AGCcapacitorwithlow leakagecurrent.A valuelower than 100nA isman­datory.
Pin 36, Vfly is the vertical flyback input used to generate the composite blanking signal. If Vfly is not used, (V
- 0.5), at minimum, must be con-
REF
nected to thisinput.
DC Control Adjustments
Then, S and C correction shapes can be addedto this ramp. This frequency independent S and C corrections are generated internally; their ampli-
(nF)
OSC
= 150nF,
tude are DC adjustable on Pin 28 (V
SAMP
) and
Pin 29 (COR-C). S correctionis non effectivefor V
/4 and maximumfor V
V
REF
SAMP
SAMP
= 3/4 V
lower than
.
REF
C correctionis non effectivefor COR-C grounded and maximum for : COR-C = V
/4 or COR-C = 3/4 V
REF
REF
.
Endly,the amplitudeof thisSandC correctedramp can be adjustedby the voltage applied on Pin 31
). The adjustedramp is available on Pin 30
(V
AMP
) to drive an external power stage. The gain
(V
OUT
of thisstageistypically±30% whenvoltage applied on Pin31 is in the rangeV
/4 to3/4 V
REF
REF
.The DC value of this ramp is kept constant in the frequency range , for any correction applied onit. Its typicalvalue is : V
DCOUT=VMID
ADC voltage is availableon Pin 32 (V
= 7/16 V
DCOUT
driven bythe voltageapplied on Pin33 (V For a voltage control range between V
3/4 V V
DCOUT
So,theV of V
, thevoltageavailableon Pin 32is :
REF
= 7/16 V
DCOUT
. It increases the accuracywhen tempera-
OUT
±300mV.
REF
voltageis correlated withDC value
REF
REF
). Itis
POS
/4 and
.
)
ture varies.
Basic Equations
In firstapproximation,theamplitudeof therampon Pin 30 (V
V
OUT-VMID
with V
V V
On Pin32 (V lated by : V
is the voltageapplied on Pin33.
V
POS
)is:
OUT
=(V
CAP-VMID
= 7/16 V
MID
isthe middlevalueof therampon Pin27
MID CAP=V27
, ramp withfixed amplitude.
DCOUT
DCOUT=VMID
) [1 + 0.16 (V
; typically 3.5V
REF
AMP-VREF
), thevoltage (in volts)is calcu-
+0.16 (V
POS-VREF
/2)]
/2).
The current available on Pin27 (when V I
OSC
C
SAMP=VREF
=3/8 V
: capacitorconnectedon Pin 27
OSC
REF
C
/4) is :
OSC
f
f synchronisationfrequency The recommanded capacitor value on Pin 25
(V
) is470nF.Its ensuresa goodstability ofthe
AGC
internal closedloop.
22/32
INTERNALSCHEMATICS Figure22
TDA9105
Figure26
Href
5
Figure23
Figure24
Pins 1-37-40
N MOS
1mA max
2-22-23V
CC
Pins
10mAmax.
Href
Figure27
9105-40.EPS
9105-41.EPS
Figure28
9105-44.EPS
V
CC
7
9105-45.EPS
Figure25
4
P MOS
8
3
9105-42.EPS
9105-46.EPS
Figure29
9
9105-43.EPS
9105-47.EPS
23/32
TDA9105
INTERNALSCHEMATICS (continued) Figure30
10
Figure31
11
Figure34
P MOS
14
9105-48.EPS
9105-52.EPS
Figure35
Figure32
12
Figure33
N MOS P MOS P MOS
13
N MOS
9105-49.EPS
Figure36
9105-50.EPS
9105-51.EPS
15
9105-53.EPS
16
9105-54.EPS
24/32
INTERNALSCHEMATICS (continued)
Figure37
TDA9105
Figure39
Figure38
Figure41
P MOS
17
21
20mAmax.
20
Figure40
9105-55.EPS
9105-56.EPS
25
P MOS
N P
N P
9105-57.EPS
V
CC
26
9105-58.EPS
27
V
REF
V
REF
V
CC
V
REF
N P
N MOS
9105-59.EPS
25/32
TDA9105
INTERNALSCHEMATICS (continued) Figure42
V
REF
28
Figure43
Figure46
Figure47
9105-60.EPS
32
V
CC
9105-64.EPS
V
REF
29
Figure44
30
Figure45
V
33
REF
N MOS
9105-61.EPS
V
CC
9105-65.EPS
Figure48
V
REF
34
9105-62.EPS
9105-66.EPS
Figure49
V
REF
26/32
31
9105-63.EPS
35
9105-67.EPS
INTERNALSCHEMATICS (continued) Figure50
V
REF
36
P MOS
Figure51
Pins 38-39 41-42
TDA9105
V
REF
9105-68.EPS
9105-69.EPS
27/32
TDA9105
APPLICATION DIAGRAMS Figure 52 : DemonstrationBoard
R75
SCOR
CCOR
KEYST
PINCSH
KEYBAL
HDF
+12V
VSIZE
VSHIFT
SBPAMP
HSHIFT
27k
R28 3.9k
R25 3.9k
R22 3.9k
R19 3.9k
R13 3.9k
R16 3.9k
R10 3.9k
R7 3.9k
R4 3.9k
R1 3.9k
HFLY
HOUT
REF
R30 10k
R29 120k
R27 10k
R26 120k
R24 10k
R23 120k R21 10k
R20 120k R15 10k
R14 120k
R18 10k
R17 120k
R12 10k
R11 120k
R9 10k
R8 120k
R6 10k
R5 120k
R3 10k
R2 120k
R73 10k
R74 10k
TP13
1µF1µF
++
C35 C39
REF V
H
R83 1kR93 R94
R84
47k
J3b
J2b
J1b
HSIZE
12341234 567
0/5V to 2/6V INTERFACE
1234
+12V
15k330k
R55
270k
R53
1k
R52
27k
IC1
R87
10k
C54 15nF
R91
1
J24
E/W
R59
2.21W
C44
220pF
R57
270k
BC557
Q3 Q4
BC557
R92
1k
C38 1µF
42
41
40
12345
C1
TP12
22nF
R89
4.7k
+12V
R88
10k
5.6k
1
J25
CON1
DYN
FOCUS
1
1
J21
-12V
Q9
TIP122
39k
R56
R54
470
R51
6.2k
E/W POWER STAGE
R81
REF
V
+
C37 1µF
+
37
38
39
678
C45
220pF
REF
H
C30
C34
1µF
+
C36
1µF
+
offon
S1
TP11
C32
100nF
+
C13
470µF
D1
1N4004
+12V
D5
1N4148
43.2k
33.2k
R82
1%
1%
36
34
35
9
47nF
C50
+
47µF
C51
C29
100nF
SW1
J23
TP15
35V
C12
100µF
+
3
6
2
7
R8515k
R86 4.7k
R70 12k
+
C43 1µF
32
33
T
D
A
10
1112131415
R32
680pF 5%
C2
47nF
TP14
C52
R71
10k
1HFLY
J18
5
1
C10
100nF
R37
+
C42 1µF
910
6.49k1%
C3
R90 1
2
V YOKE
R41
IC2
4
31
3
R39
1.5
TDA8172
5.6k
C7
10nF
123
J22
R47b
220
1/2W
R4011/2W
R38 5.6k
VERTICAL
DEFLECTION
REF
V
C4
TP1
27
STAGE
C27
150nF
R47a
C28
47µF
+
C5
26
25
C15
220nF
C31
100nF
+
C14
470µF
-12V
C11
470pF
R36 12k
+
C41 1µF
+
C40 1µF
28
29
30
33Ω 3W
473W
+12V
100nF
470nF
HDRIVE
T1
G 5576-00
+
C20
63V
100µF
Q10
R35
L1
10µH
+
1µF
C53
23
24
Q2
STD5N20
R44 10
BC547
1k
HORIZONTAL
DRIVER
STAGE
C19
1nF
R46
560
R45
22k
Q1
BC557
5
1617181920
R31 1.8k
+
C48 1nF
R80 2.7k
4.7µF
C6
220nF
D4
1N4148
R33
10k
TP3
+12V
XRAY INJ2HSYNC
TP2
21 22
C9
100nF
+
C8
100µF
TP5 TP4
1
J3
TP7
1
VSYNC
BLK
J19
J5
TP6
9105-70.EPS
28/32
APPLICATION DIAGRAMS Figure 53 : Control Board
TDA9105
+5V
Jc4
1
Cc4
1
Jc26
CON1
10µF
HSIZE
Pc13 4.7k
Pc12 47k
SCOR
Pc11 47k
Pc10 47k
Pc9 47k
Pc8 47k
Pc7 47k
CCOR
VSIZE
VSHIFT
KEYST
PINCSH
Icc1B
14528
+12V
Pc2 47k Cc2
Q
RC
47pF
CX
Pc6 47k
KEYBALHFLY
Pc5 47k
Pc4 47k
Pc3 47k
C R
+12V
+12V
Cc4
10µF
Cc5
TT
X C
100nF
Pc1 47k
Cc1
47pF
Q
T
T
Icc1A
14528
R
Q
Q
SBPAMP
Jc2 Jc3
1234
HSHIFT
HDF
Jc1
1234 1234567
HOUT
9105-71.EPS
29/32
TDA9105
APPLICATION DIAGRAMS Figure 54 : PCB Layout
30/32
9105-72.TIF
APPLICATION DIAGRAMS Figure 55 : ComponentsLayout
TDA9105
31/32
9105-73.EPS
TDA9105
PACKAGE MECHANICALDATA
42 PINS- PLASTICSHRINK DIP
A2
A1
E
E1
LA
42
1
Dimensions
BeB1
D
22
21
c
SDIP42
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
e1 e2
E
.015 0,38
Gage Plane
e3 e2
A 5.08 0.200 A1 0.51 0.020 A2 3.05 3.81 4.57 0.120 0.150 0.180
B 0.36 0.46 0.56 0.0142 0.0181 0.0220 B1 0.76 1.02 1.14 0.030 0.040 0.045
c 0.23 0.25 0.38 0.0090 0.0098 0.0150 D 37.85 38.10 38.35 1.490 1.5 1.510 E 15.24 16.00 0.60 0.629
E1 12.70 13.72 14.48 0.50 0.540 0.570
e 1.778 0.070
e1 15.24 0.60 e2 18.54 0.730 e3 1.52 0.060
L 2.54 3.30 3.56 0.10 0.130 0.140
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for anyinfringement of patents or otherrights ofthird parties which may result from its use. Nolicence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components inlife support devices or systems without express written approval of SGS-THOMSON Microelectronics.
PMSDIP42.EPS
SDIP42.TBL
32/32
1996 SGS-THOMSON Microelectronics - All RightsReserved
Purchase of I
2
I
C Patent. Rights to use these components in a I2C system, is granted provided that the system conformsto
2
C Components ofSGS-THOMSON Microelectronics,conveys alicense under the Philips
2
the I
C Standard Specifications as defined by Philips.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil -Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia- Malta - Morocco
The Netherlands - Singapore - Spain- Sweden - Switzerland- Taiwan - Thailand - UnitedKingdom -U.S.A.
Loading...