®
STPS20L45CF/CW/CT/CFP/CG
LOW DROP POWER SCHOTTKY RECTIFIER
MAJOR PRODUCTS CHARACTERISTICS
I
F(AV)
V
RRM
2x10A
45 V
Tj (max) 150°C
V
(max) 0.5 V
F
FEATURES AND BENEFITS
LOW FORWARD VOLTAGE DROP MEANING
■
VERY SMALL CONDUCTION LOSSES
LOW SWITCHING LOSSES ALLOWING HIGH
■
FREQUENCY OPERATION
INSULATED PACKAGE: ISOWATT220AB,
■
TO-220FPAB
Insulating voltage = 2000V DC
Capacitance = 12pF
■ AVALANCHE CAPABILITY SPECIFIED
DESCRIPTION
Dual center tap Schottky rectifiers designed for
highfrequencyswitchedmodepowersuppliesand
DC to DC converters.
These devices are intendedfor usein low voltage,
high frequency inverters, free-wheeling and
polarity protection applications.
K
A2
A1
D2PAK
STPS20L45CG
K
A1
TO-220FPAB
STPS20L45CFP
K
A1
ISOWATT220AB
STPS20L45CF
A1
K
A2
A2
K
A2
A1
TO-220AB
STPS20L45CT
A2
A1
A2
K
TO-247
STPS20L45CW
ABSOLUTE RATINGS (limiting values, per diode)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
Repetitive peak reverse voltage
RMS forward current
Average forward
current
I
FSM
I
RRM
I
RSM
P
ARM
T
Tj
dV/dt
dPtot
*:
Surge non repetitive forward current tp = 10 ms Sinusoidal
Peak repetitive reverse current tp=2 µs square F=1kHz
Non repetitive peak reverse current tp = 100 µs square
Repetitive peak avalanche power tp = 1µs Tj = 25°C
stg
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
<
dTj Rth j a
July 2003 - Ed: 3C
TO-220AB / D2PAK
TO-247
ISOWATT220AB
TO-220FPAB
Tc = 135°C
δ = 0.5
Tc = 115°C
δ = 0.5
Per diode
Per device
Per diode
Per device
thermal runaway condition for a diode on its own heatsink
−1()
45 V
30 A
10
20
10
20
180 A
1A
2A
4000 W
- 65 to + 150 °C
150 °C
10000 V/µs
A
A
1/9
STPS20L45CF/CW/CT/CFP/CG
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th(j-c)
Junction to case ISOWATT220AB
TO-220FPAB
R
R
th(j-c)
th(j-c)
Junction to case TO-247
Junction to case TO-220AB
D2PAK
When the diodes 1 and 2 are used simultaneously :
∆ Tj(diode 1) = P(diode1) x R
(Per diode) + P(diode2) x R
th(j-c)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol Parameter Tests Conditions Min. Typ. Max. Unit
*
I
R
V
F
Reverse leakage
current
*
Forward voltage drop Tj = 25°CI
Tj = 25°C V
Tj = 125°C
Tj = 125°C I
Tj=25°CI
Tj = 125°C I
Pulse test : * tp = 380 µs, δ <2%
R=VRRM
=10A
F
=10A
F
=20A
F
=20A
F
Per diode
Total
Coupling
Per diode
Total
Coupling
Per diode
Total
Coupling
th(c)
4.5
°C/W
3.5
2.5
2.2
°C/W
1.20
0.3
2.2
°C/W
1.3
0.3
0.2 mA
65 130 mA
0.55 V
0.44 0.5
0.73
0.62 0.72
To evaluate the conduction losses use the following equation :
P=0.28xI
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
PF(av)(W)
8
7
6
5
4
3
2
1
0
02468101214
δ = 0.05
F(AV)
+ 0.022 I
δ = 0.1
δ = 0.2
IF(av) (A)
F2(RMS)
δ = 0.5
δ
δ = 1
=tp/T
Fig. 2: Average forward current versus ambient
temperature(δ = 0.5, per diode).
IF(av)(A)
12
11
10
9
8
7
6
5
T
tp
4
3
2
1
δ
0
0 25 50 75 100 125 150
=tp/T
Rth(j-a)=Rth(j-c)
ISOWATT220AB
Rth(j-a)=15°C/W
T
tp
Tamb(°C)
TO-220AB/TO-247
2/9
STPS20L45CF/CW/CT/CFP/CG
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Fig. 5-1: Non repetitive surge peak forward
current versus overload duration (maximum
values, per diode, TO-220AB, TO-247,
2
PAK).
D
IM(A)
140
120
100
80
60
40
IM
20
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
Tc=25°C
Tc=75°C
Tc=125°C
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0 25 50 75 100 125 150
T (°C)
j
Fig. 5-2: Non repetitive surge peak forward
current versus overload duration (maximum
values, per diode, ISOWATT220AB,
TO-220FPAB).
IM(A)
100
90
80
70
60
50
40
30
IM
20
10
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
Tc=25°C
Tc=50°C
Tc=100°C
Fig. 6-1: Relative variation of thermal impedance
junction to case versus pulse duration (TO-220AB,
TO-247, D
Zth(j-c)/Rth(j-c)
1.0
0.8
0.6
0.4
0.2
0.0
1E-3 1E-2 1E-1 1E+0
δ = 0.5
δ = 0.2
δ = 0.1
Single pulse
2
PAK).
tp(s)
δ
=tp/T
T
tp
Fig. 6-2: Relative variation of thermal impedance
junction to case versus pulse duration
(ISOWATT220AB, TO-220FPAB).
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
0.4
δ = 0.2
δ = 0.1
0.2
Single pulse
0.0
1E-3 1E-2 1E-1 1E+0 1E+1
tp(s)
δ
=tp/T
T
tp
3/9