SGS Thomson Microelectronics STPS340U, STPS340S, STPS340B Datasheet

®
MAIN PRODUCT CHARACTERISTICS
STPS340U/S/B
POWER SCHOTTKY RECTIFIER
I
F(AV)
V
RRM
3 A
40 V
Tj (max) 150 °C
(max) 0.57 V
V
F
VERY SMALL CONDUCTION LOSSES NEGLIGIBLE SWITCHING LOSSE S LOW FORWARD V O LTAGE DROP LOW THERMAL RE SISTA NCE EXTREMELY FAST SWITCHING SURFACE MOUNTED DEVICE
DESCRIPTION
Single chip Schottky rectifier suited for Switch Mode Power Supplies and high frequency DC to DC converters.
Packaged in SMB, SMC and DPAK this device is intended for use in low and medium voltage operation, high frequency inverters, free wheeling and polarity protection applications where low switching losses are required.
K
SMB
(JEDEC DO -214AA)
STPS340U
A
NC
DPAK
STPS340B
SMC
(JEDEC DO-214AB)
STPS340S
ABSOLUTE RATINGS (limiting values)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
Repetitive peak reverse voltage RMS forward current DPAK
SMB / SMC
= 135°C δ = 0.5
T
Average forward current
Surge non repetitive forward
c
= 105°C δ = 0.5
T
L
tp = 10 ms Sinusoidal
DPAK SMB / SMC
40 V
6A
10
3
75 A
current
I
RRM
Repetitive peak reverse
tp = 2 µs F = 1kHz square
1A
current
Tstg
Tj
dV/dt
June 1999 - Ed: 6B
Storage temperature range Maximum operating junction temperature Critical rate of rise of r ever se voltage
- 65 to + 150 °C + 150 °C
10000 V/µs
A
1/7
STPS340U/S/B
THERMAL R E SI ST A NCES
Symbol Parameter Value Unit
R
th (j-l)
Junction to leads SMC
SMB
R
th (j-c)
Junction to case DPAK
STATIC ELECTRICAL CHARACTERISTI CS
Symbol Tests Conditions Tests Conditions Min. Typ. Max. Unit
*
I
R
V
Reverse leakage current
*
F
Forward voltage drop
Pulse test : * tp = 380 µs, δ < 2 %
Tj = 25°CV Tj = 125°CV Tj = 25°CI Tj = 25°CI Tj = 125°CI Tj = 125°CI
= V
R
= V
R
= 3 A
F
= 6 A
F
= 3 A
F
= 6 A
F
RRM RRM
20 °C/W 25
5.5 °C/ W
20 µA
210mA
0.63 V
0.84
0.52 0.57
0.63 0.72
To evaluate the maximum conduction losses use the follo wing equation : P = 0.42 x I
Fig. 1: Average forward power dissipation versus average forward current.
PF(av)(W)
2.5
2.0
1.5
1.0
0.5
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
F(AV)
δ = 0.05
+ 0.050 I
δ = 0.1
F2(RMS)
δ = 0.2
IF(av) (A)
δ = 0.5
δ
=tp/T
δ = 1
Fig. 2: Average current versus ambient temperature (δ =0.5).
IF(av)(A)
3.5
3.0
2.5
Rth(j-a)=65°C/W
2.0
1.5
T
tp
1.0
0.5
0.0 0 25 50 75 100 125 150
δ
=tp/T
Rth(j-a)=Rth(j-c)
(DPAK)
Rth(j-a)=Rth(j-l)
(SMB/SMC)
T
tp
Tamb(°C)
2/7
STPS340U/S/B
Fig. 3-1: Non repetit iv e s urge peak forward current
versus overload duration (SMB)(Maximum values).
IM(A)
10
9 8 7 6 5 4 3
I
M
2 1 0
1E-3 1E-2 1E-1 1E+0
t
δ
=0.5
t(s)
Ta=25°C
Ta=50°C
Ta=100°C
Fig. 3-3: Non repetitive surge peak forward current versus overload duration (DPAK) (Maximum values).
IM(A)
50
40
30
20
I
M
10
0
1E-3 1E-2 1E-1 1E+0
t
δ
=0.5
t(s)
Tc=25°C
Tc=50°C
Tc=100°C
Fig. 3- 2 : Non repetitive surge peak forward current versus overload duration (SMC) (Maximum values).
IM(A)
12 10
8
Ta=25°C
6 4
I
M
2 0
1E-3 1E-2 1E-1 1E+0
t
δ
=0.5
t(s)
Ta=50°C
Ta=100°C
Fig. 4-1: Relative variation of thermal transient impedance junction to lead versus pulse duration (SMB).
Zth(j-a)/Rth(j-a)
1.0
Printed circuit board (e=35µm)
0.9
0.8
0.7
0.6
0.5
δ = 0.5
0.4
0.3
0.2
δ = 0.2 δ = 0.1
0.1
0.0
1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2 1.0E+3
Single pulse
tp(s)
δ
=tp/T
T
tp
Fig. 4-2: Relative variation of thermal transient impedance junction to lead versus pulse duration (SMC).
Zth(j-a)/Rth(j-a)
1.0
Printed circuit board (e=35µm)
0.9
0.8
0.7
0.6
0.5
δ = 0.5
0.4
0.3
δ = 0.2
0.2
δ = 0.1
0.1
0.0
1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2 1.0E+3
Single pulse
tp(s)
δ
=tp/T
T
tp
Fig. 4-3: Relative variation of thermal transient impedance junction to lead versus pulse duration(DPAK).
Zth(j-a)/Rth(j-a)
1.0
Printed circuit board (e=35µm)
0.9
0.8
0.7
0.6
δ = 0.5
0.5
0.4
δ = 0.2
0.3
δ = 0.1
0.2
Single pulse
0.1
0.0
1E-3 1E-2 1E-1 1E+0
tp(s)
δ
=tp/T
T
tp
3/7
Loading...
+ 4 hidden pages