®
MAIN PRODUCT CHARACTERISTICS
STPS3L60/Q/U
POWER SCHOTTKY RECTIFIER
I
F(AV)
V
RRM
3A
60 V
Tj (max) 150°C
(max) 0.61 V
V
F
FEATURES AND BENEFITS
NEGLIGIBLE SWITCHING LOSSES
■
LOW THERMAL RESISTANCE
■
AVALANCHE CAPABILITY SPECIFIED
■
DO-201AD
STPS3L60
DO-15
STPS3L60Q
DESCRIPTION
Axial and Surface Mount Power Schottky rectifier
suited for Switch Mode Power Supplies and high
frequency DC to DC converters. Packaged in
DO-201AD, DO-15 and SMB, this device is
intended for use in low voltage, high frequency
inverters and small battery chargers.
SMB
STPS3L60U
For applications where there are space
constraints, e.g Telecom battery charger.
ABSOLUTE RATINGS (limiting values)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
Repetitive peak reverse voltage
RMS forward current
Average forward current TL= 105°C δ = 0.5
60 V
10 A
3A
(DO-201AD, SMB)
T
= 75°C δ = 0.5
L
(DO-15)
I
FSM
P
ARM
T
stg
T
j
dV/dt
Surge non repetitive forward current tp= 10 ms Sinusoidal
Repetitive peak avalanche power tp = 1µs Tj = 25°C
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
100 A
2000 W
- 65 to + 150 °C
150 °C
10000 V/µs
dPtot
*:
<
dTj Rth j a
July 2003 - Ed: 5A
thermal runaway condition for a diode on its ownheatsink
−1()
1/6
STPS3L60/Q/U
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th(j-l)
Junction to leads Lead length = 10 mm DO-201AD
SMB
DO-15
STATIC ELECTRICAL CHARACTERISTICS
Symbol Parameter Tests conditions Min. Typ. Max. Unit
I
*
R
V
F
Pulse test : * tp = 380 µs, δ <2%
Reverse leakage current Tj= 25°C VR=V
= 100°C
T
j
= 125°C
T
j
*
Forward voltage drop Tj= 25°C IF=3A
= 100°C
T
j
= 125°C
T
j
= 25°C IF=6A
T
j
= 100°C
T
j
= 125°C
T
j
RRM
20 °C/W
20
35
150 µA
415mA
14 30
0.62 V
0.53 0.61
0.51 0.59
0.79
0.62 0.71
0.6 0.69
To evaluate the maximum conduction losses use the following equation:
P=0.44xI
Fig. 1: Average forward power dissipation versus
average forward current.
P (W)
F(AV)
2.5
2.0
1.5
1.0
0.5
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
F(AV)
δ = 0.05
+0.05xI
δ = 0.1
δ = 0.2
I (A)
F(AV)
F2(RMS)
δ = 0.5
δ
=tp/T
δ = 1
T
Fig. 2-1: Average forward current versus ambient
temperature (δ = 0.5) (DO-201AD, SMB).
I (A)
F(AV)
3.5
3.0
2.5
2.0
1.5
1.0
tp
0.5
0.0
T
=tp/T
δ
0 25 50 75 100 125 150
tp
R=R
th(j-a) th(j-I)
R =80°C/W
th(j-a)
T (°C)
amb
2/6