Datasheet TDA7313ND, TDA7313N Datasheet (SGS Thomson Microelectronics)

DIGITAL CONTROLLED STEREO AUDIO PROCESSOR
INPUTMULTIPLEXER:
- 3 STEREO INPUTS
- SELECTABLEINPUT GAIN FOR OPTIMAL ADAPTIONTO DIFFERENTSOURCES
LOUDNESSFUNCTION VOLUMECONTROL IN 1.25dBSTEPS TREBLEAND BASS CONTROL FOURSPEAKERATTENUATORS:
- 4 INDEPENDENTSPEAKERSCONTROL
IN 1.25dB STEPS FOR BALANCEAND
FADERFACILITIES
- INDEPENDENTMUTE FUNCTION
ALL FUNCTIONS PROGRAMMABLE VIA SE-
2
RIAL I
DESCRIPTION
The TDA7313N is a vo l ume, tone (bass and treble) balance (Left/Ri ght) and fader (front/rear) processor for quality audio applications in car radio and Hi-Fi systems.
Selectableinput gainand external loudnessfunction
C BUS
TDA7313N
WITH LOUDNESS
DIP28 SO28
ORDERING NUMBERS:
TDA7313N TDA7313ND
are provided. Control is accomplished by serial
2
C busmic r oproces s orinterface.
I TheACsignalsettingisobtainedbyresistornetwo rks andswitchescombinedwithoperationalamplifiers.
Thanks to the used BIPOLAR/C MOS Tecnol ogy , LowDistortion, LowNoiseandLow DC steppingare obtained.
PIN CONNECTION (Topview)
November 1999
1/14
TDA7313N
TEST CIRCUIT
THERMAL DATA
Symbol Description SO28 DIP28 Unit
R
thj-pins
Thermal Resistance Junction-pins max 85 65 °C/W
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
T
amb
T
stg
Operating Supply Voltage 10.2 V
S
Operating Ambient Temperature -40 to 85 °C Storage Temperature Range -55 to +150
QUICK REFERENCE DATA
Symbol Parameter Min. Typ. Max. Unit
V
V
CL
THD Total Harmonic DistortionV = 1Vrms f = 1KHz 0.01 0.1 %
S/N Signal to Noise Ratio 106 dB
S
Supply Voltage 6 9 10 V
S
Max. input signal handling 2 Vrms
Channel Separation f = 1KHz 103 dB
C
Volume Control 1.25dB step -78.75 0 dB Bass and TrebleControl 2db step -14 +14 dB Fader and Balance Control 1.25dB step -38.75 0 dB Input Gain 3.75dB step 0 11.25 dB Mute Attenuation 100 dB
C
°
2/14
BLOCK DIAGRAM
TDA7313N
BUS
C17
5.6K R2
C11
2.7nF
100nF
100nF
100nF
TREBLE(L)
C15
BIN(L)
BOUT(L)
C14
LOUD(L)
SPKR
4
18
19
12
ATT
FRONT
OUT LEFT
25
RB
MUTE
ATT
SPKR
TREBLE
BASS
VOL
REAR
OUT LEFT
23
+ LOUD
MUTE
SCL
SDA
282726
SERIAL BUS DECODER + LATCHES
DIGGND
SPKR
RIGHT OUT
24
ATT
BASS TREBLE
VOL
+ LOUD
FRONT
MUTE
ATT
SPKR
RIGHT
REAR
OUT
22
RB
MUTE
D98AU888
TREBLE(R)
5
BOUT(R) BIN(R)
21 20
LOUD(R)
8
C13
100nF
C12
100nF
C16
2.7nF
5.6K R1
C10
100nF
C9 2.2µF
17 16
OUT(L) IN(L)
INPUT
+ GAIN
SELECTOR
3x
2.2µF
L1 15L1L2 14L2L3 13
C1
C2
LEFT
INPUTS
C3
L3
R3 9R3R2 10R2R1 11
C4
C5
RIGHT
INPUTS
C6
R1
3x
2.2µF
76
OUT(R) IN(R)
SUPPLY
AGND CREF
231
V
C8 2.2µF
22µFC7
S
3/14
TDA7313N
ELECTRICALCHARACTERISTICS (refer tothe test circuit T
R
= 600, all controlsflat(G = 0), f = 1KHz unless otherwise specified)
G
=25°C, VS= 9V,RL= 10KΩ,
amb
Symbol Parameter Test Condition Min. Typ. Max. Unit
SUPPLY
V
S
I
S
SVR Ripple Rejection 60 80 dB
Supply Voltage 6 9 10 V Supply Current 8 11 mA
INPUT SELECTORS
G G G
V
R
II
V
CL
S
IN
R
L
INmin
INmax
STEP
e
IN
DC
Input Resistance Input 1, 2, 3 35 50 70 K Clipping Level 2 2.5 Vrms Input Separation (2) 80 100 dB Output Load resistance pin 7, 17 2 K Min. Input Gain -1 0 1 dB Max. Input Gain 11.25 dB Step Resolution 3.75 dB Input Noise G = 11.25dB 2 DC Steps adjacent gain steps 4 20 mV
G = 18.75 to Mute 4 mV
VOLUMECONTROL
R
IV
C
RANGE
A
VMIN
A
VMAX
A
STEP
E
A
E
T
V
DC
Input Resistance 20 33 50 k Control Range 70 75 80 dB Min. Attenuation -1 0 1 dB Max. Attenuation 70 75 80 dB Step Resolution 0.5 1.25 1.75 dB Attenuation Set Error Av = 0 to -20dB
Av = -20 to -60dB
-1.25
-3
0 1.25
2 Tracking Error 2dB DC Steps adjacent attenuation steps
From 0dB to Av max
0
0.5
3
7.5
SPEAKERATTENUATORS
µ
dB dB
mV mV
V
C S
A
range STEP
E
MUTE
V
DC
A
Control Range 35 37.5 40 dB Step Resolution 0.5 1.25 1.75 dB Attenuation set error 1.5 dB Output Mute Attenuation 80 100 dB DC Steps adjacent att. steps
from 0 to mute
0 1
BASS CONTROL(1)
Gb Control Range Max. Boost/cut +12 +14 +16 dB
B
STEP
R
B
Step Resolution 1 2 3 dB Internal Feedback Resistance 34 44 58 K
TREBLECONTROL(1)
Gt Control Range Max. Boost/cut +13 +14 +15 dB
Step Resolution 1 2 3 dB
4/14
T
STEP
10
3
mV mV
TDA7313N
ELECTRICALCHARACTERISTICS (continued)
Symbol Parameter Test Condition Min. Typ. Max. Unit
AUDIO OUTPUTS
V
OCL
R
L
C
L
R
OUT
V
OUT
Clipping Level d = 0.3% 2 2.5 Vrms Output Load Resistance 2 K Output Load Capacitance 10 nF Output resistance 30 75 120 DC Voltage Level 4.2 4.5 4.8 V
GENERAL
e
NO
S/N Signal to Noise Ratio all gains = 0dB; V
d Distortion A
Sc Channel Separation left/right 80 103 dB
Output Noise BW = 20-20KHz, flat
output muted all gains = 0dB
A curve all gains = 0dB 3 µV
O
=0,VIN= 1Vrms
V
A
= -20dB VIN= 1Vrms
Total Tracking error A
V
= 0 to -20dB
V
V
= 0.3Vrms
IN
-20 to -60 dB
2.5 515
µ µV
= 1Vrms 106 dB
0.01
0.09
0.04
0 0
0.1
0.3
1 2
% % %
dB dB
V
BUS INPUTS
V
IL
V
IH
I
IN
V
O
Notes:
(1) Bass and Trebleresponse seeattached diagram(fig.16). The center frequencyand quality ofthe resonance behaviour can be choosen by
the external circuitry. A standard first order bass response can be realized by a standard feedback network
(2) The selected input is groundedthru the 2.2µF capacitor.
Input Low Voltage 1V Input High Voltage 3 V Input Current -5 +5 µA Output Voltage SDA
IO= 1.6mA 0.4 V
Acknowledge
Figure 1: Loudnessvs. VolumeAttenuation
Figure2: Loudnessvs. Frequency(C
100nF) vs. Volume Attenuation
LOUD
=
5/14
TDA7313N
Figure 3: Loudnessvs. ExternalCapacitors
Figure 5: Signalto Noise Ratio vs. Volume
Setting
Figure4: Noisevs.Volume/GainSettings
Figure6: Distortion& Noisevs. Frequency
Figure 7: Distortion& Noise vs. Frequency
6/14
Figure8: Distortionvs. Load Resistance
TDA7313N
Figure 9: ChannelSeparation(L R) vs.
Frequency
Figure 11: SupplyVoltageRejection vs.
Frequency
Figure10: InputSeparation(L1→L2, L3, L4) vs.
Frequency
Figure12: OutputClipping Level vs. Supply
Voltage
Figure14: SupplyCurrent vs. TemperatureFigure 13: QuiescentCurrent vs. SupplyVoltage
7/14
TDA7313N
Figure 15: BassResistancevs. Temperature
I2C BUSINTERFACE
Data transmission from microprocessor to the TDA7313N and viceversa takes place thru the 2 wires I
2
C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected).
Data Validity
As shown in fig. 17, the data on the SDA line must be stable during thehigh period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.
Start and Stop Conditions
As shown in fig.18 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH tran­sition of the SDA line while SCL is HIGH.
Byte Format
Every byte transferred on the SDA line must con­tain 8 bits. Each byte must be followed by an ac­knowledgebit. The MSB is transferredfirst.
Figure16: TypicalTone Response (with theext.
components indicated in the test circuit)
Acknowledge
The master(µP) puts a resistive HIGH level on the SDA line during the acknowledgeclock pulse (see fig. 19). The peripheral (audioprocessor) that ac­knowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDAlineisstableLOWduringthis clockpulse.
The audioprocessor which has been addressed has to generate an acknowledge after the recep­tion of each byte, otherwise the SDAline remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can gen­erate the STOP information in order to abort the transfer.
Transmissionwithout Acknowledge
Avoiding to detect the acknowledge of the audio­processor, the µP can use a simplier transmis­sion: simply it waits one clock without checking the slave acknowledging, and sends the new data.
This approach of course is less protected from misworkingand decreasesthe noise immunity.
Figure 17: Data Validityon the I
8/14
2
CBUS
Figure 18: TimingDiagramof I2CBUS
TDA7313N
Figure 19: Acknowledgeon the I
SOFTWARESPECIFICATION Interface Protocol
The interface protocol comprises:
A start condition (s) A chip address byte, containingthe TDA7313N
TDA7313N ADDRESS
MSB first byte LSB MSB LSB MSB LSB
S10001000
ACK = Acknowledge S = Start P = Stop
MAX CLOCK SPEED 100kbits/s
2
CBUS
ACK
address(the 8th bit ofthe bytemust be 0). The TDA7313N must always acknowledge at the end of each transmittedbyte.
A sequenceof data (N-bytes+ acknowledge) A stopcondition (P)
DATA
Data Transferred (N-bytes + Acknowledge)
ACK
DATA
ACK
P
SOFTWARESPECIFICATION
Chip address
1
MSB
DATA BYTES
Ax = 1.25dB steps; Bx= 10dB steps; Cx= 2dB steps; Gx = 3.75dB steps
0001000
MSB LSB FUNCTION
0 1 1 1 1 0 0 0
0 1 1 0 0 1 1 1
B2
0 1 0 1 0 1 1
B1 B1 B1 B1 B1 G1
0 1
LSB
B0 B0 B0 B0
B0 G0 C3 C3
A2 A2 A2 A2 A2
S2 C2 C2
A1 A1 A1 A1 A1 S1 C1 C1
A0 A0 A0 A0 A0
S0 C0 C0
Volume control Speaker ATT LR Speaker ATT RR Speaker ATT LF Speaker ATT RF Audio switch Bass control Treble control
9/14
TDA7313N
SOFTWARESPECIFICATION (continued)
DATA BYTES (detailed description)
Volume
MSB LSB FUNCTION
0 0 B2 B1 B0 A2 A1 A0 Volume 1.25dB steps
0 0 0 0 1 1 1 1
0 0 B2 B1 B0 A2 A1 A0 Volume 10dB steps
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
For example a volume of -45dBis given by: 00100100
0 1 0 1 0 1 0 1
0
-1.25
-2.5
-3.75
-5
-6.25
-7.5
-8.75
0
-10
-20
-30
-40
-50
-60
-70
Speaker Attenuators
MSB LSB FUNCTION
1 1 1 1
0 0 1 1
0 1 0 1
B1 B1 B1 B1
0 0 1 1
11111 Mute
B0 B0 B0 B0
0 1 0 1
A2 A2 A2 A2
0 0 0 0 1 1 1 1
A1 A1 A1 A1
0 0 1 1 0 0 1 1
A0 A0 A0 A0
0 1 0 1 0 1 0 1
Speaker LF Speaker RF Speaker LR Speaker RR
For example attenuationof 25dBon speakerRF is given by: 10110100
0
-1.25
-2.5
-3.75
-5
-6.25
-7.5
-8.75 0
-10
-20
-30
10/14
TDA7313N
Audio Switch
MSB LSB FUNCTION
0 1 0 G1 G0 S2 S1 S0 AudioSwitch
0 0 1
0 1
0 0 1 1
0 1 0 1
1
0 1 0 1
For example to select the stereo 2 input with a gain of +7.5dBLOUDNESSON the 8bitstring is: 01001001 (*) Stereo 4 is connectedinternally,but not availableon pins.
Bass andTreble
Stereo 1 Stereo 2 Stereo 3 Stereo 4 (*) LOUDNESS ON LOUDNESS OFF
+11.25dB +7.5dB +3.75dB 0dB
0 0
1 1
1 1
0 1
C3 C3
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
C2 C2
0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0
C3 = Sign For example Bass at -10dB is obtainedby the following8 bit string: 01100010
C1 C1
0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
C0 C0
Bass
Treble
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
-14
-12
-10
-8
-6
-4
-2 0
0 2 4 6 8
10 12 14
11/14
TDA7313N
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 2.65 0.104
a1 0.1 0.3 0.004 0.012
b 0.35 0.49 0.014 0.019
b1 0.23 0.32 0.009 0.013
C 0.5 0.020
c1 45° (typ.)
D 17.7 18.1 0.697 0.713 E 10 10.65 0.394 0.419 e 1.27 0.050
e3 16.51 0.65
F 7.4 7.6 0.291 0.299 L 0.4 1.27 0.016 0.050 S8°(max.)
mm inch
OUTLINE AND
MECHANICAL DATA
SO28
12/14
TDA7313N
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
a1 0.63 0.025
b 0.45 0.018
b1 0.23 0.31 0.009
b2 1.27 0.050
D 37.34 1.470
E 15.2 16.68 0.598 0.657
e 2.54 0.100
e3 33.02 1.300
F 14.1 0.555
I 4.445 0.175
L 3.3 0.130
mm inch
0.012
OUTLINE AND
MECHANICAL DATA
DIP28
13/14
TDA7313N
Purchase of I2C Components of STMicroelectronics, conveys a license under the Philips I2C Patent Rights to use these components in an I
2
C system, provided that the system conforms to the I2C
Standard Specificationsas definedby Philips.
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publicationsupersedes and replaces all informationpreviously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
1999 STMicroelectronics – Printed in Italy – AllRights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China- Finland - France - Germany - HongKong - India - Italy - Japan - Malaysia - Malta- Morocco -
14/14
Singapore - Spain - Sweden - Switzerland - UnitedKingdom - U.S.A.
http://www.st.com
Loading...