®
LOW DROP POWER SCHOTTKY RECTIFIER
MAJOR PRODUCTS CHARACTERISTICS
STPS6030CW
I
F(AV)
V
RRM
2x30A
30 V
Tj (max) 150°C
(max) 0.45 V
V
F
FEATURES AND BENEFITS
VERY SMALL CONDUCTION LOSSES
■
NEGLIGIBLE SWITCHING LOSSES
■
EXTREMELY FAST SWITCHING
■
LOW FORWARD VOLTAGE DROP FOR
■
HIGHER EFFICIENCY
LOW THERMAL RESISTANCE
■
AVALANCHE CAPABILITY SPECIFIED
■
DESCRIPTION
Dual Schottky rectifier suited for switch Mode
Power Supply and high frequency DC to DC
converters.
Packaged in TO-247, this device is intended for
use in low voltage high frequency inverters, free
wheeling and polarity protectionapplications.
ABSOLUTE RATINGS (limiting values, per diode)
A1
TO-247
STPS6030CW
A2
K
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
Repetitive peak reverse voltage
RMS forward current
Average forward
current
I
FSM
I
RRM
P
ARM
T
Tj
dV/dt
dPtot
*:
Surge non repetitive forwardcurrent tp = 10 ms Sinusoidal
Peak repetitive reverse current tp=2 µs square F=1kHz
Repetitive peak avalanche power tp =1µs Tj = 25°C
stg
Storage temperature range
Maximum operating junction temperature*
Critical rate of riseof reverse voltage (rated V
<
dTj Rth j a
July 2003 - Ed: 3A
Tc = 130°C
δ = 0.5
, Tj = 25°C)
R
Per diode
Per device
thermal runaway condition for a diode on its own heatsink
−1()
30 V
45 A
30
60
300 A
2A
7700 W
- 65 to + 150 °C
150 °C
10000 V/µs
A
1/4
STPS6030CW
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th(j-c)
Junction to case
Per diode
Total
R
th(c)
Coupling 0.3 °C/W
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol Parameter Tests Conditions Min. Typ. Max. Unit
*
I
R
V
F
Reverse leakage
current
*
Forward voltage drop Tj= 25°CI
Tj = 25°C VR=V
Tj = 125°C
Tj = 125°C I
Tj=25°CI
Tj = 125°C I
=30A
F
=30A
F
=60A
F
=60A
F
RRM
Pulse test : * tp = 380 *s, δ <2%
To evaluate the conduction losses use the following equation :
P=0.27xI
F(AV)
+ 0.006 I
F2(RMS)
0.9
°C/W
0.6
0.7 1.5 mA
200 400
0.46 0.52 V
0.39 0.45
0.58 0.65
0.56 0.63
Fig.1:Conductionlossesversus average current.
P(W)
22
20
18
16
14
12
10
8
6
4
2
0
0 5 10 15 20 25 30 35 40
δ = 0.05
δ = 0.1
δ = 0.2
I (A)F(av)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Fig. 2: Average forward current versus ambient
temperature(δ = 0.5).
IF(av)(A)
35
Rth
=Rth
(j-a)
=15°C/W
(j-a)
Tamb(°C)
(j-c)
30
25
20
15
10
5
0
0 25 50 75 100 125 150
Rth
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0 25 50 75 100 125 150
T (°C)
j
2/6