HIGH VOLTAGE POWER SCHOTTKY RECTIFIER
MAINPRODUCTCHARACTERISTICS
STPS8H100D/F/G/G-1
I
F(AV)
V
RRM
8A
100 V
Tj (max) 175 °C
(max) 0.58V
V
F
FEATURESAND BENEFITS
NEGLIGIBLESWITCHINGLOSSES
HIGHJUNCTIONTEMPERATURECAPABILITY
TO-220AC
STPS8H100D
A
K
K
ISOWATT220AC
STPS8H100F
LOWLEAKAGECURRENT
GOOD TRADE OFF BETWEEN LEAKAGE
CURRENTAND FORWARDVOLTAGE DROP
K
AVALANCHERATED
DESCRIPTION
Schottkybarrierrectifier designedfor high frequency compact Switched Mode Power Supplies sucha s adaptatorsand on board DC/DC
converters.
K
NC
2
PAK
I
STPS8H100G-1
A
D2PAK
STPS8H100G
A
NC
ABSOLUTE RATINGS (limitingvalues)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
Repetitivepeak reverse voltage 100 V
RMSforward current 30 A
Averageforwardcurrent
δ
=0.5
TO-220AC/
2
PAK/ D2PAK
I
Tc=165°C8 A
ISOWATT220AC Tc =150°C
I
FSM
Surgenon repetitiveforward
tp =10 ms sinusoidal 250 A
current
I
RRM
I
RSM
E
I
Repetitivepeak reverse current tp =2 µs F = 1kHz square 1 A
Non repetitivepeakreverse current tp =100 µs square 3 A
Non repetitiveavalancheenergy Tj=25°CL=60mH
as
=2A
I
as
Repetitiveavalanchecurrent Va = 1.5x VRtyp
ar
24 mJ
2A
Currentdecayinglinearly
to 0 in1µs
Frequencylimitedby Tj max.
T
Storagetemperaturerange - 65 to + 175 °C
stg
Tj Maximum operatingjunctiontemperature 175 °C
dV/dt Criticalrate of riseof rise voltage 10000 V/µs
A
August 1999-Ed: 4A
1/7
STPS8H100D/F/G/G-1
THERMALRESISTANCES
Symbol Parameter Value Unit
R
R
th (j-c)
th (j-c)
Junctionto case
Junctionto case
TO-220AC/ I
ISOWATT220AC
2
PAK/ D2PAK
STATICELECTRICALCHARACTERISTICS
Symbol Parameter TestsConditions Min. Typ. Max. Unit
I
* Reverseleakage current Tj = 25°CV
R
R=VRRM
Tj = 125°C26mA
V
** Forwardvoltagedrop Tj = 25°CI
F
Tj = 25°CI
Tj = 25°CI
Tj = 125°CI
Tj = 125°CI
Tj = 125°CI
= 8 A 0.71 V
F
= 10 A 0.77
F
= 16 A 0.81
F
= 8 A 0.56 0.58
F
= 10 A 0.59 0.64
F
= 16 A 0.65 0.68
F
1.6 °C/W
4 °C/W
4.5
µ
A
Pulse test : * tp = 5 ms,δ<2%
** tp = 380µs, δ <2%
To evaluate the maximum conduction losses use the following equation :
P = 0.48 x I
Fig. 1: Average forward power dissipation versus
averageforwardcurrent.
(TO-220AC/ ISOWATT220AC/ I
PF(av)(W)
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
012345678910
F(AV)
+ 0.0125 x I
δ = 0.1
δ=0.05
F2(RMS)
δ = 0.2
IF(av) (A)
2
PAK/ D2PAK)
δ = 0.5
δ =1
T
=tp/T
δ
Fig. 2-1: Average forward current versus ambient
temperature(δ=0.5)(TO-220AC/ I
IF(av)(A)
10
8
6
4
2
tp
δ
0
0 20 40 60 80 100 120 140 160 180
=tp/T
2
PAK/ D2PAK).
Rth(j-a)=Rth(j-c)
T
tp
Rth(j-a)=15°C/W
Tamb(°C)
2/7
STPS8H100D/F/G/G-1
Fig. 2-2:
Averageforward current versus ambient
temperature(δ=0.5)(ISOWATT220AC).
IF(av)(A)
10
Rth(j-a)=Rth(j-c)
8
6
4
T
Rth(j-a)=50°C/W
2
tp
=tp/T
δ
0
0 20 40 60 80 100 120 140 160 180
Tamb(°C)
Fig.3-2: Nonrepetitivesurge peakforwardcurrent
versusoverloadduration(maximum values)
(ISOWATT220AC).
IM(A)
100
90
80
70
60
50
40
30
IM
20
10
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
Tc=100°C
t(s)
Tc=75°C
Tc=125°C
Fig.3-1:
versusoverloadduration(maximumvalues)
(TO-220AC/ I
Nonrepetitivesurge peakforwardcurrent
2
PAK / D2PAK).
IM(A)
160
140
120
100
Tc=75°C
80
60
t(s)
Tc=100°C
Tc=125°C
40
IM
20
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
Fig. 4-1: Relative variation of thermalimpedance
junctionto caseversus pulseduration
(TO-220AC/ I
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
0.4
δ = 0.2
δ = 0.1
0.2
0.0
1E-4 1E-3 1E-2 1E-1 1E+0
2
PAK/ D2PAK).
Single pulse
tp(s)
δ
=tp/T
T
tp
Fig. 4-2: Relative variation of thermal impedance
junctionto caseversuspulse duration
(ISOWATT220AC).
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
0.4
δ = 0.2
δ = 0.1
0.2
0.0
1E-3 1E-2 1E-1 1E+0 1E+1
Single pulse
tp(s)
δ
=tp/T
T
tp
Fig. 5: Reverse leakage current versus reverse
voltageapplied (typical values).
IR(µA)
5E+3
1E+3
1E+2
1E+1
1E+0
1E-1
1E-2
0 102030405060708090100
Tj=125°C
Tj=25°C
VR(V)
3/7