SGS Thomson Microelectronics STV0299B Datasheet

MULTISTANDARD QPSK AND BPSK DEMODULATION
EASY IMPLEMENTATION WITH LOW COST DIRECT CONVERSION TUNERS
EXTREMELY LOW BER WHEN CO-CHANNEL INTERFERENCE
WIDE CARRIER LOOP TRACKING RANGE TO COMPENSATE FOR DISH FREQUENCY DRIFT
COMMON INTERFACE COMPLIANT
VERY LOW POWER CONSUMPTION
INTEGRATED DUAL 6-BIT ANALOG TO DIGITAL CONVERTERS
DUAL DIGITAL AGC
DIGITAL NYQUIST ROOT FILTER WITH ROLL-OFF OF 0.35 OR 0.20
DIGITAL CARRIER LOOP WITH LOCK DETECTOR, ON-CHIP WIDE RANGE DEROTATOR AND TRACKING LOOP (TYP ± 45 MHz)
DIGITAL TIMING RECOVERY WITH LOCK DETECTOR
CHANNEL BIT RATE UP TO 90 Mbps AND SYMBOL FREQUENCY RATE FROM 1 TO 50 MSYMBOLS
INNER DECODER:
- VITERBI SOFT DECODER FOR CONVOLUTIONAL CODES, M=7, RATE 1/2
- PUNCTURED CODES 1/2, 2/3, 3/ 4, 5/6, 6/7 AND 7/8
SYNCHROWORD EXTRACTION
CONVOLUTIVE DEINTERLEAVER
OUTER DECODER:
- REED-SOLOMON DECODER FOR 16 PARITY BYTES; CORRECTION OF UP TO 8 BYTE ERRORS
- ENERGY DISPERSAL DESCRAMBLER
ON-CHIP FLEXIBLE CLOCK SYSTEMS TO ALLOW USE OF EXTERNAL CLOCK SIGNALS IN 4 MHz TO 30 MHz RANGE
EASY-TO-USE C/N ESTIMATOR WITH 2 TO 18 dB RANGE
I2C SERIAL BUS AND REPEATER
DVB COMMON INTERFACE COMPLIANT PARALLEL OUTPUT FORMAT
PARALLEL AND SERIAL DATA OUTPUT
LNB SU PPLY CO NTROL WITH STANDARD I/O, 22 KHz TONE AND DISEQC
TM
MODULATOR
WITH TTL OUTPUT
CMOS TECHNOLOGY: 2.5 V OPERATION; JEDEC (EIA/JESD8-5)
STV0299B
QPSK/BPSK LINK IC
TQFP64
(Thin Plastic Quad Flat Pack)
ORDER CODE:
APPLICATIONS
DIGITAL SATELLITE RECEIVER AND SET-TOP BOXES
DESCRIPTION
The STV0299 Satellite Receiver with FEC is a CMOS single-chip multistand ard demodulator for digital satellite broadcasting. It consists of two A/D converters for I-input and Q-input, a multistandard QPSK and BPSK demodulator, and a forward error correction (FEC) unit having both a n inner (Viterbi) and outer (Reed-Solomon) decoder.
The FEC unit is compliant with the DVB-S and
TM
specifications. Processing is fully digital.
DSS It integrates a derotator before the Nyquist root
filter, allowing a wide range of offset tracking. The high sampling rate facilitates the
implementation of low-cost, direct conversion tuners.
A variety of configurations and beh aviours can be selected through a bank of control/configuration registers via an I Transport Streams and interfaces seamlessly to the Packet Demultiplexers embedded in ST’s ST20-TPx or STi55xx. High sampling frequency (up to 90MHz) considerably reduces the cost of LPF of direct conversion tuners.
The multistandard capability associated with a broad range of input frequency operat ions makes it easy-to-use. Its low power consumption, small package and optional serial output interface makes it perfect for embedding into a tuner.
(10 x 10 x 1.4 mm)
STV0299B (
2
C. The chip outputs MPEG
No Slug)
May 2000 1/36
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without not i ce.
STV0299B
PageTABLE OF CONTENTS
1 PIN INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Pinout Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 BLOCK DIAGRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 SYSTEM CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1 Front End Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Timing Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Carrier Recovery and Derotator Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Noise Indicator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6 Forward Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 REGISTER LIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2
4.1.1 I
C Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1.2 Write Operation (Normal Mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1.3 Read Operation (Normal Mo de). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2
4.1.4 I
C Interface in Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1.5 Specific Concerns about SCL Freq uency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.6 Identification Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.7 Sampling Freque nc y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.8 Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.9 Clock Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0
4.1.10 I2C Bus Repeater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.11 General Purpose Σ∆DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.12 DiSEqC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.13 Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.1 I and Q Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2
4.2.2 Main AGC (or AGC1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.3 Nyquist Root and Interpolation Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.4 Offset Cancellation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.5 Signal AGC (or AGC2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.1 Timing Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.2 Loop Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.3 Timing Lock Indicator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4.1 Loop Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4
4.4.2 Carrier Lock Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4.3 Derotator Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4.4 Carrier Frequency Offset Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6.1 FEC Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6.2 Viterbi Decoder and Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6.3 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6.4 Error Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6.5 Convolutional Deinterleaver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6.6 Reed-Solomon Dec oder and Desc ramb ler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6.7 Parallel Output Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6.8 Serial Output Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2/36
STV0299B
(continued)
PageTABL E OF CONTENTS
6.2 Thermal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2
C Bus Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.5 I
7 APPLICATION BLOCK DIAGRAMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3/36
STV0299B
1 PIN INFORMATION
1.1 Pin Connections Figure 1:
Pinout for 64-pin TQFP (10x10 mm)
CLK_IN/XTAL_IN
XTAL_OUT
V
AUX_CLK
V
DD_3.3V
RESET
F22/DiSEqC
V
SSA
DDA
V
SS
V
DD
V
SS
AGC
V
DD
V
SS
SDA
SCL
SS
DD
V
V
64 62 61 60 59 58 57 56 5563 54 53 52 51 50 49
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 19 20 21 22 23 24 25 2618 27 28 29 30 31 32
TEST
TEST
SDAT
SCLT
SSA
V
DIRCLK-DIS
DDA
TOP
V
QP
V
QN
SSA
V
IN
IP
SSA
V
V
48
47
46
45
44
43
42
40
39
38
37
36
35
34
33
41
BOT
V
DDA
TEST TEST
TEST TEST
STDBY
V
DD
DAC V
SS
IP0
TEST
D0 D1 D2
D3
4/36
V
SS
D6
D5
V
DD
STR_OUT
SS
V
DD_3.3 V
V
CLK_OUT
OP1
OP0
D/P
ERROR
LOCK/OP2
D4
SS
V
SERIAL DATA/D7
STV0299B
1 PIN INFORMATION
(continued)
1.2 Pinout Description
Pin Number Name
SIGNAL INPUTS
50, 51 IP, IN I Analog in Phase Component 53, 54 QN, QP I Analog in Quadrature Component
1 CLK_IN/XTAL IN I Crystal Input or CLK_IN 2 XTAL OUT O Crystal Output
9AGC 5 AUX_CLK
17-18 OP0, OP1
19 LOCK/OP2 38 IP0 I Input Port
SIGNAL OUPUTS
26-28-29-31, 33 to 36 D[7:0]
24 CLK_OUT 22 STR_OUT 21 D/P 20 ERROR
14 SCL 12 SDA
OTHERS
59 SCLT 60 SDAT
37-43-44-45-46-61-62 TEST I
58 DIRCLK_DIS I
3, 49, 52, 57
4, 47, 55
56 48
6-8-11-23-27-32-39-64
13-25
7-10-30-41-63
15 RESET 42 STDBY I Sets STDBY at power on
16 F22/DiSEqC 40 DAC
Note: 1
The following abbreviations are used: I - Input; O - Output; OD - Open drain output.
2
3.3 V outpu t levels.
3
5 V tolerant
V
SSA
V
DDA
V
TOP
V
BOT
V
SS
V
DD_3.3 V
V
DD
1
I/O
FRONT END CONTROLS
3
Control Signal to the Tuner
OD
2
Programmable Output Port or Programmable Output Clock
O
2
Programmable Output Ports
O
2
Carrier Found or Data Found or Output Port
O
2
Output Data; D7 is DATA_OUT in Serial Mode
O
2
Output Byte Clock; or Bit Clock in Serial Mode
O
2
Output 1st byte Signal (synchro byte clock)
O
2
Data/Parity Signal
O
2
Output Error Signal. Set in case of uncorrectible packet.
O
I2C INTERFACE
3
Serial Clock (I2C bus)
I
3
I/OD
Serial Data (I2C bus)
3
Tuner Serial Clock (repeator) or Output Port
OD
3
Tuner Serial Data (repeator) or Input/Output Port
I/OD
Reserved for manufacturing tests; must be tied to V
Sets the DIRCLK function at power on S Analog Ground S Analog 2.5 V Supply S ADC High Voltage Reference
S ADC Low Voltage Reference S Ground S 3.3 V Supply S 2.5 V Supply
I Reset, active at low level
DiSEqC modulation, 22 kHz Tone, Programmable
2
O
Output Port
2
Programmable Digital to Analog Converter Output
O
Description
SS
5/36
STV0299B
-
2 BLOCK DIAGRAM
AGC
V
DDA
V
TOP
IN/IP
QN/QP
V
BOT
V
SSA
CLK_IN/XTAL_IN
AUX_CLK
Nyquist &
Interpolation
Filter
Derotator
AGC1
Offset
Comp.
ADCs
Clock
Generator
AGC2
Carrier Lock
Indicator
Error
Monitoring
Timing
Recovery
Timing
DCO
Timing
Lock
Indicator
C/N
Indicator
Viterbi Decoder
Deinterleaver
XTAL_OUT
F22/DiSEqC
SCL
SDA
22 kHz
Tone
DiSEqC
Interface
2
I
C
Interface
SDAT SCLT DAC IP0 OP0[2:0] D[7:0] V
General
Purpose
Functions
3 SYSTEM CHARACTERIST ICS Performances
The following given parameters are for indication purposes only.
Carrier Loop Tracking Range:
M_CLK
/2
±f
Carr i er Loop Ca pt ure Range ( C / N>=4 dB):
up to ± 5% fs in less than 100 Ksymbols
up to ± 2% fs in less than 10 Ksymbols
C/N Threshold (lowest C/N at which capture is possible) = 1 dB.
Reed-Solomon
Decoder
D/P
Energy
Descrambler
DD_3.3VVDDVSS
ERROR STR_OUT CLK_OUT
Timi ng Loop Capt ure Range (C/N>=2 dB ):
up to ±250 ppm in less than 100 Ksymbols
conventions used for the above characteristics
are:
f
sampling
fs = f
C/N = Carrier/Noise =
PR = Puncture Rate
= f
symbol
m_clk
= f
master_clock
Eb
------ -x2xPR
No
6/36
4 FUNCTIONAL DESCRIPTION
STV0299B
The STV0299B is a multistandard demodulator and error correction decoder IC for the reception of QPSK and BPSK modulated signals. It is intended for use in digital satellite television applications. The IC can accept two standards of QPSK modulated signals (DVB and DSS) as well as BPSK modulated signals over a wide symb ol frequency range (from 1 to 50 Msymbol s/s). The signals are digitized via an integrated dual 6-bit analog to digital converter, and interpolated and digitally filtered by a Nyquist root filter (with a settable roll-off value of either 0.35 or 0.20).
There are two built-in digital Automatic Gain Controls (AGCs). The first AGC allows the tuner gain to be controlled by the pulse density modulated output. The second AGC performs power optimization of the digital signa l bandwidth (internal to the STV0299B). The digital signal then passes through the digital carrier loop fitted with an on-chip derotator and tracking loop, lock detector, and digital timing recovery.
Forward error correction is integrated by way of an
4.1.2 Write Operation (Normal Mode)
The byte sequence is as follows: 1 The first byte gives the device address plus the
direction bit (R/W = 0).
2 The second byte contains the internal address
of the first register to be accessed.
3 The next byte is written in the internal regist er.
Following bytes (if any) are written in successive internal registers.
4 The transfer lasts until stop conditions are
encountered.
5 The STV0299B acknowledges every byte
transfer.
4.1.3 Rea d Op e rat i on (N ormal Mode )
The address of the first register to read is programmed in a write operation without data, and terminated by the stop condition. Then, another start is followed by the device address and R/ W = 1. All following bytes are now data to be read at successive positions starting from the initial address. Figure 2 shows the I
2
C Normal Mode
Write and Read Registers.
inner Viterbi soft decoder, and an outer Reed-Solomon decoder.
4.1 Front End Interfaces
2
4.1.1 I
The standard I first byte is Hex D0 fo r a write operation, or Hex D1 for a read operation. The I
C Interface
2
C protocol is used whereby the
2
C interface operates differently depending on whether it is in normal or standby mode.
4.1.4 I
Only three registers can be addressed while in standby mode: RCR (address 01 Hex), MCR (address 02 Hex) and ACR (address 03 Hex). These three registers can be either read or written to (refer to Figure 3).
Only one register may be read or written to per sequence (no increment). While in standby mode, the Serial Clock (SCL) frequency must be lower than one tenth of the CLK_IN frequency (f
Figure 2:
Write registers 0 to 3 with AA, BB, CC, DD
Start
Read registers 2 and 3
Start Device Address, Write D 0 ACK Register Address 02 ACK Stop
Start
Figure 3:
Write operation
Star t Device A ddress, Wri te D0 ACK Register Address 01, 02 or 03 ACK Data ACK Stop
2
I
C Read and Write Operations in Normal Mode
Device Address, Write D0
2
I
C Read and Write Operations in Standby Mode
ACK
Device Address,
Read D1
Register Address 00ACK
ACK Data Read CC ACK Data Read DD
Data
AA
ACK
2
C Interface in Standby Mode
Data
BB
ACK
Data
CC
ACK
Data
DD
CLK_IN
/ 10).
ACK Stop
ACK
Stop
Read operation
Start
Start
Note: 1
ACK is not absolutely necessary after Data
Device Address
, Read D0
Device Ad dress,
Read D1
ACK Regis ter Address ACK Stop
ACK Reader Data
ACK (or no
ACK
Stop
1
)
7/36
STV0299B
N
4 FUNCTIONAL DESCRIPTION
(continued)
4.1.5 Specific Concerns about SCL Frequency
For reliable operation in Normal Mode, the SCL frequency must be lower than 1/40 of the Ma ster Clock (M_CLK) frequency. Consequently, care should be taken to observe the following:
1 Before returning t o No rm al Mode from Sta ndby
Mode, the M_CLK frequency must be s elected
such that f
M_CLK
40 f
SCL
2 After Power-on reset signal, the STV0299B
operates in Normal Mode. There are two possi­ble cases:
- DIRCLK-DIS (pin 58) is grounded. M_CLK = CLK_IN, the f
2
I
C bus must satisfy:
- DIRCLK-DIS (pin 58) is tied to V
100
(where ), and the f
f
M_CLK
--------- -
=
16
frequency of the
SCL
CLK_IN
f
-------------------- -
SCL
f
CLK_I
40
.
DD
SCL
frequency of the I2C bus must satisfy:
f
SCL
16 40
CLK_IN
×
and
f
SCL
400 kHz.
100
-------------------
For example, this second operating mode is required when the app lication features both a
4 MHz XT AL and a 400 kHz I
2
C bus.
4.1.6 Identification Register
The Identification Register (at address Hex 00) gives the release number of the circuit.
The content of this register at reset is presently A1 (same as STV0299).
4.1.7 Sampl i ng Frequency
The STV0299B converts the analog inputs into digital 6-bit I and Q flows. The sampling frequency is f reference described in Section 4.1.8
Generation
which is derived from an external
M_CLK
. The maximum value of f
Clock
M_CLK
is 90
MHz.
The sampling causes the repetition of the input spectrum at each integer multiple of f
M_CLK
. One has to ensure that no frequency component is folded in the useful signal b andwidth of f where f
is the symbol frequency, and α is the
S
(1+α)/2
S
roll-off value.
4.1.8 Clock Generation
An integrated VCO (optimised to r un in the range of 300 to 400 MHz) is locked to a reference frequency provided by a crystal o scillator by the following relation:
M1
+
f
VCOfref
4M1
==
()⋅⋅
f
+
XTAL
4
⋅⋅
--------------
K1
+
The VCOs loop filter is optimized for a reference frequency between 4 and 8 MHz.
The VCO generates the following by division:
The Master Clock (M_CLK)
An auxiliary clock (AUX_CLK) which may either
be in the MHz range or in the 25 Hz to 1500 Hz range for some specific LNB control (for example, 60 Hz).
A lower frequency, F22, typically 22 KHz,
needed for LNB control or DiSEqC
TM
control.
When DIRCLK_CTRL = 1, the crystal signal is routed directly to M_CLK; the VCO may still be used to generate AUX_CK and/or the F22 (used by the DiSEqC
TM
int erface).
If the internal VCO is not used by any of the dividers, it may be stopped in order to decrease the power consumption and/or radiation emissions. The only guaranteed function in standby mode is the I
2
C Write/Read function of
the three clock control registers. There are restrictions on the high and low level
durations, and on the crystal (or external clock) frequency when the direct clock is used.
These restrictions are explained in Section 4.1.5
Specific Concerns about SCL Frequency
.
8/36
STV0299B
)
]
]
]
]
g
4 FUNCTIONAL DESCRIPTION Figure 4:
Clock Signal Generation
LPF
Reg 01[4:0
VCO 1/4
VCO
/OFF
ON
TO SERIAL SHIFTER
1/6
÷(M+1)
I2C
Note 2
PRESCALER
(continued)
PHASE COMPARATOR
VCO ON/OFF
DIRCLK (I2C bit
1/16
÷(K+1) OSC
Reg 02[2:0
÷P(Note 1)
DIRCLK-CTRL
÷R
Reg 04
PROGRAMABLE DIVIDER
Reg 01[7:6
1 0
1/2
2
C bit)
Note 2
STDBY (I
DiSEqC/tone burst modulator
1/0
1/0 1/2
03
Re
Reg 08[2:0
XTAL OUT
XTAL IN/CLK-IN
M_CLK
STDBY
I2C
DIRCLK-DIS
F22/ DiSEqC
AUX_CLK
TM
Note: 1
Refer to the Re gi ster List P[2:0] in table 1
2
At the rising edge of RESET signal (pin 15) the corresponding bit of the I2C bus register is forced to the status of pin STDBY or to DIRCLK -DIS.
Table 1:
K(1:0) in register
M(4:0) in register
f
REF
= f
XTAL
Divider Programming
00 1 01 2 10 3 11 4
= f
f
VCO
multiplied by:
00000 4 00001 8 00010 12 00011 16
... ...
11111 128
divided by:
REF
P(2:0) in register
Table 2:
f
=
VCOfXTAL
f
M_CLK
f
=
M_CLKfCLK_IN
f
M_CLK
f
M_CLK
divided by P:
000 4 001 6 010 8 011 12 100 16 101 24 110 32 111 48
Summary of F
M1
4
×
--------------
K1
f
VCO
----------- -=
P
M_CLK
+ +
DIRCLK_CTRL = 0
DIRCLK_CTRL =1
0
=
STDBY = 1
= f
VCO
9/36
STV0299B
4 FUNCTIONAL DESCRIPTION
(continued)
4.1.9 Clock Registers
The Reference Clock, Master Clock, Auxiliary Clock and F22 Frequency Registers are in Addresses 01, 02, 03 and 04.
2
4.1.10 I
In low symbol rate applications, signal pollution generated by the SDA/SCL lines of the I
C Bus Repeater
2
C bus may dramatically worsen tuner phase noise. In order to avoid this problem, the STV0299B offers
2
C bus repeater so that the SDAT and SCLT
an I are active only when necessary and muted once the tuner frequency has settled.
Both SDAT and SCLT pins are set high at reset. When the microprocessor writes a 1 into register
2
CT, the next I2C message on SDA and SCL is
bit I repeated on the SDAT and SCL T pins respectively, until stop conditions are detected.
To write to the tuner, the external microprocessor must, for each tuner message, perform the following:
2
Program 1 in I
CT.
Send the message to the tuner. Any size of byte transfers are allowed, regardless
of the address, until the stop conditions are detected. Transfers are fully bi-directional.
2
CT bit is automatically reset at the stop
The I condition. If not used for the I
2
C repeater, both SDAT and SCLT outputs may be used as general purpose output por t s.
SDAT status may be read on the DiSEqC register. Configuration is controlled by the I
2
C repeater
register in Address 0Ah. In the first version of the STV0299, operation of
the repeater was very fast, and often too fast versus the rise time of the SDAT and SCLT signals. In the STV0299B, a programmable delay is implemented to accept a wide range of rise times on SDAT and SCLT. The delay is programmed with Reg.05 [5:4]. In practice, operation of the repeater is ensured in the following case:
Reg.05 [5:4]: xx
f
M_CLK
90 MHz
RC≤250ns (R: pull-up resistor, C: total
capacitance on either SDAT or SCLT).
4.1.11 Gener al Purp ose Σ∆DAC
A DAC is available in order to control external analog devices. It is built as a sigma-delta first-order loop, and has 12-bit resolution-it only requires an external low-pass filter (simple RC filter). The clock frequency is derived from the main clock by programmable division. The converter is controlled by two registers-one for
clock divider control and 4 MSBs, and the other for the 8 LSBs.
If the DAC is not needed, the DAC output may be used as an output por t . The DAC Registers are in Addresses 06 and 07.
4.1.12 DiSEqC Interface
This interface allows for the simplification of real time processing of the dialog from microprocessor to LNB. It includes a FIFO that is filled by the microprocessor via the I
2
C bus, and then transmitted by modulating the F22 clock adjusted beforehand to 22 kHz.
2
Two control signals are available on the I
C bus:
FE (FIFO empty) and FF (FIFO full). A typical byte transfer loop, as seen from the
microprocessor, may be the following:
While (there is data to transfer) 1 Read the control signals 2 If FF=1, go to 1 3 Write byte to transfer in the FIFO
Note, for the above transfer loop, the following:
At the beginning, the FIFO is empty (FE=1,
FF=0). This is the idle state.
As soon as a byte is written in the FIFO, the
transfer will begin.
After the last transmitted byte, the interface will
go into the idle state.
Modulation
The output is a gated 22 kHz square signal.
In the idle state
, modulation is permanently
inactive.
In byte transmission
, the byte is sent (MSB first) and is followed by an odd parity bit. A byte transmission is therefore a serial 9-bit
transmission with an odd number of “1’s”.
Each bit lasts 33 periods of F22 and the
transmission is PWM-modulated.
Transmission of “0’s”
-
. There are two submodes controlled by PortCtrl(2): a) PortCtrl2 = 1: Modulation is active during
22 pulses, then inactive during 11 pulses (2/3 PWM ) .
b) PortCtrl2 = 0: Modulation is active during
33 pulses (3/3 PWM).
Transmission of “1’s”
-
. During transmission of “1’s, modulation is active during 11 pulses, then inactive during 22 pulses (1/3 PWM).
This is com patible w ith Tone Burst in older LNB protocols.
For the Modulated Tone Burst, only one byte (with value Hex FF) is written in the FIFO. The parity bit is 1, and as a result, the output signal is 9 bursts of 0.5 ms, separated by 8 intervals of 1 ms.
10/36
STV0299B
For t he Unmodulated Tone Burst Port C TRL 2 is set to 0 and, only one byte, of value 00h is sent. The parity bit is still 1, and as a r esult, the signal is a continuous train of 12.5 ms. When the
alternatively to VDD and VSS levels. The DiSE qC and Lock Control, DiSEqC FIFO and DiSEqC Status Registers are in Addresses 08, 09 and 0Ah.
modulation is active, the DiSEqC output is driven
Figure 5:
Schematic showing Bit Transmiss ion
Idle 11 Periods 11 Periods 11 Periods Next bit
Transmission of 1’s
Transmission of 0’s:
a) PortCtrl2 = 1
b) PortCtrl2 = 0
Table 3:
PortCtrl (1:0) PortCtrl (2) FIFO Output
00 X empty 0 01 X empty 1
0 DATA = 00 Unmodulated tone burst 1 DATA = FFor00 Modulated tone burst 1 Note 1 DiSEqC signal
Note: 1
10
11 X XX Continuous tone
Byte to transfer in DiSEqC mode.
2
In mode PortCtrl (1:0)=10, the F22/DiSEqC pin returns to High -2 mode once the transmission is completed.
4.1.13 Standby Mode
A low power consumption mode (standby mode) can be implemented (in this mode, f standby mode, the I
2
C decoder still operates, but
with some restrictions (see Sections
4.1.5
).
Standby mode can be initiated or stopped by I
M_CLK
4.1.4
= 0). In
and
2
bus commands as described in MCR Register 02.
At power-on, the circuit starts to operate in standby mode when the STDBY pin (pin 42) is tied to V
. This guarantees low power
DD
consumption for the stand-alone modules (PCMCIA size front-end modules) before any command is initiated. After the power-on
C
sequence, the standby mode is entirely controlled via MCR Register (02).
11/36
Loading...
+ 25 hidden pages