Datasheet STW26NM50 Datasheet (SGS Thomson Microelectronics)

1/8February 2003
STW26NM50
N-CHANNEL 500V - 0.10Ω -26ATO-247
Zener-Protected MDmesh™Power MOSFET
TYPICAL RDS(on) = 0.10
HIGH dv/dt AND AVALANCHE CAPABILITIES
IMPROVED ESD CAPABILITY
LOW INPUT CAPACITANCE AND GATE CHARGE
LOW GATE INPUT RESISTANCE
DESCRIPTION
The MDmesh™ is a new revolutionary MOSFET technology that associates the Multiple Drain pro­cess with the Company’s PowerMES H ™ horizontal layout. Theresulting produc t has an outstanding low on-resistance, impressively high dv/dt and excellent avalanche characteristics. The adoption of the Company’s proprietary strip technique yields overall dynamic perfo rmance that issignificantly better than that of similar competition’s products.
APPLICATIONS
The MDmesh™ family is very suitable for increas ing power density of high voltage converters allowing system miniaturization and higher efficiencies.
ORDERING INFORMATION
TYPE V
DSS
R
DS(on)
I
D
STW26NM50 500 V < 0.120 30 A
SALES TYPE MARKING PACKAGE PACKAGING
STW26NM50 W26NM50 TO-247 TUBE
TO-247
INTERNAL SCHEMATIC DIAGRAM
STW26NM50
2/8
ABSOLUTE MAXIMUM RATINGS
() Pulse width limited by safe operating area (1) I
SD
26A, di/dt 200A/µs, VDD≤ V
(BR)DSS,Tj≤TJMAX.
THERMAL DATA
AVALANCHE CHARACTERISTICS
GATE-SOURCE ZENER DIODE
PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES
The built-in back-to-back Zener diodes have specifically been desig ned to enhance not only the device’s ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device’s integrity. These i ntegrated Zener diodes thus avoid the usage of external components.
Symbol Parameter Value Unit
V
DS
Drain-source Voltage (VGS=0)
500 V
V
DGR
Drain-gate Voltage (RGS=20kΩ)
500 V
V
GS
Gate- source Voltage ± 30 V
I
D
Drain Current (continuous) at TC= 25°C
30 A
I
D
Drain Current (continuous) at TC= 100°C
18.9 A
I
DM
()
Drain Current (pulsed) 120 A
P
TOT
Total Dissipation at TC= 25°C
313 W
Derating Factor 2.5 W/°C
V
ESD(G-S)
Gate source ESD(HBM-C=100pF, R=1.5KΩ) 6000 V
dv/dt (1) Peak Diode Recovery voltage slope 15 V/ns
T
j
T
stg
Operating Junction Temperature Storage Temperature
-55 to 150 °C
Rthj-case Thermal Resistance Junction-case Max 0.4 °C/W
Rthj-amb Thermal Resistance Junction-ambient Max 62.5 °C/W
T
l
Maximum Lead Temperature For Soldering Purpose 300
°C
Symbol Parameter Max Value Unit
I
AR
Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T
j
max)
13 A
E
AS
Single Pulse Avalanche Energy (starting T
j
= 25 °C, ID=IAR,VDD=50V)
740 mJ
Symbol Parameter Test Conditions Min. Typ. Max. Unit
BV
GSO
Gate-Source Breakdown Voltage
Igss=± 1mA (Open Drain) 30 V
3/8
STW26NM50
ELECTRICAL CHARACTERISTICS (T
CASE
=25°C UNLESS OTHERWISE SP ECIFIED)
ON/OFF
DYNAMIC
SWITCHING ON
SWITCHING OFF
SOURCE DRAIN DIODE
Note: 1. Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.
2. Pulse width limited by safe o perating area.
3. C
oss eq.
is defined as a constant equivalent capacitance giving the same charging time as C
oss
when VDSincreases from 0 to 80%
V
DSS
.
Symbol Parameter Test Conditions Min. Typ. Max. Unit
V
(BR)DSS
Drain-source Breakdown Voltage
ID= 250 µA, VGS= 0 500 V
I
DSS
Zero Gate Voltage Drain Current (V
GS
=0)
V
DS
= Max Rating
VDS= Max Rating, TC= 125 °C
10
100
µA µA
I
GSS
Gate-body Leakage Current (V
DS
=0)
V
GS
= ± 20V ±10 µA
V
GS(th)
Gate Threshold Voltage
V
DS=VGS,ID
= 250µA
345V
R
DS(on)
Static Drain-source On Resistance
VGS=10V,ID= 13 A 0.1 0.12
Symbol Parameter Test Conditions Min. Typ. Max. Unit
g
fs
(1) Forward Transconductance VDS=15V,ID=13A 20 S
C
iss
C
oss
C
rss
Input Capacitance Output Capacitance Reverse Transfer Capacitance
V
DS
=25V,f=1MHz,VGS= 0 3000
700
50
pF pF pF
C
oss eq.
(3) Equivalent Output
Capacitance
VGS=0V,VDS= 0V to 400V 300 pF
Symbol Parameter Test Conditions Min. Typ. Max. Unit
t
d(on)
t
r
Turn-on Delay Time Rise Time
VDD=250V,ID=13A RG= 4.7VGS=10V (Resistive Load see, Figure 3)
28 25
ns ns
Q
g
Q
gs
Q
gd
Total Gate Charge Gate-Source Charge Gate-Drain Charge
VDD=400V,ID=26A, V
GS
=10V
76 20 36
106
nC nC nC
Symbol Parameter Test Conditions Min. Typ. Max. Unit
t
r(Voff)
t
f
t
c
Off-voltage Rise Time Fall Time Cross-over Time
V
DD
= 400V, ID=26A,
R
G
=4.7Ω, VGS= 10V
(Inductive Load see, Figure 5)
13 19 36
ns ns ns
Symbol Parameter Test Conditions Min. Typ. Max. Unit
I
SD
I
SDM
(2)
Source-drain Current Source-drain Current (pulsed)
26
104
A A
V
SD
(1)
Forward On Voltage
ISD=26A,VGS=0
1.5 V
t
rr
Q
rr
I
RRM
Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current
I
SD
= 26 A, di/dt = 100A/µs
V
DD
=100V,Tj=25°C
(see test circuit, Figure 5)
400
5.5
27.8
ns
µC
A
t
rr
Q
rr
I
RRM
Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current
I
SD
= 26 A, di/dt = 100A/µs
V
DD
=100V,Tj=150°C
(see test circuit, Figure 5)
492
7
28.8
ns
µC
A
STW26NM50
4/8
Safe Operating Area For TO-247 Thermal Imped ance For TO-247
Output Characteristics
Transfer Characteristics
Transconductance
Static Drain-source O n Resistance
5/8
STW26NM50
Capacitance VariationsGate Charge vs Gate-so urce Voltage
Normalized On Resistance vs TemperatureNormalized Gate Threshold Voltage vs Temp.
Source-drain Diode Forward Characteristics
STW26NM50
6/8
Fig. 5: Test Circuit For Induc tiv e Load Switching And Diode Recovery Times
Fig. 4: Gate Charge test Circuit
Fig. 2: Unclamped Inductive WaveformFig. 1: Unclamped Inductive Load Test Circuit
Fig. 3: Switching Times Test Circuit For
Resistive Load
7/8
STW26NM50
DIM.
mm. inch
MIN. TYP MAX. MIN. TYP. MAX.
A 4.85 5.15 0.19 0.20 D 2.20 2.60 0.08 0.10 E 0.40 0.80 0.015 0.03
F 1 1.40 0.04 0.05 F1 3 0.11 F2 2 0.07 F3 2 2.40 0.07 0.09 F4 3 3.40 0.11 0.13
G 10.90 0.43
H 15.45 15.75 0.60 0.62
L 19.85 20.15 0.78 0.79 L1 3.70 4.30 0.14 0.17 L2 18.50 0.72 L3 14.20 14.80 0.56 0.58 L4 34.60 1.36 L5 5.50 0.21
M 2 3 0.07 0.11
V
V2
60º 60º
Dia 3.55 3.65 0.14 0.143
TO-247 MECHANICAL DATA
STW26NM50
8/8
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of u se of such inform ation nor for any in fring ement of p atents or o ther ri ghts of th ird p arties which may r esul t f rom its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com
Loading...