®
MAIN PRODUCT CHARACTERISTICS
STPS340U/S/B
POWER SCHOTTKY RECTIFIER
I
F(AV)
V
RRM
3 A
40 V
Tj (max) 150 °C
(max) 0.57 V
V
F
VERY SMALL CONDUCTION LOSSES
NEGLIGIBLE SWITCHING LOSSE S
LOW FORWARD V O LTAGE DROP
LOW THERMAL RE SISTA NCE
EXTREMELY FAST SWITCHING
SURFACE MOUNTED DEVICE
DESCRIPTION
Single chip Schottky rectifier suited for Switch
Mode Power Supplies and high frequency DC to
DC converters.
Packaged in SMB, SMC and DPAK this device is
intended for use in low and medium voltage
operation, high frequency inverters, free wheeling
and polarity protection applications where low
switching losses are required.
K
SMB
(JEDEC DO -214AA)
STPS340U
A
NC
DPAK
STPS340B
SMC
(JEDEC DO-214AB)
STPS340S
ABSOLUTE RATINGS (limiting values)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
Repetitive peak reverse voltage
RMS forward current DPAK
SMB / SMC
= 135°C δ = 0.5
T
Average forward current
Surge non repetitive forward
c
= 105°C δ = 0.5
T
L
tp = 10 ms Sinusoidal
DPAK
SMB / SMC
40 V
6A
10
3
75 A
current
I
RRM
Repetitive peak reverse
tp = 2 µs F = 1kHz square
1A
current
Tstg
Tj
dV/dt
June 1999 - Ed: 6B
Storage temperature range
Maximum operating junction temperature
Critical rate of rise of r ever se voltage
- 65 to + 150 °C
+ 150 °C
10000 V/µs
A
1/7
STPS340U/S/B
THERMAL R E SI ST A NCES
Symbol Parameter Value Unit
R
th (j-l)
Junction to leads SMC
SMB
R
th (j-c)
Junction to case DPAK
STATIC ELECTRICAL CHARACTERISTI CS
Symbol Tests Conditions Tests Conditions Min. Typ. Max. Unit
*
I
R
V
Reverse leakage current
*
F
Forward voltage drop
Pulse test : * tp = 380 µs, δ < 2 %
Tj = 25°CV
Tj = 125°CV
Tj = 25°CI
Tj = 25°CI
Tj = 125°CI
Tj = 125°CI
= V
R
= V
R
= 3 A
F
= 6 A
F
= 3 A
F
= 6 A
F
RRM
RRM
20 °C/W
25
5.5 °C/ W
20 µA
210mA
0.63 V
0.84
0.52 0.57
0.63 0.72
To evaluate the maximum conduction losses use the follo wing equation :
P = 0.42 x I
Fig. 1: Average forward power dissipation versus
average forward current.
PF(av)(W)
2.5
2.0
1.5
1.0
0.5
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
F(AV)
δ = 0.05
+ 0.050 I
δ = 0.1
F2(RMS)
δ = 0.2
IF(av) (A)
δ = 0.5
δ
=tp/T
δ = 1
Fig. 2: Average current versus ambient
temperature (δ =0.5).
IF(av)(A)
3.5
3.0
2.5
Rth(j-a)=65°C/W
2.0
1.5
T
tp
1.0
0.5
0.0
0 25 50 75 100 125 150
δ
=tp/T
Rth(j-a)=Rth(j-c)
(DPAK)
Rth(j-a)=Rth(j-l)
(SMB/SMC)
T
tp
Tamb(°C)
2/7
STPS340U/S/B
Fig. 3-1: Non repetit iv e s urge peak forward current
versus overload duration (SMB)(Maximum values).
IM(A)
10
9
8
7
6
5
4
3
I
M
2
1
0
1E-3 1E-2 1E-1 1E+0
t
δ
=0.5
t(s)
Ta=25°C
Ta=50°C
Ta=100°C
Fig. 3-3: Non repetitive surge peak forward current
versus overload duration (DPAK) (Maximum
values).
IM(A)
50
40
30
20
I
M
10
0
1E-3 1E-2 1E-1 1E+0
t
δ
=0.5
t(s)
Tc=25°C
Tc=50°C
Tc=100°C
Fig. 3- 2 : Non repetitive surge peak forward current
versus overload duration (SMC) (Maximum values).
IM(A)
12
10
8
Ta=25°C
6
4
I
M
2
0
1E-3 1E-2 1E-1 1E+0
t
δ
=0.5
t(s)
Ta=50°C
Ta=100°C
Fig. 4-1: Relative variation of thermal transient
impedance junction to lead versus pulse duration
(SMB).
Zth(j-a)/Rth(j-a)
1.0
Printed circuit board (e=35µm)
0.9
0.8
0.7
0.6
0.5
δ = 0.5
0.4
0.3
0.2
δ = 0.2
δ = 0.1
0.1
0.0
1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2 1.0E+3
Single pulse
tp(s)
δ
=tp/T
T
tp
Fig. 4-2: Relative variation of thermal transient
impedance junction to lead versus pulse duration
(SMC).
Zth(j-a)/Rth(j-a)
1.0
Printed circuit board (e=35µm)
0.9
0.8
0.7
0.6
0.5
δ = 0.5
0.4
0.3
δ = 0.2
0.2
δ = 0.1
0.1
0.0
1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2 1.0E+3
Single pulse
tp(s)
δ
=tp/T
T
tp
Fig. 4-3: Relative variation of thermal transient
impedance junction to lead versus pulse
duration(DPAK).
Zth(j-a)/Rth(j-a)
1.0
Printed circuit board (e=35µm)
0.9
0.8
0.7
0.6
δ = 0.5
0.5
0.4
δ = 0.2
0.3
δ = 0.1
0.2
Single pulse
0.1
0.0
1E-3 1E-2 1E-1 1E+0
tp(s)
δ
=tp/T
T
tp
3/7