®
STPS60L45CW
LOW DROP POWER SCHOTTK Y RECTIFIER
MAJOR PRODUCTS CHAR ACTERISTICS
I
F(AV)
2 x 30 A
Tj (max) 150°C
V
RRM
V
(max) 0.50 V
F
45 V
FEATURES AND BENE FITS
VERY SMALL CONDUCTION LOSSES
NEGLIGIBLE SWITCHING LOSSE S
EXTREMELY FAST SWITCHING
LOW FORWARD V O LTAGE DROP
LOW THERMAL RE SISTA NCE
DESCRIPTION
Dual center tap schottky barrier rectifier suited for
5V output in off line AC/DC power supplies.
Packaged in TO-247, this device is intended for
use in low voltage, high frequency converters, free
wheeling and polarity protection applications.
A1
K
A2
A2
K
A1
TO-247
ABSOLUTE RATINGS (limiting values, per diode)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
Tstg
Tj
dV/dt
dPtot
* :
dTj
March 1999 - Ed: 2C
Repetitive peak reverse voltage
RMS forward current
Average forward current Tc = 135°C
Surge non repetitive forward current tp = 10 ms Sinusoidal
Repetitive peak reverse current tp = 2 µs square F=1kHz
Non repetitive peak reverse current tp = 100 µs square
Storage temperature range
Maximum operating junction temperature ( *)
Critical rate of rise of r everse voltage
<
1
Rth(j−a
Per diode
δ = 0.5
thermal runaway condition for a diode on its own heatsink
)
Per device
45 V
50 A
30
60
600 A
2A
4A
- 65 to + 150 °C
150 °C
10000 V/µs
A
1/4
STPS60L45CW
THERMA L RE SISTA NC ES
Symbol Parameter Value Unit
R
R
th (j-c)
th (c)
Junction to case Per diode
Total
Coupling
0.75
0.42
0.1 °C/W
When the diodes 1 and 2 are used simultaneously :
∆ Tj(diode 1) = P(diode1) x R
(Per diode) + P(diode 2) x R
th(j-c)
th(c)
STATIC ELECTRICAL CHARACTE RISTICS (per diode)
Symbol Parameter Tests Conditions Min. Typ. Max. Unit
I
*
R
V
F
Reverse leakage
current
*
Forward voltage drop Tj = 25°CI
Tj = 25°CV
Tj = 125°C
Tj = 125°CI
Tj = 25°CI
Tj = 125°CI
= 45 V
R
= 30 A
F
= 30 A
F
= 60 A
F
= 60 A
F
175 350
0.44 0.5
0.64 0.72
1.5 mA
0.55 V
0.73
°C/W
Pulse test : * tp = 380 µs, δ < 2%
To evaluate the conduction losses use the following equation :
P = 0.28 x I
Fig. 1: Average forward power dissipation
versus average forward current (per diode).
PF(av)(W)
22
20
18
16
14
12
10
8
6
4
2
0
0 5 10 15 20 25 30 35 40
δ = 0.05
F(AV)
+ 0.0073 I
δ = 0.1
IF(av) (A)
F2(RMS)
δ = 0.2
δ = 0.5
=tp/T
δ
Fig. 2: Average current versus ambient
temperature (δ=0.5, per diode).
IF(av)(A)
35
δ = 1
T
tp
30
25
20
15
10
5
0
0 25 50 75 100 125 150
δ
=tp/T
Rth(j-a)=Rth(j-c)
Rth(j-a)=15°C/W
T
tp
Tamb(°C)
2/4