®
STPS30L30CT/CG/CR
LOW DROP POWER SCHOTTKY RECTIFIER
MAIN PRODUCT CHARACTERISTICS
I
F(AV)
V
RRM
2x15A
30 V
Tj (max) 150 °C
V
(max) 0.37 V
F
FEATURES AND BENEFITS
VERY SMALL CONDUCTION LOSSES
n
NEGLIGIBLE SWITCHING LOSSES
n
EXTREMELY FAST SWITCHING
n
LOW FORWARD VOLTAGE DROP
n
n
LOW THERMAL RESISTANCE
AVALANCHE CAPABILITY SPECIFIED
n
DESCRIPTION
Dual center tap Schottky rectifiers suited for
Switch Mode Power Supply and high frequency
DC to DC converters.
2
Packaged in TO-220AB, D
PAK and I²PAK, these
devices are intended for use in low voltage, high
frequency inverters, free-wheeling and polarity
protection applications.
A1
A2
A1
TO-220AB
STPS30L30CT
STPS30L30CR
A2
K
I2PAK
K
K
A2
A1
2
PAK
D
STPS30L30CG
A2
K
A1
ABSOLUTE RATINGS (limiting values, per diode)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
P
ARM
T
stg
Tj
dV/dt
July 2003 - Ed: 5C
Repetitive peak reverse voltage
RMS forward current
Average forward current Tc = 140°C
Surge non repetitive forward current tp = 10 ms Sinusoidal
Peak repetitive reverse current tp=2µsF=1kHz square
Non repetitive peak reverse current tp = 100µs square
Repetitive peak avalanche power tp = 1µs Tj = 25°C
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise reverse voltage
δ = 0.5
Per diode
Per device
30 V
30 A
15
30
220 A
1A
3A
5300 W
- 65 to + 150 °C
150 °C
10000 V/µs
A
1/5
STPS30L30CT/CG/CR
THERMAL RESISTANCE
Symbol Parameter Value Unit
R
th (j-c)
Junction to case
Per diode
Total
R
th (c)
Coupling 0.1 °C/W
When the diodes 1 and 2 are used simultaneously :
∆ Tj(diode 1) = P(diode1) x R
(Per diode) + P(diode 2) x R
th(j-c)
th(c)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol Parameter Tests Conditions Min. Typ. Max. Unit
*
I
R
V
F
Reverse leakage current
*
Forward voltage drop Tj = 25°C I
Tj = 25°C V
Tj = 125°C
Tj = 125°C I
Tj = 25°C I
Tj = 125°C I
R=VRRM
=15A
F
=15A
F
=30A
F
=30A
F
Pulse test : * tp = 380 µs, δ <2%
To evaluate the conduction losses use the following equation :
P = 0.24x I
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
F(AV)
+ 0.009 I
F2(RMS)
Fig. 2: Average current versus ambient
temperature (δ=0.5) (per diode).
1.5
°C/W
0.8
1.5 mA
170 350 mA
0.46 V
0.33 0.37
0.57
0.43 0.5
PF(av)(W)
10
9
8
7
6
5
4
3
2
1
0
0 2 4 6 8 101214161820
δ = 0.05
δ = 0.1
δ = 0.2
IF(av) (A)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
IF(av)(A)
16
14
12
10
8
6
4
2
δ
0
0 25 50 75 100 125 150
=tp/T
Rth(j-a)=15°C/W
T
tp
Rth(j-a)=50°C/W
Tamb(°C)
Rth(j-a)=Rth(j-c)
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0 25 50 75 100 125 150
T (°C)
j
2/5